Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87803
Generation and Migration of Carbone Dioxide in the Lower Cretaceous Bahi Sandstone Reservoir Within the En Naga Sub-Basin, Sirte Basin, Libya
Authors: Moaawia Abdulgader Gdara
Abstract:
En Naga sub - basin considered the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub-basin has likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO₂ occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusives have been pierced in the subsurface and are exposed to the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO₂ exist in the Lower Cretaceous Bahi Sandstones in the En Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR). Based on the production tests for the drilled wells that make Lower Cretaceous Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near Concession 72 (En Naga sub-basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub-basin), three main developed structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represent a good example of the deep over-pressure potential in (the En Naga sub-basin). The very high pressures assumed to be associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from these facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO₂ as 98% overpressured. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure). A significant CO₂ gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment, which reflects better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large.Keywords: En Naga Sub Basin, Al Harouge Al Aswad, CO₂ generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone
Procedia PDF Downloads 15