Search results for: random generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5389

Search results for: random generation

559 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 262
558 Lower Cretaceous Bahi Sandstone Reservoir as Sourced of Co2 Accumulation Within the En-Naga Sub Basin, Sirte Basin, Libya

Authors: Moawia Abulgader Gdara

Abstract:

En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO2 accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO2 gas reservoirs with almost pure magmatic CO2, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO2 is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD.In the (En Naga sub – basin), The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam Formation) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO2 prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO2 prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large.

Keywords: 1)en naga sub basin, 2)alharouge al aswad igneous complex, 3)co2 generation and migration, 4)lower cretaceous bahi sandstone

Procedia PDF Downloads 76
557 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves

Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis

Abstract:

Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.

Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities

Procedia PDF Downloads 265
556 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid

Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty

Abstract:

Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.

Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction

Procedia PDF Downloads 304
555 Land Rights, Policy and Cultural Identity in Uganda: Case of the Basongora Community

Authors: Edith Kamakune

Abstract:

As much as Indigenous rights are presumed to be part of the broad human rights regime, members of the indigenous communities have continually suffered violations, exclusions, and threat. There are a number of steps taken from the international community in trying to bridge the gap, and this has been through the inclusion of provisions as well as the passing of conventions and declarations with specific reference to the rights of indigenous peoples. Some examples of indigenous people include theSiberian Yupik of St Lawrence Island; the Ute of Utah; the Cree of Alberta, and the Xosa andKhoiKhoi of Southern Africa. Uganda’s wide cultural heritage has played a key role in the failure to pay special attention to the needs of the rights of indigenous peoples. The 1995 Constitution and the Land Act of 1998 provide for abstract land rights without necessarily paying attention to indigenous communities’ special needs. Basongora are a pastoralist community in Western Uganda whose ancestral land is the present Queen Elizabeth National Park of Western Uganda, Virunga National Park of Eastern Democratic Republic of Congo, and the small percentage of the low lands under the Rwenzori Mountains. Their values and livelihood are embedded in their strong attachment to the land, and this has been at stake for the last about 90 Years. This research was aimed atinvestigating the relationship between land rights and the right to cultural identity among indigenous communities, looking at the policy available on land and culture, and whether the policies are sensitive of the specific issues of vulnerable ethnic groups; and largely the effect of land on the right to cultural identity. The research was guided by three objectives: to examine and contextualize the concept of land rights among the Basongora community; to assess the policy frame work available for the protection of the Basongora community; to investigate the forms of vulnerability of the Basongora community. Quantitative and qualitative methods were used. a case of Kaseseand Kampala Districts were purposefully selected .138 people were recruited through random and nonrandom techniques to participate in the study, and these were 70 questionnaire respondents; 20 face to face interviews respondents; 5 key informants, and 43 participants in focus group discussions; The study established that Land is communally held and used and thatit continues to be a central source of livelihood for the Basongora; land rights are important in multiplication of herds; preservation, development, and promotion of culture and language. Research found gaps in the policy framework since the policies are concerned with tenure issues and the general provisions areambiguous. Oftenly, the Basongora are not called upon to participate in decision making processes, even on issues that affect them. The research findings call forauthorities to allow Basongora to access Queen Elizabeth National Park land for pasture during particular seasons of the year, especially during the dry seasons; land use policy; need for a clear alignment of the description of indigenous communitiesunder the constitution (Uganda, 1995) to the international definition.

Keywords: cultural identity, land rights, protection, uganda

Procedia PDF Downloads 156
554 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 70
553 Event-Related Potentials and Behavioral Reactions during Native and Foreign Languages Comprehension in Bilingual Inhabitants of Siberia

Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatyana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena D. Mokur-ool, Nikolay A. Kolchanov, Lubomir I. Aftanas

Abstract:

The study is dedicated to the research of brain activity in bilingual inhabitants of Siberia. We compared behavioral reactions and event-related potentials in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All the healthy and right-handed participants, matched on age and sex, were students of different universities. EEG’s were recorded during the solving of linguistic tasks. In these tasks, participants had to find a syntax error in the written sentences. There were four groups of sentences: Russian, English, Tuvinian, and Yakut. All participants completed the tasks in Russian and English. Additionally, Tuvinians and Yakuts completed the tasks in Tuvinian or Yakut respectively. For Russians, EEG's were recorded using 128-channels according to the extended International 10-10 system, and the signals were amplified using “Neuroscan (USA)” amplifiers. For Tuvinians and Yakuts, EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups, 0.3-100 Hz analog filtering and sampling rate 1000 Hz were used. As parameters of behavioral reactions, response speed and the accuracy of recognition were used. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The behavioral reactions showed that in Russians, the response speed for Russian was faster than for English. Also, the accuracy of solving tasks was higher for Russian than for English. The peak P300 in Russians were higher for English, the peak P600 in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages. However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. This can be explained by the fact that they did not think carefully and gave a random answer for English. In Tuvinians, The P300 and P600 amplitudes and cortical topology were the same for Russian and Tuvinian and different for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as what Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference, and were reflected to foreign language comprehension - while the Russian language comprehension was reflected to native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, and only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.

Keywords: EEG, ERP, native and foreign languages comprehension, Siberian inhabitants

Procedia PDF Downloads 561
552 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China

Authors: Y. Sakai, C. Wang

Abstract:

The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.

Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete

Procedia PDF Downloads 181
551 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 38
550 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap

Authors: Nikolai N. Bogolubov, Andrey V. Soldatov

Abstract:

Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.

Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom

Procedia PDF Downloads 271
549 The Effect of Filter Design and Face Velocity on Air Filter Performance

Authors: Iyad Al-Attar

Abstract:

Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides.

Keywords: air filters, fractional efficiency, gas cleaning, glass fibre, HEPA filter, permeability, pressure drop

Procedia PDF Downloads 135
548 Nutrition Support Practices and Nutritional Status of Adolescents Receiving Antiretroviral Therapy in Selected Hospitals in Ethiopia

Authors: Meless Gebrie Bore, Lin Perry, Xiaoyue Xu, Andargachew Kassa, Marilyn Cruickshank

Abstract:

Background: Adolescents living with HIV (ALHIV) in Ethiopia face significant health challenges, particularly related to nutrition, which is essential for optimizing antiretroviral therapy (ART) outcomes. This population is vulnerable to nutritional deficiencies due to increased energy demands and the adverse effects of HIV, alongside rapid growth and low socio-economic status. Despite advances in ART, research on nutritional care for ALHIV in Ethiopia is limited. Integrated nutritional interventions are critical for improving health outcomes, yet comprehensive guidance is lacking. This study aimed to evaluate healthcare workers' practices in ART clinics, assess the nutritional status of ALHIV, and provide recommendations for enhancing nutritional care. Method: Cross-sectional surveys were conducted, recruiting 44 healthcare professionals and 384 ALHIV across ten public hospitals in Addis Ababa and Oromia regions. Participants were selected using purposive sampling for healthcare workers and proportionate random sampling for ALHIV engaged in ART services. Data was collected using a pre-tested structured questionnaire with quantitative and qualitative components facilitated by trained healthcare workers through the Kobo Toolbox program. Results: Findings revealed that while most healthcare workers conducted basic nutritional assessments, more sensitive methods were rarely used. Only 36.4% assessed dietary intake and 27.3% evaluated food security. Nutrition counseling was limited, with only 38.6% providing such services regularly. Health Care worker participants expressed dissatisfaction with the integration of nutrition services due to a lack of training and resources. Nutritional assessments revealed that 24.2% of ALHIV were classified as thin, 21.7% as stunted, and 34.9% as malnourished based on mid-upper arm circumference, with 19.4% experiencing severe acute malnutrition. These results highlight the urgent need and opportunities to improve nutritional support tailored to ALHIV-specific needs. Conclusion and Recommendations: Study findings identified evidence of substantial nutritional deficits and critical gaps in nutritional care for ALHIV in Ethiopian ART clinics. While basic assessment and counseling were generally practiced, limited use of more sensitive methods and inadequate integration of nutrition services hindered care effectiveness. To improve health outcomes, it is essential to enhance training for healthcare workers, develop standardized nutrition guidelines, and allocate resources effectively. Conducting further research with large, diverse samples and integrating comprehensive nutritional care alongside ART services will enable better matching of the nutritional needs of this vulnerable population.

Keywords: adolescents living with HIV(ALHIV), antiretroviral therapy (ART), HIV, Ethiopia, malnutrition, nutritional support, stunting, thinness

Procedia PDF Downloads 11
547 Assessment of the Impact of Atmospheric Air, Drinking Water and Socio-Economic Indicators on the Primary Incidence of Children in Altai Krai

Authors: A. P. Pashkov

Abstract:

The number of environmental factors that adversely affect children's health is growing every year; their combination in each territory is different. The contribution of socio-economic factors to the health status of the younger generation is increasing. It is the child’s body that is most sensitive to changes in environmental conditions, responding to this with a deterioration in health. Over the past years, scientists have determined the influence of environmental factors and the incidence of children. Currently, there is a tendency to study regional characteristics of the interaction of a combination of environmental factors with the child's body. The aim of the work was to identify trends in the primary non-infectious morbidity of the children of the Altai Territory as a unique region that combines territories with different levels of environmental quality indicators, as well as to assess the effect of atmospheric air, drinking water and socio-economic indicators on the incidence of children in the region. An unfavorable tendency has been revealed in the region for incidence of such nosological groups as neoplasms, including malignant ones, diseases of the endocrine system, including obesity and thyroid disease, diseases of the circulatory system, digestive diseases, diseases of the genitourinary system, congenital anomalies, and respiratory diseases. Between some groups of diseases revealed a pattern of geographical distribution during mapping and a significant correlation. Some nosologies have a relationship with socio-economic indicators for an integrated assessment: circulatory system diseases, respiratory diseases (direct connection), endocrine system diseases, eating disorders, and metabolic disorders (feedback). The analysis of associations of the incidence of children with average annual concentrations of substances that pollute the air and drinking water showed the existence of reliable correlation in areas of critical and intense degree of environmental quality. This fact confirms that the population living in contaminated areas is subject to the negative influence of environmental factors, which immediately affects the health status of children. The results obtained indicate the need for a detailed assessment of the influence of environmental factors on the incidence of children in the regional aspect, the formation of a database, and the development of automated programs that can predict the incidence in each specific territory. This will increase the effectiveness, including economic of preventive measures.

Keywords: incidence of children, regional features, socio-economic factors, environmental factors

Procedia PDF Downloads 115
546 Combating the Practice of Open Defecation through Appropriate Communication Strategies in Rural India

Authors: Santiagomani Alex Parimalam

Abstract:

Lack of awareness on the consequences of open defecation and myths and misconceptions related to use of toilets have led to the continued practice of open defecation in India. Government of India initiated a multi-pronged intensive communication campaign against the practice of open defecation in the last few years. The primary vision of this communication campaign was to provide increased demand for toilets and to ensure that all have access to safe sanitation. The campaign strategy included the use of mass media, group and folk media, and interpersonal communication to expedite achieving its objectives. The campaign included the use of various media such as posters, wall writings, slides in cinema theatres, kiosks, pamphlets, newsletters, flip charts and folk media to bring behavioural changes in the communities. The author did a concurrent monitoring and process documentation of the campaigns initiated by the state of Tamilnandu, India between 2013 and 2016 commissioned by UNICEF India. The study was carried out to assess the effectiveness of the communication campaigns in combating the practice of open defecation and promote construction of toilets in the state of Tamilnadu, India. Initial findings revealed the gap in understanding the audience and the use of appropriate media. The first phase of the communication campaign by name as Chi Chi Chollapa (bringing shame concept) also revealed that use of interpersonal communication, group and community media were the most effective strategy in reaching the rural masses. The failure of various other media used especially the print media (poster, handbills, newsletter, kiosks) provides insights as to where the government needs to invest its resources in bringing health-seeking behaviour in the community. The findings shared with the government enabled to strengthen the campaign resulting in improved response. Taking cues from the study, the government understood the potency of the women, school children, youth and community leaders as the effective carriers of the message. The government narrowed down its focus and invested on the voluntary workers (village poverty reduction committee workers VPRCs) in the community. The effectiveness of interpersonal communication and peer education by the credible community worker threw light on the need for localising the content and communicator. From this study, we could derive that only community and group media are preferred by the people in the rural community. Children, youth, women, and credible local leaders are proved to be ambassadors in behaviour change communication. This study discloses the lacunae involved in the communication campaign and points out that the state should have carried out a proper communication need analysis and piloting. The study used a survey method with random sampling. The study used both quantitative and qualitative tools such as interview schedules, in-depth interviews, and focus group discussions in rural areas of Tamilnadu in phases. The findings of the study would provide directions to future campaigns to any campaign concerning health and rural development.

Keywords: appropriate, communication, combating, open defecation

Procedia PDF Downloads 126
545 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 86
544 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures

Authors: Francesca Marsili

Abstract:

The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.

Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures

Procedia PDF Downloads 337
543 Effect of Cutting Tools and Working Conditions on the Machinability of Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluids

Authors: S. Gariani, I. Shyha

Abstract:

Cutting titanium alloys are usually accompanied with low productivity, poor surface quality, short tool life and high machining costs. This is due to the excessive generation of heat at the cutting zone and difficulties in heat dissipation due to relatively low heat conductivity of this metal. The cooling applications in machining processes are crucial as many operations cannot be performed efficiently without cooling. Improving machinability, increasing productivity, enhancing surface integrity and part accuracy are the main advantages of cutting fluids. Conventional fluids such as mineral oil-based, synthetic and semi-synthetic are the most common cutting fluids in the machining industry. Although, these cutting fluids are beneficial in the industries, they pose a great threat to human health and ecosystem. Vegetable oils (VOs) are being investigated as a potential source of environmentally favourable lubricants, due to a combination of biodegradability, good lubricous properties, low toxicity, high flash points, low volatility, high viscosity indices and thermal stability. Fatty acids of vegetable oils are known to provide thick, strong, and durable lubricant films. These strong lubricating films give the vegetable oil base stock a greater capability to absorb pressure and high load carrying capacity. This paper details preliminary experimental results when turning Ti-6Al-4V. The impact of various VO-based cutting fluids, cutting tool materials, working conditions was investigated. The full factorial experimental design was employed involving 24 tests to evaluate the influence of process variables on average surface roughness (Ra), tool wear and chip formation. In general, Ra varied between 0.5 and 1.56 µm and Vasco1000 cutting fluid presented comparable performance with other fluids in terms of surface roughness while uncoated coarse grain WC carbide tool achieved lower flank wear at all cutting speeds. On the other hand, all tools tips were subjected to uniform flank wear during whole cutting trails. Additionally, formed chip thickness ranged between 0.1 and 0.14 mm with a noticeable decrease in chip size when higher cutting speed was used.

Keywords: cutting fluids, turning, Ti-6Al-4V, vegetable oils, working conditions

Procedia PDF Downloads 279
542 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Tejinder Singh Sidhu

Abstract:

Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.

Keywords: hot corrosion, coating, HVOF, oxidation

Procedia PDF Downloads 83
541 Character Development Outcomes: A Predictive Model for Behaviour Analysis in Tertiary Institutions

Authors: Rhoda N. Kayongo

Abstract:

As behavior analysts in education continue to debate on how higher institutions can continue to benefit from their social and academic related programs, higher education is facing challenges in the area of character development. This is manifested in the percentages of college completion rates, teen pregnancies, drug abuse, sexual abuse, suicide, plagiarism, lack of academic integrity, and violence among their students. Attending college is a perceived opportunity to positively influence the actions and behaviors of the next generation of society; thus colleges and universities have to provide opportunities to develop students’ values and behaviors. Prior studies were mainly conducted in private institutions and more so in developed countries. However, with the complexity of the nature of student body currently due to the changing world, a multidimensional approach combining multiple factors that enhance character development outcomes is needed to suit the changing trends. The main purpose of this study was to identify opportunities in colleges and develop a model for predicting character development outcomes. A survey questionnaire composed of 7 scales including in-classroom interaction, out-of-classroom interaction, school climate, personal lifestyle, home environment, and peer influence as independent variables and character development outcomes as the dependent variable was administered to a total of five hundred and one students of 3rd and 4th year level in selected public colleges and universities in the Philippines and Rwanda. Using structural equation modelling, a predictive model explained 57% of the variance in character development outcomes. Findings from the results of the analysis showed that in-classroom interactions have a substantial direct influence on character development outcomes of the students (r = .75, p < .05). In addition, out-of-classroom interaction, school climate, and home environment contributed to students’ character development outcomes but in an indirect way. The study concluded that in the classroom are many opportunities for teachers to teach, model and integrate character development among their students. Thus, suggestions are made to public colleges and universities to deliberately boost and implement experiences that cultivate character within the classroom. These may contribute tremendously to the students' character development outcomes and hence render effective models of behaviour analysis in higher education.

Keywords: character development, tertiary institutions, predictive model, behavior analysis

Procedia PDF Downloads 136
540 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 61
539 The Acquisition of /r/ By Setswana-Learning Children

Authors: Keneilwe Matlhaku

Abstract:

Crosslinguistic studies (theoretical and clinical) have shown delays and significant misarticulation in the acquisition of the rhotics. This article provides a detailed analysis of the early development of the rhotic phoneme, an apical trill /r/, by monolingual Setswana (Tswana S30) children of age ranges between 1 and 4 years. The data display the following trends: (1) late acquisition of /r/; (2) a wide range of substitution patterns involving this phoneme (i.e., gliding, coronal stopping, affrication, deletion, lateralization, as well as, substitution to a dental and uvular fricative). The primary focus of the article is on the potential origins of these variations of /r/, even within the same language. Our data comprises naturalistic longitudinal audio recordings of 6 children (2 males and 4 females) whose speech was recorded in their homes over a period of 4 months with no or only minimal disruptions in their daily environments. Phon software (Rose et al. 2013; Rose & MacWhinney 2014) was used to carry out the orthographic and phonetic transcriptions of the children’s data. Phon also enabled the generation of the children’s phonological inventories for comparison with adult target IPA forms. We explain the children’s patterns through current models of phonological emergence (MacWhinney 2015) as well as McAllister Byun, Inkelas & Rose (2016); Rose et al., (2022), which highlight the perceptual and articulatory factors influencing the development of sounds and sound classes. We highlight how the substitution patterns observed in the data can be captured through a consideration of the auditory properties of the target speech sounds, combined with an understanding of the types of articulatory gestures involved in the production of these sounds. These considerations, in turn, highlight some of the most central aspects of the challenges faced by the child toward learning these auditory-articulatory mappings. We provide a cross-linguistic survey of the acquisition of rhotic consonants in a sample of related and unrelated languages in which we show that the variability and volatility in the substitution patterns of /r/ is also brought about by the properties of the children’s ambient languages. Beyond theoretical issues, this article sets an initial foundation for developing speech-language pathology materials and services for Setswana learning children, an emerging area of public service in Botswana.

Keywords: rhotic, apical trill, Phon, phonological emergence, auditory, articulatory, mapping

Procedia PDF Downloads 38
538 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
537 Sources and Content of Sexual Information among School Going Adolescents in Uganda

Authors: Jonathan Magala

Abstract:

Context: Adolescents in Uganda face significant challenges related to sexual health due to inadequate sexual information. This lack of information puts young people at risk of early pregnancies, sexually transmitted infections, and poverty. Therefore, it is essential to understand the sources, content, and challenges of acquiring sexual information among secondary school-going adolescents in Uganda. Research Aim: The aim of this study was to establish the sources, content, and challenges of acquiring sexual information among secondary school-going adolescents in Luwero Town Council, Uganda. Methodology: This study used a cross-sectional approach with both qualitative and quantitative methods. Questionnaires and in-depth interviews were conducted with 384 school-going adolescents aged between 13-19 years in Luwero Town Council, Uganda. Findings: The results of the study revealed that adolescents receive sexual information from various sources, with schools being the most common source, followed by parents and religious institutions being the least utilized. Adolescents received information on various topics related to sexuality, including puberty and sexual changes, pregnancy and reproduction, STD information, abstinence, and family planning. However, the content of sexual information was inadequate in addressing the challenges facing adolescents, and there were generation gaps, lack of role models, peer influence, and government policies. The male character from all the sources was the least in offering sexual information to adolescents. Theoretical Importance: The study's findings highlight the need for policy implementation to strengthen sexual education in school curriculum, as the sources of sexual information and the content are inadequate. The various topics should be addressed in schools to provide comprehensive education on sexual health for adolescents. Data Collection and Analysis Procedures: Data collection involved questionnaires and in-depth interviews with school-going adolescents. The data gathered were analyzed using descriptive statistics and thematic analysis. Questions Addressed: The study aimed to answer questions about the sources of sexual information among school-going adolescents, the content of sexual information provided, the challenges faced in accessing the information, and the importance of sex education policy implementation. Conclusion: The study concludes that schools are a popular source of sexual information among school-going adolescents in Uganda. However, the content of the information provided is inadequate in addressing the challenges that adolescents face regarding their sexual health. Therefore, policy implementation is essential in strengthening sexual education in the school curriculum and addressing various topics related to sexual health.

Keywords: adolescents, sexual information, schools, reproductive health

Procedia PDF Downloads 76
536 An Analysis of the Recent Flood Scenario (2017) of the Southern Districts of the State of West Bengal, India

Authors: Soumita Banerjee

Abstract:

The State of West Bengal is mostly watered by innumerable rivers, and they are different in nature in both the northern and the southern part of the state. The southern part of West Bengal is mainly drained with the river Bhagirathi-Hooghly, and its major distributaries and tributaries have divided this major river basin into many subparts like the Ichamati-Bidyadhari, Pagla-Bansloi, Mayurakshi-Babla, Ajay, Damodar, Kangsabati Sub-basin to name a few. These rivers basically drain the Districts of Bankura, Burdwan, Hooghly, Nadia and Purulia, Birbhum, Midnapore, Murshidabad, North 24-Parganas, Kolkata, Howrah and South 24-Parganas. West Bengal has a huge number of flood-prone blocks in the southern part of the state of West Bengal, the responsible factors for flood situation are the shape and size of the catchment area, its steep gradient starting from plateau to flat terrain, the river bank erosion and its siltation, tidal condition especially in the lower Ganga Basin and very low maintenance of the embankments which are mostly used as communication links. Along with these factors, DVC (Damodar Valley Corporation) plays an important role in the generation (with the release of water) and controlling the flood situation. This year the whole Gangetic West Bengal is being flooded due to high intensity and long duration rainfall, and the release of water from the Durgapur Barrage As most of the rivers are interstate in nature at times floods also take place with release of water from the dams of the neighbouring states like Jharkhand. Other than Embankments, there is no such structural measures for combatting flood in West Bengal. This paper tries to analyse the reasons behind the flood situation this year especially with the help of climatic data collected from the Indian Metrological Department, flood related data from the Irrigation and Waterways Department, West Bengal and GPM (General Precipitation Measurement) data for rainfall analysis. Based on the threshold value derived from the calculation of the past available flood data, it is possible to predict the flood events which may occur in the near future and with the help of social media it can be spread out within a very short span of time to aware the mass. On a larger or a governmental scale, heightening the settlements situated on the either banks of the river can yield a better result than building up embankments.

Keywords: dam failure, embankments, flood, rainfall

Procedia PDF Downloads 225
535 Technological Exploitation and User Experience in Product Innovation: The Case Study of the High-Tech Mask

Authors: Venere Ferraro, Silvia Ferraris

Abstract:

We live in a world pervaded by new advanced technologies that have been changing the way we live and experience the surrounded. Besides, new technologies enable product innovation at different levels. Nevertheless, innovation does not lie just in the technological development and in its hard aspects but also in the meaningful use of it for the final user. In order to generate innovative products, a new perspective is needed: The shift from an instrument-oriented view of the technology towards a broader view that includes aspects like aesthetics, acceptance, comfort, and sociability. In many businesses, the user experience of the product is considered the key battlefield to achieve product innovation. (Holland 2011) The use of new technologies is indeed useless without paying attention to the user experience. This paper presents a workshop activity conducted at Design School of Politecnico di Milano in collaboration with Chiba University and aimed at generating innovative design concepts of high-tech mask. The students were asked to design the user experience of a new mask by exploiting emerging technologies such as wearable sensors and information communication technology (ICT) for a chosen field of application: safety or sport. When it comes to the user experience, the mask is a very challenging design product, because it covers aspects of product interaction and, most important, psychological and cultural aspects related to the impact on the facial expression. Furthermore, since the mask affects the face expression quite a lot, it could be a barrier to hide with, or it could be a mean to enhance user’s communication to others. The main request for the students was to take on a user-centered approach: To go beyond the instrumental aspects of product use and usability and focus on the user experience by shaping the technology in a desirable and meaningful way for the user reasoning on the metaphorical and cultural level of the product. During the one-week workshop students were asked to face the design process through (i) the research phase: an in-deep analysis of the user and field of application (safety or sport) to set design spaces (brief) and user scenario; (ii) the idea generation, (iii) the idea development. This text will shortly go through the meaning of the product innovation, the use and application of wearable technologies and will then focus on the user experience design in contrast with the technology-driven approach in the field of product innovation. Finally authors will describe the workshop activity and the concepts developed by the students stressing the important role of the user experience design in new product development.

Keywords: product innovation, user experience, technological exploitation, wearable technologies

Procedia PDF Downloads 345
534 Tension-Free Vaginal Tape Secur (TVT Secur) versus Tension-Free Vaginal Tape-Obturator (TVT-O) from inside to outside in Surgical Management of Genuine Stress Urinary Incontinence

Authors: Ibrahim Mohamed Ibrahim Hassanin, Hany Hassan Mostafa, Mona Mohamed Shaban, Ahlam El Said Kamel

Abstract:

Background: New so-called minimally invasive devices have been developed to limit groin pain after sling placement for treatment of stress urinary incontinence (SUI) to minimize the risk of postoperative pain and organ perforation. A new generation of suburethral slings was described that avoided skin incision to pull out and tension the sling. Evaluation of this device through prospective short-term series has shown controversial results compared with other tension-free techniques. The aim of this study is to compare success rates and complications for tension-free vaginal tape secur (TVT secur) and trans-obturator sub urethral tape inside-out technique (TVT-O) for treatment of stress urinary incontinence (SUI). Materials and Methods: Fifty patients with genuine SUI were divided into two groups: group S (n=25) were operated upon using (TVT secur) and group O (n=25) were operated upon using trans-obturator suburethral tape inside-out technique (TVT-O). Success rate, quality of life and postoperative complications such as groin pain, urgency, urine retention and vaginal tape erosion were reported in both groups at one, three, and six months after surgery. Results: As regards objective cure rate at one, three, six months intervals; there was a significant difference between group S (56%, 64%, and 60%), and group O (80%, 88%, and 88%) respectively (P <0.05). As regards subjective cure rate at one, three, six months intervals; there was a significant difference between group S (44%, 44%, and 48%), and group O (76%, 80%, and 80%) respectively (P <0.05). Quality of life (QoL) parameters improved significantly in cured patients with no difference between both groups. As regards complications, group O had a higher frequency of complications than group S; groin pain (12% vs 12% p= 0.05), urgency (4% (1 case) vs 0%), urine retention (8% (2 cases) vs 0%), vaginal tape erosion (4% (1 case) vs 0%). No cases were complicated with wound infection. Conclusion: Compared to TVT secur, TVT-O showed higher subjective and objective cure rates after six months but higher rate of complications. Both techniques were comparable as regards improvement of quality of life after surgery.

Keywords: stress urinary incontinence, trans-vaginal tape-obturator, TVT Secur, TVT-O

Procedia PDF Downloads 359
533 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 255
532 Proposed Design of an Optimized Transient Cavity Picosecond Ultraviolet Laser

Authors: Marilou Cadatal-Raduban, Minh Hong Pham, Duong Van Pham, Tu Nguyen Xuan, Mui Viet Luong, Kohei Yamanoi, Toshihiko Shimizu, Nobuhiko Sarukura, Hung Dai Nguyen

Abstract:

There is a great deal of interest in developing all-solid-state tunable ultrashort pulsed lasers emitting in the ultraviolet (UV) region for applications such as micromachining, investigation of charge carrier relaxation in conductors, and probing of ultrafast chemical processes. However, direct short-pulse generation is not as straight forward in solid-state gain media as it is for near-IR tunable solid-state lasers such as Ti:sapphire due to the difficulty of obtaining continuous wave laser operation, which is required for Kerr lens mode-locking schemes utilizing spatial or temporal Kerr type nonlinearity. In this work, the transient cavity method, which was reported to generate ultrashort laser pulses in dye lasers, is extended to a solid-state gain medium. Ce:LiCAF was chosen among the rare-earth-doped fluoride laser crystals emitting in the UV region because of its broad tunability (from 280 to 325 nm) and enough bandwidth to generate 3-fs pulses, sufficiently large effective gain cross section (6.0 x10⁻¹⁸ cm²) favorable for oscillators, and a high saturation fluence (115 mJ/cm²). Numerical simulations are performed to investigate the spectro-temporal evolution of the broadband UV laser emission from Ce:LiCAF, represented as a system of two homogeneous broadened singlet states, by solving the rate equations extended to multiple wavelengths. The goal is to find the appropriate cavity length and Q-factor to achieve the optimal photon cavity decay time and pumping energy for resonator transients that will lead to ps UV laser emission from a Ce:LiCAF crystal pumped by the fourth harmonics (266nm) of a Nd:YAG laser. Results show that a single ps pulse can be generated from a 1-mm, 1 mol% Ce³⁺-doped LiCAF crystal using an output coupler with 10% reflectivity (low-Q) and an oscillator cavity that is 2-mm long (short cavity). This technique can be extended to other fluoride-based solid-state laser gain media.

Keywords: rare-earth-doped fluoride gain medium, transient cavity, ultrashort laser, ultraviolet laser

Procedia PDF Downloads 357
531 Heat Transfer and Trajectory Models for a Cloud of Spray over a Marine Vessel

Authors: S. R. Dehghani, G. F. Naterer, Y. S. Muzychka

Abstract:

Wave-impact sea spray creates many droplets which form a spray cloud traveling over marine objects same as marine vessels and offshore structures. In cold climates such as Arctic reigns, sea spray icing, which is ice accretion on cold substrates, is strongly dependent on the wave-impact sea spray. The rate of cooling of droplets affects the process of icing that can yield to dry or wet ice accretion. Trajectories of droplets determine the potential places for ice accretion. Combining two models of trajectories and heat transfer for droplets can predict the risk of ice accretion reasonably. The majority of the cooling of droplets is because of droplet evaporations. In this study, a combined model using trajectory and heat transfer evaluate the situation of a cloud of spray from the generation to impingement. The model uses some known geometry and initial information from the previous case studies. The 3D model is solved numerically using a standard numerical scheme. Droplets are generated in various size ranges from 7 mm to 0.07 mm which is a suggested range for sea spray icing. The initial temperature of droplets is considered to be the sea water temperature. Wind velocities are assumed same as that of the field observations. Evaluations are conducted using some important heading angles and wind velocities. The characteristic of size-velocity dependence is used to establish a relation between initial sizes and velocities of droplets. Time intervals are chosen properly to maintain a stable and fast numerical solution. A statistical process is conducted to evaluate the probability of expected occurrences. The medium size droplets can reach the highest heights. Very small and very large droplets are limited to lower heights. Results show that higher initial velocities create the most expanded cloud of spray. Wind velocities affect the extent of the spray cloud. The rate of droplet cooling at the start of spray formation is higher than the rest of the process. This is because of higher relative velocities and also higher temperature differences. The amount of water delivery and overall temperature for some sample surfaces over a marine vessel are calculated. Comparing results and some field observations show that the model works accurately. This model is suggested as a primary model for ice accretion on marine vessels.

Keywords: evaporation, sea spray, marine icing, numerical solution, trajectory

Procedia PDF Downloads 220
530 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 363