Search results for: Atmospheric Pressure Plasma Jet (APPJ)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5386

Search results for: Atmospheric Pressure Plasma Jet (APPJ)

526 Rohingya Refugees and Bangladesh: Balance of Human Rights and Rationalization

Authors: Kudrat-E-Khuda Babu

Abstract:

Rohingya refugees are the most marginalized and persecuted section of people in the world. The heinous brutality of Myanmar has forced the Muslim minority community to flee themselves to their neighboring country, Bangladesh for quite a few times now. The recent atrocity of the Buddhist country has added insult to injury on the existing crisis. In lieu of protection, the rights of the Rohingya community in Myanmar are being violated through exclusion from citizenship and steamroller of persecution. The mass influx of Rohingya refugees to Bangladesh basically took place in 1978, 1992, 2012, and 2017. At present, there are around one million Rohingyas staying at Teknaf, Ukhiya of Cox’s Bazar, the southern part of Bangladesh. The country, despite being a poverty-stricken one, has shown unprecedented generosity in sheltering the Rohingya people. For sheltering half of the total refugees in 2017, the Prime Minister of Bangladesh, Sheikh Hasina is now being regarded as the lighthouse of humanity or the mother of humanity. Though Bangladesh is not a ratifying state of the UN Refugee Convention, 1951 and its Additional Protocol, 1967, the country cannot escape its obligation under international human rights jurisprudence. Bangladesh is a party to eight human rights instruments out of nine core instruments, and thus, the country has an indirect obligation to protect and promote the rights of the refugees. Pressure from international bodies has also made Bangladesh bound to provide refuge to Rohingya people. Even though the demographic vulnerability and socio-economic condition of the country do not suggest taking over extra responsibility, the principle of non-refoulment as a part of customary international law reminds us to stay beside those persecuted or believed to have well-founded fear of persecution. In the case of HM Ershad v. Bangladesh and Others, 7 BLC (AD) 67, it was held that any international treaty or document after signing or ratification is not directly enforceable unless and until the parliament enacts a similar statute howsoever sweet the document is. As per Article 33(2) of the 1951 Refugee Convention, there are even exceptions for a state party in case of serious consequences like threat to national security, apprehension of serious crime and danger to safeguard state population. Bangladesh is now at a cross-road of human rights and national interest. The world community should come forward to resolve the crisis of the persecuted Rohingya people through repatriation, resettlement, and reintegration.

Keywords: Rohingya refugees, human rights, Bangladesh, Myanmar

Procedia PDF Downloads 188
525 Characterization of Volatiles Botrytis cinerea in Blueberry Using Solid Phase Micro Extraction, Gas Chromatography Mass Spectrometry

Authors: Ahmed Auda, Manjree Agarwala, Giles Hardya, Yonglin Rena

Abstract:

Botrytis cinerea is a major pest for many plants. It can attack a wide range of plant parts. It can attack buds, flowers, and leaves, stems, and fruit. However, B. cinerea can be mixed with other diseases that cause the same damage. There are many species of botrytis and more than one different strains of each. Botrytis might infect the foliage of nursery stock stored through winter in damp conditions. There are no known resistant plants. Botrytis must have nutrients or food source before it infests the plant. Nutrients leaking from wounded plant parts or dying tissue like old flower petals give the required nutrients. From this food, the fungus becomes more attackers and invades healthy tissue. Dark to light brown rot forms in the ill tissue. High humidity conditions support the growth of this fungus. However, we suppose that selection pressure can act on the morphological and neurophysiologic filter properties of the receiver and on both the biochemical and the physiological regulation of the signal. Communication is implied when signal and receiver evolves toward more and more specific matching, culminating. In other hand, receivers respond to portions of a body odor bouquet which is released to the environment not as an (intentional) signal but as an unavoidable consequence of metabolic activity or tissue damage. Each year Botrytis species can cause considerable economic losses to plant crops. Even with the application of strict quarantine and control measures, these fungi can still find their way into crops and cause the imposition of onerous restrictions on exports. Blueberry fruit mould caused by a fungal infection usually results in major losses during post-harvest storage. Therefore, the management of infection in early stages of disease development is necessary to minimize losses. The overall purpose of this study will develop sensitive, cheap, quick and robust diagnostic techniques for the detection of B. cinerea in blueberry. The specific aim was designed to investigate the performance of volatile organic compounds (VOCs) in the detection and discrimination of blueberry fruits infected by fungal pathogens with an emphasis on Botrytis in the early storage stage of post-harvest.

Keywords: botrytis cinerea, blueberry, GC/MS, VOCs

Procedia PDF Downloads 241
524 The Adoption of Sustainable Textiles & Smart Apparel Technology for the South African Healthcare Sector

Authors: Winiswa Mavutha

Abstract:

The adoption of sustainable textiles and smart apparel technology is crucial for the South African healthcare sector. It’s all about finding innovative solutions to track patient health and improve overall healthcare delivery. This research focuses on how sustainable textile fibers can be integrated with smart apparel technologies by utilizing embedded sensors and some serious data analytics—to enable real-time monitoring of patients. Smart apparel technology conducts constant monitoring of patients’ heart rate, temperature, and blood pressure, including delivering medication electronically, which enhances patient care and reduces hospital readmissions. Currently, the South African healthcare system has its own set of challenges, such as limited resources and a heavy disease burden. Apparel and textile manufacturers in South Africa can address these challenges while promoting environmental sustainability through waste reduction and decreased reliance on harmful chemicals that are typically utilized in traditional textile manufacturing. The study will emphasize the importance of sustainable practices in the textile supply chain. Additionally, this study will examine the importance of collaborative initiatives among stakeholders—such as government entities healthcare providers, including textile and apparel manufacturers, which promotes an environment that fosters innovation in sustainable smart textiles and apparel technology. If South Africa taps into its local resources and skills, it could be a pioneer in the global South for creating eco-friendly healthcare solutions. This aligns perfectly with global sustainability trends and sustainable development goals. The study will use a mixed-method approach by conducting surveys, focus group interviews, and case studies with healthcare professionals, patients, as well as textile and apparel manufacturers. The utilization of sustainable smart textiles doesn’t only enhance patient care through better monitoring, but it also supports a circular economy with biodegradable fibers and minimal textile waste. There’s a growing acknowledgment in the global healthcare sector about the benefits of smart textiles for personalized medicine, and South Africa has the chance to use this advancement to enhance its healthcare services while also addressing some persistent environmental challenges.

Keywords: smart apparel technologies, sustainable textiles, south African healthcare innovation, technology acceptance model

Procedia PDF Downloads 3
523 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 367
522 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture

Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger

Abstract:

3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.

Keywords: 3D woven composites, compression, preforms, textile composites

Procedia PDF Downloads 135
521 Microscopic Insights into Water Transport Through a Biomimetic Artificial Water Nano-Channels-Polyamide Membrane

Authors: Aziz Ghoufi, Ayman Kanaan

Abstract:

Clean water is ubiquitous from drinking to agriculture and from energy supply to industrial manufacturing. Since the conventional water sources are becoming increasingly rare, the development of new technologies for water supply is crucial to address the world’s clean water needs in the 21st century. Desalination is in many regards the most promising approach to long-term water supply since it potentially delivers an unlimited source of fresh water. Seawater desalination using reverse osmosis (RO) membranes has become over the past decade a standard approach to produce fresh water. While this technology has proven to be efficient, it remains however relatively costly in terms of energy input due to the use of high-pressure pumps resulting of the low water permeation through polymeric RO membranes. Recently, water channels incorporated in lipidic and polymeric membranes were demonstrated to provide a selective water translocation that enables to break permeability- selectivity trade-off. Biomimetic Artificial Water channels (AWCs) are becoming highly attractive systems to achieve a selective transport of water. The first developed AWCs formed from imidazole quartet (I-quartet) embedded in lipidic membranes exhibited an ion selectivity higher than AQPs however associated with a lower water flow performance. Recently it has been conducted pioneer work in this field with the fabrication of the first AWC@Polyamide(PA) composite membrane with outstanding desalination performance. However, the microscopic desalination mechanism in play is still unknown and its understanding represents the shortest way for a long-term conception and design of AWC@PA composite membranes with better performance. In this work we gain an unprecedented fundamental understanding and rationalization of the nanostructuration of the AWC@PA membranes and the microscopic mechanism at the origin of their water transport performance from advanced molecular simulations. Using osmotic molecular dynamics simulations and a non-equilibrium method with water slab control, we demonstrate an increase in porosity near the AWC@PA interfaces, enhancing water transport without compromising the rejection rate. Indeed, the water transport pathways exhibit a single-file structure connected by hydrogen bonds. Finally, by comparing AWC@PA and PA membranes, we show that the difference in water flux aligns well with experimental results, validating the model used.

Keywords: water desalination, biomimetic membranes, molecular simulation, nanochannels

Procedia PDF Downloads 19
520 Engaging the World Bank: Good Governance and Human Rights-Based Approaches

Authors: Lottie Lane

Abstract:

It is habitually assumed and stated that the World Bank should engage and comply with international human rights standards. However, the basis for holding the Bank to such standards is unclear. Most advocates of the idea invoke aspects of international law to argue that the Bank has existing obligations to act in compliance with human rights standards. The Bank itself, however, does not appear to accept such arguments, despite having endorsed the importance of human rights for a considerable length of time. A substantial challenge is that under the current international human rights law framework, the World Bank is considered a non-state actor, and as such, has no direct human rights obligations. In the absence of clear legal duties for the Bank, it is necessary to look at the tools available beyond the international human rights framework to encourage the Bank to comply with human rights standards. This article critically examines several bases for arguing that the Bank should comply and engage with human rights through its policies and practices. Drawing on the Bank’s own ‘good governance’ approach as well as the United Nations’ ‘human rights-based-approach’ to development, a new basis is suggested. First, the relationship between the World Bank and human rights is examined. Three perspectives are considered: (1) the legal position – what the status of the World Bank is under international human rights law, and whether it can be said to have existing legal human rights obligations; (2) the Bank’s own official position – how the Bank envisages its relationship with and role in the protection of human rights; and (3) the relationship between the Bank’s policies and practices and human rights (including how its attitudes are reflected in its policies and how the Bank’s operations impact human rights enjoyment in practice). Here, the article focuses on two examples – the (revised) 2016 Environmental and Social Safeguard Policies and the 2012 case-study regarding Gambella, Ethiopia. Both examples are widely considered missed opportunities for the Bank to actively engage with human rights. The analysis shows that however much pressure is placed on the Bank to improve its human rights footprint, it is extremely reluctant to do so explicitly, and the legal bases available are insufficient for requiring concrete, ex ante action by the Bank. Instead, the Bank’s own ‘good governance’ approach to development – which it has been advocating since the 1990s – can be relied upon. ‘Good governance’ has been used and applied by many actors in many contexts, receiving numerous different definitions. This article argues that human rights protection can now be considered a crucial component of good governance, at least in the context of development. In doing so, the article explains the relationship and interdependence between the two concepts, and provides three rationales for the Bank to take a ‘human rights-based approach’ to good governance. Ultimately, this article seeks to look beyond international human rights law and take a governance approach to provide a convincing basis upon which to argue that the World Bank should comply with human rights standards.

Keywords: World Bank, international human rights law, good governance, human rights-based approach

Procedia PDF Downloads 360
519 Ytterbium Advantages for Brachytherapy

Authors: S. V. Akulinichev, S. A. Chaushansky, V. I. Derzhiev

Abstract:

High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources.

Keywords: brachytherapy, high, pulse dose rates, radionuclides for therapy, ytterbium sources

Procedia PDF Downloads 491
518 Curcumin-Loaded Pickering Emulsion Stabilized by pH-Induced Self-Aggregated Chitosan Particles for Encapsulating Bioactive Compounds for Food, Flavor/Fragrance, Cosmetics, and Medicine

Authors: Rizwan Ahmed Bhutto, Noor ul ain Hira Bhutto, Mingwei Wang, Shahid Iqbal, Jiang Yi

Abstract:

Curcumin, a natural polyphenolic compound, boasts numerous health benefits; however, its industrial applications are hindered by instabilities and poor solubility. Encapsulating curcumin in Pickering emulsion presents a promising strategy to enhance its bioavailability. Yet, the development of an efficient and straightforward method to fabricate a natural emulsifier for Pickering emulsion poses a significant challenge. Chitosan has garnered attention due to its non-toxicity and excellent emulsifying properties. This study aimed to prepare four distinct types of self-aggregated chitosan particles using a pH-responsive self-assembling approach. The properties of the aggregated particles were adjusted by pH, degree of deacetylation (DDA), and molecular weight (MW), thereby controlling surface charge, size (ranging from nano to micro and floc), and contact angle. Pickering emulsions were then formulated using these various aggregated particles. As MW and pH increased and DDA decreased, the networked structures of the aggregated particles formed, resulting in highly elastic gels that were more resistant to the breakdown of Pickering emulsion at ambient temperature. With elevated temperatures, the kinetic energy of the aggregated particles increased, disrupting hydrogen bonds and potentially transforming the systems from fluids to gels. The Pickering emulsion based on aggregated particles served as a carrier for curcumin encapsulation. It was observed that DDA and MW played crucial roles in regulating drug loading, encapsulation efficiency, and release profile. This research sheds light on selecting suitable chitosan for controlling the release of bioactive compounds in Pickering emulsions, considering factors such as adjustable rheological properties, microstructure, and macrostructure. Furthermore, this study introduces an environmentally friendly and cost-effective synthesis of pH-responsive aggregate particles without the need for high-pressure homogenizers. It underscores the potential of aggregate particles with various MWs and DDAs for encapsulating other bioactive compounds, offering valuable applications in industries including food, flavor/fragrance, cosmetics, and medicine.

Keywords: chitosan, molecular weight, rheological properties, curcumin encapsulation

Procedia PDF Downloads 65
517 Impact of Non-Parental Early Childhood Education on Digital Friendship Tendency

Authors: Sheel Chakraborty

Abstract:

Modern society in developed countries has distanced itself from the earlier norm of joint family living, and with the increase of economic pressure, parents' availability for their children during their infant years has been consistently decreasing over the past three decades. During the same time, the pre-primary education system - built mainly on the developmental psychology theory framework of Jean Piaget and Lev Vygotsky, has been promoted in the US through the legislature and funding. Early care and education may have a positive impact on young minds, but a growing number of kids facing social challenges in making friendships in their teenage years raises serious concerns about its effectiveness. The survey-based primary research presented here shows a statistically significant number of millennials between the ages of 10 and 25 prefer to build friendships virtually than face-to-face interactions. Moreover, many teenagers depend more on their virtual friends whom they never met. Contrary to the belief that early social interactions in a non-home setup make the kids confident and more prepared for the real world, many shy-natured kids seem to develop a sense of shakiness in forming social relationships, resulting in loneliness by the time they are young adults. Reflecting on George Mead’s theory of self that is made up of “I” and “Me”, most functioning homes provide the required freedom and forgivable, congenial environment for building the "I" of a toddler; however, daycare or preschools can barely match that. It seems social images created from the expectations perceived by preschoolers “Me" in a non-home setting may interfere and greatly overpower the formation of a confident "I" thus creating a crisis around the inability to form friendships face to face when they grow older. Though the pervasive nature of social media can’t be ignored, the non-parental early care and education practices adopted largely by the urban population have created a favorable platform of teen psychology on which social media popularity thrived, especially providing refuge to shy Gen-Z teenagers. This can explain why young adults today perceive social media as their preferred outlet of expression and a place to form dependable friendships, despite the risk of being cyberbullied.

Keywords: digital socialization, shyness, developmental psychology, friendship, early education

Procedia PDF Downloads 128
516 Ethiopian Textile and Apparel Industry: Study of the Information Technology Effects in the Sector to Improve Their Integrity Performance

Authors: Merertu Wakuma Rundassa

Abstract:

Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Increasingly, traditional centralized and sequential manufacturing planning, scheduling, and control mechanisms are being found insufficiently flexible to respond to changing production styles and highly dynamic variations in product requirements. The traditional approaches limit the expandability and reconfiguration capabilities of the manufacturing systems. Thus many business houses face increasing pressure to lower production cost, improve production quality and increase responsiveness to customers. In a textile and apparel manufacturing, globalization has led to increase in competition and quality awareness and these industries have changed tremendously in the last few years. So, to sustain competitive advantage, companies must re-examine and fine-tune their business processes to deliver high quality goods at very low costs and it has become very important for the textile and apparel industries to integrate themselves with information technology to survive. IT can create competitive advantages for companies to improve coordination and communication among trading partners, increase the availability of information for intermediaries and customers and provide added value at various stages along the entire chain. Ethiopia is in the process of realizing its potential as the future sourcing location for the global textile and garments industry. With a population of over 90 million people and the fastest growing non-oil economy in Africa, Ethiopia today represents limitless opportunities for international investors. For the textile and garments industry Ethiopia promises a low cost production location with natural resources such as cotton to enable the setup of vertically integrated textile and garment operation. However; due to lack of integration of their business activities textile and apparel industry of Ethiopia faced a problem in that it can‘t be competent in the global market. On the other hand the textile and apparel industries of other countries have changed tremendously in the last few years and globalization has led to increase in competition and quality awareness. So the aim of this paper is to study the trend of Ethiopian Textile and Apparel Industry on the application of different IT system to integrate them in the global market.

Keywords: information technology, business integrity, textile and apparel industries, Ethiopia

Procedia PDF Downloads 363
515 Assessment of the Situation and the Cause of Junk Food Consumption in Iranians: A Qualitative Study

Authors: A. Rezazadeh, B Damari, S. Riazi-Esfahani, M. Hajian

Abstract:

The consumption of junk food in Iran is alarmingly increasing. This study aimed to investigate the influencing factors of junk food consumption and amendable interventions that are criticized and approved by stakeholders, in order to presented to health policy makers. The articles and documents related to the content of study were collected by using the appropriate key words such as junk food, carbonated beverage, chocolate, candy, sweets, industrial fruit juices, potato chips, French fries, puffed corn, cakes, biscuits, sandwiches, prepared foods and popsicles, ice cream, bar, chewing gum, pastilles and snack, in scholar.google.com, pubmed.com, eric.ed.gov, cochrane.org, magiran.com, medlib.ir, irandoc.ac.ir, who.int, iranmedex.com, sid.ir, pubmed.org and sciencedirect.com databases. The main key points were extracted and included in a checklist and qualitatively analyzed. Then a summarized abstract was prepared in a format of a questionnaire to be presented to stakeholders. The design of this was qualitative (Delphi). According to this method, a questionnaire was prepared based on reviewing the articles and documents and it was emailed to stakeholders, who were asked to prioritize and choose the main problems and effective interventions. After three rounds, consensus was obtained.            Studies revealed high consumption of junk foods in the Iranian population, especially in children and adolescents. The most important affecting factors include availability, low price, media advertisements, preference of fast foods taste, the variety of the packages and their attractiveness, low awareness and changing in lifestyle. Main interventions recommended by stakeholders include developing a protective environment, educational interventions, increasing healthy food access and controlling media advertisements and putting pressure from the Industry and Mining Ministry on producers to produce healthy snacks. According to the findings, the results of this study may be proposed to public health policymakers as an advocacy paper and to be integrated in the interventional programs of Health and Education ministries and the media. Also, implementation of supportive meetings with the producers of alternative healthy products is suggested.

Keywords: junk foods, situation, qualitative study, Iran

Procedia PDF Downloads 259
514 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.

Keywords: assessment, closed cavity façade, life cycle, sustainability

Procedia PDF Downloads 192
513 Novel Low-cost Bubble CPAP as an Alternative Non-invasive Oxygen Therapy for Newborn Infants with Respiratory Distress Syndrome in a Tertiary Level Neonatal Intensive Care Unit in the Philippines: A Single Blind Randomized Controlled Trial

Authors: Navid P Roodaki, Rochelle Abila, Daisy Evangeline Garcia

Abstract:

Background and Objective: Respiratory Distress Syndrome (RDS) among premature infants is a major causes of neonatal death. The use of Continuous Positive Airway Pressure (CPAP) has become a standard of care for preterm newborns with RDS hence cost-effective innovations are needed. This study compared a novel low-cost Bubble CPAP (bCPAP) device to ventilator driven CPAP in the treatment of RDS. Methods: This is a single-blind, randomized controlled trial done on May 2022 to October 2022 in a Level III Neonatal Intensive Care Unit in the Philippines. Preterm newborns (<36 weeks) with RDS were randomized to receive Vayu bCPAP device or Ventilator-derived CPAP. Arterial Blood Gases, Oxygen Saturation, administration of surfactant, and CPAP failure rates were measured. Results: Seventy preterm newborns were included. No differences were observed between the Ventilator driven CPAP and Vayu bCPAP on the PaO2 (97.51mmHg vs 97.37mmHg), So2 (97.08% vs 95.60%) levels, amount of surfactant administered between groups. There were no observed differences in CPAP failure rates between Vayu bPCAP (x̄ 3.23 days) and ventilator-driven CPAP (x̄ 2.98 days). However, a significant difference was noted on the CO2 level (40.32mmHg vs 50.70mmHg), which was higher among those hooked to Ventilator-driven CPAP (p 0.004). Conclusion: This study has shown that the novel low-cost bubble CPAP (Vayu bCPAP) can be used as an efficacious alternate non invasive oxygen therapy among preterm neonates with RDS, although the CO2 levels were higher among those hooked to ventilator driven CPAP, other outcome parameters measured showed that both devices are comparable. Recommendation: A multi-center or national study to account for geographic region, which may alter the outcomes of patients connected to different ventilatory support. Cost comparison between devices is also suggested. A mixed-method research assessing the experiences of health care professionals in assembling and utilizing the gadget is a second consideration.

Keywords: bubble CPAP, ventilator-derived CPAP; infant, premature, respiratory distress syndrome

Procedia PDF Downloads 84
512 Use of a Novel Intermittent Compression Shoe in Reducing Lower Limb Venous Stasis

Authors: Hansraj Riteesh Bookun, Cassandra Monique Hidajat

Abstract:

This pilot study investigated the efficacy of a newly designed shoe which will act as an intermittent pneumatic compression device to augment venous flow in the lower limb. The aim was to assess the degree with which a wearable intermittent compression device can increase the venous flow in the popliteal vein. Background: Deep venous thrombosis and chronic venous insufficiency are relatively common problems with significant morbidity and mortality. While mechanical and chemical thromboprophylaxis measures are in place in hospital environments (in the form of TED stockings, intermittent pneumatic compression devices, analgesia, antiplatelet and anticoagulant agents), there are limited options in a community setting. Additionally, many individuals are poorly tolerant of graduated compression stockings due to the difficulty in putting them on, their constant tightness and increased associated discomfort in warm weather. These factors may hinder the management of their chronic venous insufficiency. Method: The device is lightweight, easy to wear and comfortable, with a self-contained power source. It features a Bluetooth transmitter and can be controlled with a smartphone. It is externally almost indistinguishable from a normal shoe. During activation, two bladders are inflated -one overlying the metatarsal heads and the second at the pedal arch. The resulting cyclical increase in pressure squeezes blood into the deep venous system. This will decrease periods of stasis and potentially reduce the risk of deep venous thrombosis. The shoe was fitted to 2 healthy participants and the peak systolic velocity of flow in the popliteal vein was measured during and prior to intermittent compression phases. Assessments of total flow volume were also performed. All haemodynamic assessments were performed with ultrasound by a licensed sonographer. Results: Mean peak systolic velocity of 3.5 cm/s with standard deviation of 1.3 cm/s were obtained. There was a three fold increase in mean peak systolic velocity and five fold increase in total flow volume. Conclusion: The device augments venous flow in the leg significantly. This may contribute to lowered thromboembolic risk during periods of prolonged travel or immobility. This device may also serve as an adjunct in the treatment of chronic venous insufficiency. The study will be replicated on a larger scale in a multi—centre trial.

Keywords: venous, intermittent compression, shoe, wearable device

Procedia PDF Downloads 194
511 Polyphenol-Rich Aronia Melanocarpa Juice Consumption and Line-1 Dna Methylation in a Cohort at Cardiovascular Risk

Authors: Ljiljana Stojković, Manja Zec, Maja Zivkovic, Maja Bundalo, Marija Glibetić, Dragan Alavantić, Aleksandra Stankovic

Abstract:

Cardiovascular disease (CVD) is associated with alterations in DNA methylation, the latter modulated by dietary polyphenols. The present pilot study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to investigate the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes, in subjects (n=34, age of 41.1±6.6 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation, such as folate intake levels, MTHFR C677T gene variant, as well as the anthropometric and metabolic parameters, modulated the LINE-1 methylation levels upon consumption of polyphenol-rich Aronia juice. The experimental analysis of LINE-1 methylation was done by the MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism method. Folate intake was assessed by processing the data from the food frequency questionnaire and repeated 24-hour dietary recalls. Serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using the Statistica software package. In women, after vs. before the treatment period, a significant decrease in LINE-1 methylation levels was observed (97.54±1.50% vs. 98.39±0.86%, respectively; P=0.01). The change (after vs. before treatment) in LINE-1 methylation correlated directly with MTHFR 677T allele presence, average daily folate intake and the change in serum low-density lipoprotein cholesterol, while inversely with the change in serum triacylglycerols (R=0.72, R2=0.52, adjusted R2=0.36, P=0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich Aronia juice consumption achieved through the modifications of DNA methylation pattern in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of DNA methylation may become targets for new approaches in the prevention and treatment of CVD.

Keywords: Aronia melanocarpa, cardiovascular risk, LINE-1, methylation, peripheral blood leukocytes, polyphenol

Procedia PDF Downloads 195
510 A Case Report on Anesthetic Considerations in a Neonate with Isolated Oesophageal Atresia with Radiological Fallacy

Authors: T. Rakhi, Thrivikram Shenoy

Abstract:

Esophageal atresia is a disorder of maldevelopment of esophagus with or without a connection to the trachea. Radiological reviews are needed in consultation with the pediatric surgeon and neonatologist and we report a rare case of esophageal atresia associated with atrial septal defect-patent ductus arteriosus complex. A 2-day old female baby born at term, weighing 3.010kg, admitted to the Neonatal Intensive Care Unit with respiratory distress and excessive oral secretions. On examination, continuous murmur and cyanosis were seen. Esophageal atresia was suspected, after a failed attempt to pass a nasogastric tube. Chest radiograph showed coiling of the nasogastric tube and absent gas shadow in the abdomen. Echocardiography confirmed Patent Ductus Arteriosus with Atrial Septal Defect not in failure and was diagnosed with esophageal atresia with suspected fistula posted for surgical repair. After preliminary management with oxygenation, suctioning in prone position and antibiotics, investigations revealed Hb 17gms serum biochemistry, coagulation profile and C-Reactive Protein Test normal. The baby was premedicated with 5mcg of fentanyl and 100 mcg of midazolam and a rapid awake laryngoscopy was done to rule out difficult airway followed by induction with o2 air, sevo and atracurium 2 mg. Placement of a 3.5 tube was uneventful at first attempt and after confirming bilateral air entry positioned in the lateral position for Right thoracotomy. A pulse oximeter, Echocardiogram, Non-invasive Blood Pressure, temperature and a precordial stethoscope in left axilla were essential monitors. During thoracotomy, both the ends of the esophagus and the fistula could not be located after thorough search suggesting an on table finding of type A esophageal atresia. The baby was repositioned for gastrostomy, and cervical esophagostomy ventilated overnight and extubated uneventful. Absent gas shadow was overlooked and the purpose of this presentation is to create an awareness between the neonatologist, pediatric surgeons and anesthesiologist regarding variation of typing of Tracheoesophageal fistula pre and intraoperatively. A need for imaging modalities warranted for a definitive diagnosis in the presence of a gasless stomach.

Keywords: anesthetic, atrial septal defects, esophageal atresia, patent ductus arteriosus, perioperative, chest x-ray

Procedia PDF Downloads 179
509 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation

Procedia PDF Downloads 339
508 Erosion Wear of Cast Al-Si Alloys

Authors: Pooja Verma, Rajnesh Tyagi, Sunil Mohan

Abstract:

Al-Si alloys are widely used in various components such as liner-less engine blocks, piston, compressor bodies and pumps for automobile sector and aerospace industries due to their excellent combination of properties like low thermal expansion coefficient, low density, excellent wear resistance, high corrosion resistance, excellent cast ability, and high hardness. The low density and high hardness of primary Si phase results in significant reduction in density and improvement in wear resistance of hypereutectic Al-Si alloys. Keeping in view of the industrial importance of the alloys, hypereutectic Al-Si alloys containing 14, 16, 18 and 20 wt. % of Si were prepared in a resistance furnace using adequate amount of deoxidizer and degasser and their erosion behavior was evaluated by conducting tests at impingement angles of 30°, 60°, and 90° with an erodent discharge rate of 7.5 Hz, pressure 1 bar using erosion test rig. Microstructures of the cast alloys were examined using Optical microscopy (OM) and scanning electron microscopy (SEM) and the presence of Si particles was confirmed by x-ray diffractometer (XRD). The mechanical properties and hardness were measured using uniaxial tension tests at a strain rate of 10-3/s and Vickers hardness tester. Microstructures of the alloys and X-ray examination revealed the presence of primary and eutectic Si particles in the shape of cuboids or polyhedral and finer needles. Yield strength (YS), ultimate tensile strength (UTS), and uniform elongation of the hypereutectic Al-Si alloys were observed to increase with increasing content of Si. The optimal strength and ductility was observed for Al-20 wt. % Si alloy which is significantly higher than the Al-14 wt. % Si alloy. The increased hardness and the strength of the alloys with increasing amount of Si has been attributed presence of Si in the solid solution which creates strain, and this strain interacts with dislocations resulting in solid-solution strengthening. The interactions between distributed primary Si particles and dislocations also provide Orowan strengthening leading to increased strength. The steady state erosion rate was found to decrease with increasing angle of impact as well as Si content for all the alloys except at 900 where it was observed to increase with the increase in the Si content. The minimum erosion rate is observed in Al-20 wt. % Si alloy at 300 and 600 impingement angles because of its higher hardness in comparison to other alloys. However, at 90° impingement angle the wear rate for Al-20 wt. % Si alloy is found to be the minimum due to deformation, subsequent cracking and chipping off material.

Keywords: Al-Si alloy, erosion wear, cast alloys, dislocation, strengthening

Procedia PDF Downloads 66
507 Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System

Authors: Florent Cerdan, Anne-Gaëlle Denay, Annette Roy, Jean-Claude Grandidier, Éric Laine

Abstract:

The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that.

Keywords: porous materials, water sorption, glass transition temperature, DSC, DMA, FTIR, transfer mechanisms

Procedia PDF Downloads 529
506 Generation and Migration of Carbone Dioxide in the Lower Cretaceous Bahi Sandstone Reservoir Within the En Naga Sub-Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

En Naga sub - basin considered the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub-basin has likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO₂ occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusives have been pierced in the subsurface and are exposed to the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO₂ exist in the Lower Cretaceous Bahi Sandstones in the En Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR). Based on the production tests for the drilled wells that make Lower Cretaceous Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near Concession 72 (En Naga sub-basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub-basin), three main developed structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represent a good example of the deep over-pressure potential in (the En Naga sub-basin). The very high pressures assumed to be associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from these facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO₂ as 98% overpressured. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure). A significant CO₂ gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment, which reflects better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad, CO₂ generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone

Procedia PDF Downloads 3
505 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring

Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam

Abstract:

The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.

Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera

Procedia PDF Downloads 142
504 Community-Based Palliative Care for Patients with Cerebral Palsy and Developmental Disabilities

Authors: Elizabeth Grier, Meg Gemmill, Mary Martin, Leora Reiter, Herman Tang, Alexandra Donaldson, Isis Lunsky, Mia Wu

Abstract:

Background: Individuals with Cerebral Palsy (CP) and/or IDD face numerous physical and mental health challenges, including difficulty accessing effective palliative care. The aim of this study is to assess the knowledge and comfort of healthcare providers in providing community-based palliative care for patients with Cerebral Palsy (CP) and severe to profound Intellectual and Developmental Disabilities (IDD). Methods: This study includes a mixed methods approach obtaining both quantitative and qualitative data. Quantitative data from palliative care practitioners was obtained through an online survey assessing comfort in symptom management, grief assessment, and goals of care discussion. This survey was distributed to physicians and allied health practitioners across Canada through the College of Family Physicians of Canada Member Interest Groups for Palliative Care and for IDD. Survey results guided the development of a semi-structured interview template, which was used to conduct a focus group on the same topic. Participants were four palliative care providers (3 physicians and one spiritual care practitioner). The focus group transcript is currently undergoing thematic analysis using NVivo 12 software. Results: 57 palliative care practitioners completed the survey. 87% of participants indicated they have provided palliative care services for persons with CP and/or IDD. Findings suggest practitioners are somewhat confident in identifying specific physical symptoms (dyspnea, pressure ulcers) but less confident in identifying physical/emotional pain, addressing grief, and prognosticating life expectancy in this population. 54% of responses indicated they had little/no training on palliating those with CP or IDD, and 45% somewhat or strongly disagree members of their profession can manage symptoms for this population. Focus group analysis is underway, and results will be available at the time of the poster presentation. Conclusion: Persons with CP and IDD are more likely to experience severe health inequities when accessing palliative care. Results of this study suggest further education is needed for palliative care professionals to address the barriers and challenges in providing palliative care to this patient population.

Keywords: palliative care, symptom management, health equity, community healthcare, intellectual and developmental disabilities

Procedia PDF Downloads 142
503 Computational Fluid Dynamics Analysis of Sit-Ski Aerodynamics in Crosswind Conditions

Authors: Lev Chernyshev, Ekaterina Lieshout, Natalia Kabaliuk

Abstract:

Sit-skis enable individuals with limited lower limb or core movement to ski unassisted confidently. The rise in popularity of the Winter Paralympics has seen an influx of engineering innovation, especially for the Downhill and Super-Giant Slalom events, where the athletes achieve speeds as high as 160km/h. The growth in the sport has inspired recent research into sit-ski aerodynamics. Crosswinds are expected in mountain climates and, therefore, can greatly impact a skier's maneuverability and aerodynamics. This research investigates the impact of crosswinds on the drag force of a Paralympic sit-ski using Computational Fluid Dynamics (CFD). A Paralympic sit-ski with a model of a skier, a leg cover, a bucket seat, and a simplified suspension system was used for CFD analysis in ANSYS Fluent. The hybrid initialisation tool and the SST k–ω turbulence model were used with two tetrahedral mesh bodies of influence. The crosswinds (10, 30, and 50 km/h) acting perpendicular to the sit-ski's direction of travel were simulated, corresponding to the straight-line skiing speeds of 60, 80, and 100km/h. Following the initialisation, 150 iterations for both first and second order steady-state solvers were used, before switching to a transient solver with a computational time of 1.5s and a time step of 0.02s, to allow the solution to converge. CFD results were validated against wind tunnel data. The results suggested that for all crosswind and sit-ski speeds, on average, 64% of the total drag on the ski was due to the athlete's torso. The suspension was associated with the second largest overall sit-ski drag force contribution, averaging at 27%, followed by the leg cover at 10%. While the seat contributed a negligible 0.5% of the total drag force, averaging at 1.2N across the conditions studied. The effect of the crosswind increased the total drag force across all skiing speed studies, with the drag on the athlete's torso and suspension being the most sensitive to the changes in the crosswind magnitude. The effect of the crosswind on the ski drag reduced as the simulated skiing speed increased: for skiing at 60km/h, the drag force on the torso increased by 154% with the increase of the crosswind from 10km/h to 50km/h; whereas, at 100km/h the corresponding drag force increase was halved (75%). The analysis of the flow and pressure field characteristics for a sit-ski in crosswind conditions indicated the flow separation localisation and wake size correlated with the magnitude and directionality of the crosswind relative to straight-line skiing. The findings can inform aerodynamic improvements in sit-ski design and increase skiers' medalling chances.

Keywords: sit-ski, aerodynamics, CFD, crosswind effects

Procedia PDF Downloads 66
502 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 63
501 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 113
500 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 271
499 Effect of Lifestyle Modification for Two Years on Obesity and Metabolic Syndrome Components in Elementary Students: A Community-Based Trial

Authors: Bita Rabbani, Hossein Chiti, Faranak Sharifi, Saeedeh Mazloomzadeh

Abstract:

Background: Lifestyle modifications, especially improving nutritional patterns and increasing physical activity, are the most important factors in preventing obesity and metabolic syndrome in children and adolescents. For this purpose, the following interventional study was designed to investigate the effects of educational programs for students, as well as changes in diet and physical activity, on obesity and components of the metabolic syndrome. Methods: This study is part of an interventional research project (elementary school) conducted on all students of Sama schools in Zanjan and Abhar in three levels of elementary, middle, and high school, including 1000 individuals in Zanjan (intervention group) and 1000 individuals (control group) in Abhar in 2011. Interventions were based on educating students, teachers, and parents, changes in food services, and physical activity. We primarily measured anthropometric indices, fasting blood sugar, lipid profiles, and blood pressure and completed standard nutrition and physical activity questionnaires. Also, blood insulin levels were randomly measured in a number of students. Data analysis was done by SPSS software version 16.0. Results: Overall, 589 individuals (252 male, 337 female) entered the case group, and 803 individuals (344 male, 459 female) entered the control group. After two years of intervention, mean waist circumference (63.8 ± 10.9) and diastolic BP (63.8 ± 10.4) were significantly lower; however, mean systolic BP (10.1.0 ± 12.5), food score (25.0 ± 5.0) and drinking score (12.1 ± 2.3) were higher in the intervention group (p<0.001). Comparing components of metabolic syndrome between the second year and at time of recruitment within the intervention group showed that although number of overweight/obese individuals, individuals with hypertriglyceridemia and high LDL increased, abdominal obesity, high BP, hyperglycemia, and insulin resistance decreased (p<0.001). On the other hand, in the control group, number of individuals with high BP increased significantly. Conclusion: The prevalence of abdominal obesity and hypertension, which are two major components of metabolic syndrome, are much higher in our study than in other regions of country. However, interventions for modification of diet and increase in physical activity are effective in lowering their prevalence.

Keywords: metabolic syndrome, obesity, life style, nutrition, hypertension

Procedia PDF Downloads 67
498 Parents' Motivating Factors for Their Deaf and Mute Children to Participate in Physical and Recreational Activities

Authors: Ruben L. Tagare, Jr

Abstract:

This study was conducted to determine the parents’ motivating factors for their deaf and mute children to participate in physical and recreational activities. Data were collected from the 17 parents of the deaf and mute children using a specifically designed survey questionnaire as the primary instrument used in the study. Data analysis and interpretation were done with the aid of descriptive statistics, such as frequency, percentage, weighted mean and multiple responses. Most of the respondents were female with a mean average age of 38 years old. The average age of their children was 10 years old. In terms of monthly income, the respondents had an average monthly income of PhP 13,945. Furthermore, most of the respondents lived in the urban area and were all Catholic by faith or religion. As to the factors that parents used to motivate their deaf and mute children to engage in physical and recreational activities, these included the followings: First; to make my child experience and explore more meaningful things through physical and recreational activities; second; to gain other’s respect; third; to build friendship and interact with his peers; fourth; to experience the feeling of belongingness; and fifth: to learn and discover new things. On the other hand, the least chosen factors were: first; to help achieve and maintain a healthy weight; second; to reduce fats and lowering blood pressure; third; to improve balance, coordination and strength; fourth; to improve posture; and fifth; to assist the child in the development of gross motor and fine motor skills. Based on the findings of the study, it is hereby recommended that since the first factor is 'to make my child experience and explore more meaningful things through physical and recreational activities' and the other top factors are more on social aspect, the school should design extra-curricular activities such as theatrical play and other similar activities that the students will find interesting while the parents will be more motivated to engage their children into physical and recreational activities. Also, since the least chosen factors are more on physical aspect, the school should organize or conduct a seminar for the parents to be aware of the benefits of participating in physical and recreational activities for their deaf and mute children. They can also conduct an information campaign to encourage the other parents of deaf and mute children, whom they keep only inside their home to enroll in the school and let their children be exposed to the natural world. Considering that parents are the primary motivators that can best help their children become more interested in physical and recreational activities for their own development, the school should always remain motivated by creating activities for the deaf and mute children with their parents. The study also recommends conducting further study on the level of knowledge/understanding of the parents on the benefits that can be derived from participating in physical and recreational activities.

Keywords: deaf and mute, participation, physical and recreational activities, adaptive PE

Procedia PDF Downloads 183
497 Particle Gradient Generation in a Microchannel Using a Single IDT

Authors: Florian Kiebert, Hagen Schmidt

Abstract:

Standing surface acoustic waves (sSAWs) have already been used to manipulate particles in a microfluidic channel made of polydimethylsiloxan (PDMS). Usually two identical facing interdigital transducers (IDTs) are exploited to form an sSAW. Further, it has been reported that an sSAW can be generated by a single IDT using a superstrate resonating cavity or a PDMS post. Nevertheless, both setups utilising a traveling surface acoustic wave (tSAW) to create an sSAW for particle manipulation are costly. We present a simplified setup with a tSAW and a PDMS channel to form an sSAW. The incident tSAW is reflected at the rear PDMS channel wall and superimposed with the reflected tSAW. This superpositioned waves generates an sSAW but only at regions where the distance to the rear channel wall is smaller as the attenuation length of the tSAW minus the channel width. Therefore in a channel of 500µm width a tSAW with a wavelength λ = 120 µm causes a sSAW over the whole channel, whereas a tSAW with λ = 60 µm only forms an sSAW next to the rear wall of the channel, taken into account the attenuation length of a tSAW in water. Hence, it is possible to concentrate and trap particles in a defined region of the channel by adjusting the relation between the channel width and tSAW wavelength. Moreover, it is possible to generate a particle gradient over the channel width by picking the right ratio between channel wall and wavelength. The particles are moved towards the rear wall by the acoustic streaming force (ASF) and the acoustic radiation force (ARF) caused by the tSAW generated bulk acoustic wave (BAW). At regions in the channel were the sSAW is dominating the ARF focuses the particles in the pressure nodes formed by the sSAW caused BAW. On the one side the ARF generated by the sSAW traps the particle at the center of the tSAW beam, i. e. of the IDT aperture. On the other side, the ASF leads to two vortices, one on the left and on the right side of the focus region, deflecting the particles out of it. Through variation of the applied power it is possible to vary the number of particles trapped in the focus points, because near to the rear wall the amplitude of the reflected tSAW is higher and, therefore, the ARF of the sSAW is stronger. So in the vicinity of the rear wall the concentration of particles is higher but decreases with increasing distance to the wall, forming a gradient of particles. The particle gradient depends on the applied power as well as on the flow rate. Thus by variation of these two parameters it is possible to change the particle gradient. Furthermore, we show that the particle gradient can be modified by changing the relation between the channel width and tSAW wavelength. Concluding a single IDT generates an sSAW in a PDMS microchannel enables particle gradient generation in a well-defined microfluidic flow system utilising the ARF and ASF of a tSAW and an sSAW.

Keywords: ARF, ASF, particle manipulation, sSAW, tSAW

Procedia PDF Downloads 335