Search results for: link data
21266 Effective Counseling Techniques Working with At-Risk Youth in Residential and Outpatient Settings
Authors: David A. Scott, Michelle G. Scott
Abstract:
The problem of juvenile crime, school suspensions and oppositional behaviors indicates a need for a wide range of intervention programs for at-risk youth. Juvenile court systems and mental health agencies are examining alternative ways to deal with at-risk youth that will allow the adolescent to live within their home community. The previous trend that treatment away from home is more effective than treatment near one's community has shifted. Research now suggests that treatment be close to home for several reasons, such as increased treatment success, parental involvement, and reduced costs. Treatment options consist of a wide range of interventions, including outpatient, inpatient, and community-based services (therapeutic group homes, foster care and in-home preservation services). The juvenile justice system, families and other mental health agencies continue to seek the most effective treatment for at-risk youth in their communities. This research examines two possible treatment modalities, a multi-systemic outpatient program and a residential program. Research examining effective, evidence- based counseling will be discussed during this presentation. The presenter recently completed a three-year research grant examining effective treatment modalities for at-risk youth participating in a multi-systemic program. The presenter has also been involved in several research activities gathering data on effective techniques used in residential programs. The data and discussion will be broken down into two parts, each discussing one of the treatment modalities mentioned above. Data on the residential programs was collected on both a sample of 740 at- risk youth over a five-year period and also a sample of 63 participants during a one-year period residing in a residential programs. The effectiveness of these residential services was measured in three ways: services are evaluated by primary referral sources; follow-up data is obtained at various intervals after program participation to measure recidivism (what percentage got back into trouble with the Department of Juvenile Justice); and a more sensitive, "Offense Seriousness Score", has been computed and analyzed prior to, during and after treatment in the residential program. Data on the multi-systemic program was gathered over the past three years on 190 participants. Research will discuss pre and post test results, recidivism rates, academic performance, parental involvement, and effective counseling treatment modalities.Keywords: at-risk youth, group homes, therapeutic group homes, recidivism rates
Procedia PDF Downloads 8721265 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression
Authors: Abdulla D. Alblooshi
Abstract:
The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE
Procedia PDF Downloads 17521264 Epidemiology of Congenital Heart Defects in Kazakhstan: Data from Unified National Electronic Healthcare System 2014-2020
Authors: Dmitriy Syssoyev, Aslan Seitkamzin, Natalya Lim, Kamilla Mussina, Abduzhappar Gaipov, Dimitri Poddighe, Dinara Galiyeva
Abstract:
Background: Data on the epidemiology of congenital heart defects (CHD) in Kazakhstan is scarce. Therefore, the aim of this study was to describe the incidence, prevalence and all-cause mortality of patients with CHD in Kazakhstan, using national large-scale registry data from the Unified National Electronic Healthcare System (UNEHS) for the period of 2014-2020. Methods: In this retrospective cohort study, the included data pertained to all patients diagnosed with CHD in Kazakhstan and registered in UNEHS between January 2014 and December 2020. CHD was defined based on International Classification of Diseases 10th Revision (ICD-10) codes Q20-Q26. Incidence, prevalence, and all-cause mortality rates were calculated per 100,000 population. Survival analysis was performed using Cox proportional hazards regression modeling and the Kaplan-Meier method. Results: In total, 66,512 patients were identified. Among them, 59,534 (89.5%) were diagnosed with a single CHD, while 6,978 (10.5%) had more than two CHDs. The median age at diagnosis was 0.08 years (interquartile range (IQR) 0.01 – 0.66) for people with multiple CHD types and 0.39 years (IQR 0.04 – 8.38) for those with a single CHD type. The most common CHD types were atrial septal defect (ASD) and ventricular septal defect (VSD), accounting for 25.8% and 21.2% of single CHD cases, respectively. The most common multiple types of CHD were ASD with VSD (23.4%), ASD with patent ductus arteriosus (PDA) (19.5%), and VSD with PDA (17.7%). The incidence rate of CHD decreased from 64.6 to 47.1 cases per 100,000 population among men and from 68.7 to 42.4 among women. The prevalence rose from 66.1 to 334.1 cases per 100,000 population among men and from 70.8 to 328.7 among women. Mortality rates showed a slight increase from 3.5 to 4.7 deaths per 100,000 in men and from 2.9 to 3.7 in women. Median follow-up was 5.21 years (IQR 2.47 – 11.69). Male sex (HR 1.60, 95% CI 1.45 - 1.77), having multiple CHDs (HR 2.45, 95% CI 2.01 - 2.97), and living in a rural area (HR 1.32, 95% CI 1.19 - 1.47) were associated with a higher risk of all-cause mortality. Conclusion: The incidence of CHD in Kazakhstan has shown a moderate decrease between 2014 and 2020, while prevalence and mortality have increased. Male sex, multiple CHD types, and rural residence were significantly associated with a higher risk of all-cause mortality.Keywords: congenital heart defects (CHD), epidemiology, incidence, Kazakhstan, mortality, prevalence
Procedia PDF Downloads 10321263 Relationship between Demographic Characteristics and Lifestyle among Indonesian Pregnant Women with Hypertension
Authors: Yosi Maria Wijaya, Florisma Arista Riti Tegu
Abstract:
Background: Hypertension in pregnancy can be prevented by controlling the lifestyle. However, the majority of research on this topic has been conducted on lifestyle in women with normal pregnancy. Few studies of lifestyle have focused on Indonesian pregnant women with hypertension. Aim: The purpose of this study is to determine the association of demographic characteristics and the lifestyle of pregnant women who have hypertension. Methods: In this cross-sectional study, 76 women with hypertension during pregnancy were recruited from primary health care, West Java, Indonesia. Inclusion criteria were gestational age ≥ 28 weeks with the blood pressure systole ≥ 140 mmHg and diastole ≥ 90 mmHg. Data were collected using two instruments: demographic data and Health Promoting Life Style Profile (HPLP II). Data were analyzed with descriptive statistic and linear regression analysis. Results: The majority of participants were married, mean age was 27.96 years old (SD=6.77) with the mean of gestational age 33.21 (SD=3.49), most of them unemployed (94.7%) and more than a half participants have an education less than twelve years (59.2%). The total score of lifestyle was 2.44 (SD=0.34), more than a half participants experience unhealthy lifestyle (59.2%). Lifestyle was predicted by income, education years, occupation, and access to health care services, accounting for 20.8% of the total variance. Conclusion: Pregnant women with hypertension with low income, low level of education, non-occupational and hard to access health care services were related to unhealthy lifestyle. Understanding the lifestyle and associated factors contributes to health care providers ability to design effective interventions intended to improve healthy lifestyle among pregnant women with hypertension.Keywords: demographic characteristics, hypertension, lifestyle, pregnancy
Procedia PDF Downloads 19221262 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites
Authors: Hamed Khezrzadeh
Abstract:
Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.Keywords: fractal geometry, homogenization, micromehcanics, particulate composites
Procedia PDF Downloads 29921261 The Effects of Giving on Knowledge about Epidemic Keratoconjunctivitis in Bangsaen Beach Venders, Chonburi, Thailand
Authors: Luksanaporn Krungkraipetch
Abstract:
Epidemic keratoconjunctivitis is an acute infection caused by the adenovirus symptoms of eye irritation, tearing an incubation period of 7-9 days from the respiratory tract into the eye and often cohesion in the community who work in the school's pool as well as a shopping mall. After infection can cause symptoms within 1-2 days chance to infect others up to two weeks. In some cases when red-eye better they had potential complications of the eye, inflammation occurs 7-10 days after conjunctivitis. It could be for several more months to recover. This study is a cross-sectional study with one hundred and eleven beach venders, and purpose of the research was to assess the knowledge, that knowledge has improved much. By comparing before and after the knowledge of the use of questionnaires and test your knowledge. The statistics used for data analysis percent, arithmetic mean and T-test. The statistics used to analyze data at the level of statistical p ≤ 0.05. Result of this study; mostly female (83.8%), most age 19-35 years (42.3%). Hometown is mostly in Chonburi 74.8%. 20.7% had epidemic keratoconjunctivitis within one year. Compared between before and after gave knowledge; after gave knowledge is better than before gave knowledge p=0.00.Keywords: knowledge, epidemic keratoconjunctivitis, conjunctivitis, beach vender
Procedia PDF Downloads 28021260 Meaning and Cultivating Factors of Mindfulness as Experienced by Thai Females Who Practice Dhamma
Authors: Sukjai Charoensuk, Penphan Pitaksongkram, Michael Christopher
Abstract:
Preliminary evidences supported the effectiveness of mindfulness-based interventions in reducing symptoms associated with a variety of medical and psychological conditions. However, the measurements of mindfulness are questionable since they have not been developed based-on Buddhist experiences. The purpose of this qualitative study was to describe meaning and cultivating factors of mindfulness as experienced by Thai females who practice Dhamma. Participants were purposively selected to include 2 groups of Thai females who practice Dhamma. The first group consisted of 6 female Buddhist monks, and the second group consisted of 7 female who practice Dhamma without ordaining. Data were collected using in-depth interview. The instruments used were demographic data questionnaire and guideline for in-depth interview developed by researchers. Content analysis was employed to analyze the data. The results revealed that Thai women who practice Dhamma described their experience in 2 themes, which were meaning and cultivating factors of mindfulness. The meaning composed of 4 categories; 1) Being Present, 2) Self-awareness, 3) Contemplation, and 4) Neutral. The cultivating factors of mindfulness composed of 2 categories; In-personal factors and Ex-personal factors. The In-personal cultivating factors included 4 sub-categories; Faith and Love, the Five Precepts, Sound body, and Practice. The Ex-personal cultivating factors included 2 sub-categories; Serenity, and Learning. These findings increase understanding about meaning of mindfulness and its cultivating factors. These could be used as a guideline to promote mental health and develop nursing interventions using mindfulness based, as well as, develop the instrument for assessing mindfulness in Thai context.Keywords: cultivating factor, meaning of mindfulness, practice Dhamma, Thai women
Procedia PDF Downloads 35621259 An Analysis of the Influence of Employee Readiness for Change on TQM Implementation
Authors: Mohamed Haffar, Khalil Al-Hyari, Mohammed Khair Abu Zaid, Ramadane Djbarni, Mohammed Hamdan
Abstract:
While employee readiness for change (ERFC) is recognised as critical for total quality management (TQM) implementation, there is a lack of systematic and empirical studies regarding the relationship between ERFC dimensions and TQM. Therefore, this study proposes to fill this gap by providing empirical evidence leading to advancement in the understanding of the influences of ERFC components on TQM implementation. The empirical data for this study was drawn from a survey of 400 middle and senior managers of Jordanian firms. The analysis of the collected data, which was conducted using Structural Equation Modeling technique, revealed that three of the ERFC components, namely personally beneficial, change self-efficacy and management support are the most supportive ERFC dimensions for TQM implementation. Therefore, this paper makes a novel contribution by providing a refined and deeper comprehension of the relationships between ERFCs and TQM implementation.Keywords: total quality management, employee readiness for change, manufacturing organisations, Jordan
Procedia PDF Downloads 56621258 Eye Tracking Syntax in Language Education
Authors: Marcus Maia
Abstract:
The present study reports and discusses the use of eye tracking qualitative data in reading workshops in Brazilian middle and high schools and in Generative Syntax and Sentence Processing courses at the undergraduate and graduate levels at the Federal University of Rio de Janeiro, respectively. Both endeavors take the sentential level as the proper object to be metacognitively explored in language education (cf. Chomsky, Gallego & Ott, 2019) to develop innate science forming capacity and knowledge of language. In both projects, non-discrepant qualitative eye tracking data collected and quantitatively analyzed in experimental syntax and psycholinguistic studies carried out in Lapex (Experimental Psycholinguistics Laboratory of the Federal University of Rio de Janeiro) were displayed to students as a point of departure, triggering discussions. Classes would generally start with the display of videos showing eye tracking data, such as gaze plots and heatmaps from several studies in Psycholinguistics and Experimental Syntax that we had already developed in our laboratory. The videos usually triggered discussions with students about linguistic and psycholinguistic issues, such as the reading of sentences for gist, garden-path sentences, syntactic and semantic anomalies, the filled-gap effect, island effects, direct and indirect cause, and recursive constructions, among other topics. Active, problem-solving based methodologies were employed with the objective of stimulating student participation. The communication also discusses the importance of developing full literacy, epistemic vigilance and intellectual self-defense in an infodemic world in the lines of Maia (2022).Keywords: reading, educational psycholinguistics, eye-tracking, active methodology
Procedia PDF Downloads 7021257 The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach
Authors: Mao Zhaofang, Xu Yida, Fang Kan, Fu Enyuan, Zhao Zhao
Abstract:
Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies.Keywords: city logistics, last-mile delivery, location-routing, adaptive large neighborhood search
Procedia PDF Downloads 8721256 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 16821255 Innovation and Entrepreneurship Skills Attainment for the Growth of Industry: Panacea for Economic Development
Authors: Ademoyegun Olusegun
Abstract:
The advancement of industry in any given state involves a range of processes that entail entrepreneurship and innovative skill attainment, among others, for the development of an economy. This article studied the impact of innovative and entrepreneurship skill attainment as the panacea of the growth of industry for economic development in Nigeria. Content analysis was employed as an instrument on data obtained from secondary resources which include journals, magazines, Workshop Articles, the Internet, interviewing etc. this is preferred because of the absence of sequential data related to entrepreneurship and innovation on sustainable economic growth in Nigeria. The theory of innovative Entrepreneurship was used as a theoretical framework. Findings revealed that Entrepreneurship skill attainment will induce innovation that will accelerate the growth of Industry for the advancement of the Economy. The study recommended that the government should invest adequately in entrepreneurship skill attainment and create an enabling environment for innovation.Keywords: entrepreneurship, innovation, skill attainment, panacea, sustainable development
Procedia PDF Downloads 8621254 COVID-19 Laws and Policy: The Use of Policy Surveillance For Better Legal Preparedness
Authors: Francesca Nardi, Kashish Aneja, Katherine Ginsbach
Abstract:
The COVID-19 pandemic has demonstrated both a need for evidence-based and rights-based public health policy and how challenging it can be to make effective decisions with limited information, evidence, and data. The O’Neill Institute, in conjunction with several partners, has been working since the beginning of the pandemic to collect, analyze, and distribute critical data on public health policies enacted in response to COVID-19 around the world in the COVID-19 Law Lab. Well-designed laws and policies can help build strong health systems, implement necessary measures to combat viral transmission, enforce actions that promote public health and safety for everyone, and on the individual level have a direct impact on health outcomes. Poorly designed laws and policies, on the other hand, can fail to achieve the intended results and/or obstruct the realization of fundamental human rights, further disease spread, or cause unintended collateral harms. When done properly, laws can provide the foundation that brings clarity to complexity, embrace nuance, and identifies gaps of uncertainty. However, laws can also shape the societal factors that make disease possible. Law is inseparable from the rest of society, and COVID-19 has exposed just how much laws and policies intersects all facets of society. In the COVID-19 context, evidence-based and well-informed law and policy decisions—made at the right time and in the right place—can and have meant the difference between life or death for many. Having a solid evidentiary base of legal information can promote the understanding of what works well and where, and it can drive resources and action to where they are needed most. We know that legal mechanisms can enable nations to reduce inequities and prepare for emerging threats, like novel pathogens that result in deadly disease outbreaks or antibiotic resistance. The collection and analysis of data on these legal mechanisms is a critical step towards ensuring that legal interventions and legal landscapes are effectively incorporated into more traditional kinds of health science data analyses. The COVID-19 Law Labs see a unique opportunity to collect and analyze this kind of non-traditional data to inform policy using laws and policies from across the globe and across diseases. This global view is critical to assessing the efficacy of policies in a wide range of cultural, economic, and demographic circumstances. The COVID-19 Law Lab is not just a collection of legal texts relating to COVID-19; it is a dataset of concise and actionable legal information that can be used by health researchers, social scientists, academics, human rights advocates, law and policymakers, government decision-makers, and others for cross-disciplinary quantitative and qualitative analysis to identify best practices from this outbreak, and previous ones, to be better prepared for potential future public health events.Keywords: public health law, surveillance, policy, legal, data
Procedia PDF Downloads 14521253 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information
Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa
Abstract:
The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.Keywords: current density, faults, very low frequency, zonation
Procedia PDF Downloads 17821252 Times Series Analysis of Depositing in Industrial Design in Brazil between 1996 and 2013
Authors: Jonas Pedro Fabris, Alberth Almeida Amorim Souza, Maria Emilia Camargo, Suzana Leitão Russo
Abstract:
With the law Nº. 9279, of May 14, 1996, the Brazilian government regulates rights and obligations relating to industrial property considering the economic development of the country as granting patents, trademark registration, registration of industrial designs and other forms of protection copyright. In this study, we show the application of the methodology of Box and Jenkins in the series of deposits of industrial design at the National Institute of Industrial Property for the period from May 1996 to April 2013. First, a graphical analysis of the data was done by observing the behavior of the data and the autocorrelation function. The best model found, based on the analysis of charts and statistical tests suggested by Box and Jenkins methodology, it was possible to determine the model number for the deposit of industrial design, SARIMA (2,1,0)(2,0,0), with an equal to 9.88% MAPE.Keywords: ARIMA models, autocorrelation, Box and Jenkins Models, industrial design, MAPE, time series
Procedia PDF Downloads 54821251 Performance Analysis of the First-Order Characteristics of Polling System Based on Parallel Limited (K=1) Services Mode
Authors: Liu Yi, Bao Liyong
Abstract:
Aiming at the problem of low efficiency of pipelined scheduling in periodic query-qualified service, this paper proposes a system service resource scheduling strategy with parallel optimized qualified service polling control. The paper constructs the polling queuing system and its mathematical model; firstly, the first-order and second-order characteristic parameter equations are obtained by partial derivation of the probability mother function of the system state variables, and the complete mathematical, analytical expressions of each system parameter are deduced after the joint solution. The simulation experimental results are consistent with the theoretical calculated values. The system performance analysis shows that the average captain and average period of the system have been greatly improved, which can better adapt to the service demand of delay-sensitive data in the dense data environment.Keywords: polling, parallel scheduling, mean queue length, average cycle time
Procedia PDF Downloads 4121250 Investigating the Chemical Structure of Drinking Water in Domestic Areas of Kuwait by Appling GIS Technology
Authors: H. Al-Jabli
Abstract:
The research on the presence of heavy metals and bromate in drinking water is of immense scientific significance due to the potential risks these substances pose to public health. These contaminants are subject to regulatory limits outlined by the National Primary Drinking Water Regulations. Through a comprehensive analysis involving the compilation of existing data and the collection of new data via water sampling in residential areas of Kuwait, the aim is to create detailed maps illustrating the spatial distribution of these substances. Furthermore, the investigation will utilize GRAPHER software to explore correlations among different chemical parameters. By implementing rigorous scientific methodologies, the research will provide valuable insights for the Ministry of Electricity and Water and the Ministry of Health. These insights can inform evidence-based decision-making, facilitate the implementation of corrective measures, and support strategic planning for future infrastructure activities.Keywords: heavy metals, bromate, ozonation, GIS
Procedia PDF Downloads 9221249 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet
Authors: Justin Woulfe
Abstract:
Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics
Procedia PDF Downloads 16521248 Modeling and Simulation of Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 53221247 Perceptions of Mothers on Their Role in the Prevention of the Spread of Human Immunodeficiency Virus to Their Children and Childcare Received in the Healthcare Facility in a Rural Area
Authors: Sibusiso Buthelezi, Rugira Regis Marie-Modeste, Deliwe Rene Phetlhu
Abstract:
Introduction: Mother-to-child transmission persists owing to inadequate implementation of prevention of mother-to-child transmission programmes, particularly in rural areas. To achieve a target of zero new HIV infection in children born from women living with HIV, the involvement of mothers and caregivers is undeniable. Therefore, there is a need to explore the views of the mothers because of the role they play in their own right when it comes to preventing their children from contracting HIV by consistently adhering to the guidelines of the prevention of mother-to-child transmission programme. Thus, this study sought to explore and describe the perceptions of mothers on their role in the prevention of HIV to their children exposed to HIV and further explore their perceptions of the childcare received in the healthcare facility. Methods: The study was conducted in November-December 2019 in Ngaka Modiri Molema in North West Province in South Africa. A qualitative exploratory, descriptive research design was used. Purposive sampling was used to select the mothers of children exposed to HIV during the mother`s clinic attendance. Data collection was done through semi-structured individual interviews with mothers of children exposed to HIV. Colaizzi`s method of data analysis was used to analyse data in this study. Results: Seven themes emerged from data analysis, namely: health benefits from coming to the healthcare facility, communication, information needs, attitude of healthcare workers, healthcare administration system, the role of a mother, and disclosure of HIV status. Conclusion: This study revealed systematic gaps that exist in the programme, which hinder the childcare services of children exposed to HIV and socio-economically related hindrances. Mothers’ roles, such as exclusive breastfeeding, taking their own medication, and child follow-up visits, remain inadequate. The study findings show that there is a need to develop a contextual-tailored intervention strategy that would improve the implementation of prevention of mother-to-child transmission in rural areas.Keywords: children exposed to HIV, mothers’ role to prevent MTCT, mothers’ perceptions on childcare, PMTCT in rural areas
Procedia PDF Downloads 10421246 Efficient Subsurface Mapping: Automatic Integration of Ground Penetrating Radar with Geographic Information Systems
Authors: Rauf R. Hussein, Devon M. Ramey
Abstract:
Integrating Ground Penetrating Radar (GPR) with Geographic Information Systems (GIS) can provide valuable insights for various applications, such as archaeology, transportation, and utility locating. Although there has been progress toward automating the integration of GPR data with GIS, fully automatic integration has not been achieved yet. Additionally, manually integrating GPR data with GIS can be a time-consuming and error-prone process. In this study, actual, real-world GPR applications are presented, and a software named GPR-GIS 10 is created to interactively extract subsurface targets from GPR radargrams and automatically integrate them into GIS. With this software, it is possible to quickly and reliably integrate the two techniques to create informative subsurface maps. The results indicated that automatic integration of GPR with GIS can be an efficient tool to map and view any subsurface targets in their appropriate location in a 3D space with the needed precision. The findings of this study could help GPR-GIS integrators save time and reduce errors in many GPR-GIS applications.Keywords: GPR, GIS, GPR-GIS 10, drone technology, automation
Procedia PDF Downloads 9721245 Testing Depression in Awareness Space: A Proposal to Evaluate Whether a Psychotherapeutic Method Based on Spatial Cognition and Imagination Therapy Cures Moderate Depression
Authors: Lucas Derks, Christine Beenhakker, Michiel Brandt, Gert Arts, Ruud van Langeveld
Abstract:
Background: The method Depression in Awareness Space (DAS) is a psychotherapeutic intervention technique based on the principles of spatial cognition and imagination therapy with spatial components. The basic assumptions are: mental space is the primary organizing principle in the mind, and all psychological issues can be treated by first locating and by next relocating the conceptualizations involved. The most clinical experience was gathered over the last 20 years in the area of social issues (with the social panorama model). The latter work led to the conclusion that a mental object (image) gains emotional impact when it is placed more central, closer and higher in the visual field – and vice versa. Changing the locations of mental objects in space thus alters the (socio-) emotional meaning of the relationships. The experience of depression seems always associated with darkness. Psychologists tend to see the link between depression and darkness as a metaphor. However, clinical practice hints to the existence of more literal forms of darkness. Aims: The aim of the method Depression in Awareness Space is to reduce the distress of clients with depression in the clinical counseling practice, as a reliable alternative method of psychological therapy for the treatment of depression. The method Depression in Awareness Space aims at making dark areas smaller, lighter and more transparent in order to identify the problem or the cause of the depression which lies behind the darkness. It was hypothesized that the darkness is a subjective side-effect of the neurological process of repression. After reducing the dark clouds the real problem behind the depression becomes more visible, allowing the client to work on it and in that way reduce their feelings of depression. This makes repression of the issue obsolete. Results: Clients could easily get into their 'sadness' when asked to do so and finding the location of the dark zones proved pretty easy as well. In a recent pilot study with five participants with mild depressive symptoms (measured on two different scales and tested against an untreated control group with similar symptoms), the first results were also very promising. If the mental spatial approach to depression can be proven to be really effective, this would be very good news. The Society of Mental Space Psychology is now looking for sponsoring of an up scaled experiment. Conclusions: For spatial cognition and the research into spatial psychological phenomena, the discovery of dark areas can be a step forward. Beside out of pure scientific interest, it is great to know that this discovery has a clinical implication: when darkness can be connected to depression. Also, darkness seems to be more than metaphorical expression. Progress can be monitored over measurement tools that quantify the level of depressive symptoms and by reviewing the areas of darkness.Keywords: depression, spatial cognition, spatial imagery, social panorama
Procedia PDF Downloads 17321244 The Relationship among Perceived Risk, Product Knowledge, Brand Image and the Insurance Purchase Intention of Taiwanese Working Holiday Youths
Authors: Wan-Ling Chang, Hsiu-Ju Huang, Jui-Hsiu Chang
Abstract:
In 2004, the Ministry of Foreign Affairs Taiwan launched ‘An Arrangement on Working Holiday Scheme’ with 15 countries including New Zealand, Japan, Canada, Germany, South Korea, Britain, Australia and others. The aim of the scheme is to allow young people to work and study English or other foreign languages. Each year, there are 30,000 Taiwanese youths applied for participating in the working holiday schemes. However, frequent accidents could cause huge medical expenses and post-delivery fee, which are usually unaffordable for most families. Therefore, this study explored the relationship among perceived risk toward working holiday, insurance product knowledge, brand image and insurance purchase intention for Taiwanese youths who plan to apply for working holiday. A survey questionnaire was distributed for data collection. A total of 316 questionnaires were collected for data analyzed. Data were analyzed using descriptive statistics, independent samples T-test, one-way ANOVA, correlation analysis, regression analysis and hierarchical regression methods of analysis and hypothesis testing. The results of this research indicate that perceived risk has a negative influence on insurance purchase intention. On the opposite, product knowledge has brand image has a positive influence on the insurance purchase intention. According to the mentioned results, practical implications were further addressed for insurance companies when developing a future marketing plan.Keywords: insurance product knowledges, insurance purchase intention, perceived risk, working holiday
Procedia PDF Downloads 25521243 The Evaluation of the Restructuring Process in Nursing Services by Nurses
Authors: Bilgen Özlük, Ülkü Baykal
Abstract:
The study was conducted with the aim of determining the evaluations of nurses directed at the restructuring process carried out in the nursing services of a private hospital, and reveal how they have been affected by this process, in an integrated manner between a prospective approach and methods of quantitative and qualitative research, and as a comparative study, comparing the changes over a period of three years. The sample for the study is comprised of all of the nurses employed at a private hospital, and data has been collected from 17 nurses (a total of 30 interviews) for the qualitative part 377 nurses in 2013 and 429 nurses in 2014 for the quantitative part. As vehicles of data collection, the study used a form directed at identifying the changes in the organisational and management structure of the hospital, a nurses' interview form, a questionnaire identifying the personal and occupational characteristics of the nurses, the "Minnesota Job Satisfaction Scale", the "Organisational Citizenship Behaviour Scale" and the "Organisational Trust Scale". Qualitative data by researchers, quantitative data was analysed using number and percentage tests, a t-test, and ANOVA, progressive analysis Tukey and regression tests. While in the qualitative part of the study the nurses stated in the first year of the restructuring that they were satisfied with their relationship with top level management, the increases in salaries and changes in the working environment such as the increase in the number of staff, in later years, they stated that there had been a fall in their satisfaction levels due to reasons such as nursing services instead of nurse practitioners in a position they are not satisfied that the director, nursing services outside the nursing profession appointment of persons to positions of management and the lack of appropriate training and competence of these persons, increases in the burden of work, insufficient salaries and the lack of a difference in the salaries of senior and more junior staff. On the other hand, in the quantitative part, it was found that there was no difference in the levels of job satisfaction and organisational trust in any of the two years, that as the level of organisational trust increased the level of job satisfaction also increased, and that as the levels of job satisfaction and organisational trust a positive impact on organisational citizenship behaviour also increased.Keywords: services, nursing management, re-structuring, job satisfaction, organisational citizenship behaviour, organisational trust
Procedia PDF Downloads 35921242 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 32121241 How to Perform Proper Indexing?
Authors: Watheq Mansour, Waleed Bin Owais, Mohammad Basheer Kotit, Khaled Khan
Abstract:
Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements.Keywords: indexing, hashing, latent semantic indexing, B-tree
Procedia PDF Downloads 16421240 Bluetooth Piconet System for Child Care Applications
Authors: Ching-Sung Wang, Teng-Wei Wang, Zhen-Ting Zheng
Abstract:
This study mainly concerns a safety device designed for child care. When children are out of sight or the caregivers cannot always pay attention to the situation, through the functions of this device, caregivers can immediately be informed to make sure that the children do not get lost or hurt, and thus, ensure their safety. Starting from this concept, a device is produced based on the relatively low-cost Bluetooth piconet system and a three-axis gyroscope sensor. This device can transmit data to a mobile phone app through Bluetooth, in order that the user can learn the situation at any time. By simply clipping the device in a pocket or on the waist, after switching on/starting the device, it will send data to the phone to detect the child’s fall and distance. Once the child is beyond the angle or distance set by the app, it will issue a warning to inform the phone owner.Keywords: children care, piconet system, three-axis gyroscope, distance detection, falls detection
Procedia PDF Downloads 60121239 Jordan, Towards Eliminating Preventable Maternal Deaths
Authors: Abdelmanie Suleimat, Nagham Abu Shaqra, Sawsan Majali, Issam Adawi, Heba Abo Shindi, Anas Al Mohtaseb
Abstract:
The Government of Jordan recognizes that maternal mortality constitutes a grave public health problem. Over the past two decades, there has been significant progress in improving the quality of maternal health services, resulting in improved maternal and child health outcomes. Despite these efforts, measurement and analysis of maternal mortality remained a challenge, with significant discrepancies from previous national surveys that inhibited accuracy. In response with support from USAID, the Jordan Maternal Mortality Surveillance Response (JMMSR) System was established to collect, analyze, and equip policymakers with data for decision-making guided by interdisciplinary multi-levelled advisory groups aiming to eliminate preventable maternal deaths, A 2016 Public Health Bylaw required the notification of deaths among women of reproductive age. The JMMSR system was launched in 2018 and continues annually, analyzing data received from health facilities, to guide policy to prevent avoidable deaths. To date, there have been four annual national maternal mortality reports (2018-2021). Data is collected, reviewed by advisory groups, and then consolidated in an annual report to inform and guide the Ministry of Health (MOH); JMMSR collects the necessary information to calculate an accurate maternal mortality ratio and assists in identifying leading causes and contributing factors for each maternal death. Based on this data, national response plans are created. A monitoring and evaluation plan was designed to define, track, and improve implementation through indicators. Over the past four years, one of these indicators, ‘percent of facilities notifying respective health directorates of all deaths of women of reproductive age,’ increased annually from 82.16%, 92.95%, and 92.50% to 97.02%, respectively. The Government of Jordan demonstrated commitment to the JMMSR system by designating the MOH to primarily host the system and lead the development and dissemination of policies and procedures to standardize implementation. The data was translated into practical and evidence-based recommendations. The successful impact of results deepened the understanding of maternal mortality in Jordan, which convinced the MOH to amend the Bylaw now mandating electronic reporting of all births and neonatal deaths from health facilities to empower the JMMSR system, by developing a stillbirths and neonatal mortality surveillance and response system.Keywords: maternal health, maternal mortality, preventable maternal deaths, maternal morbidity
Procedia PDF Downloads 4421238 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science
Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier
Abstract:
Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and comparedKeywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis
Procedia PDF Downloads 12521237 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods
Authors: Robert Cazar, Nathaly Maza
Abstract:
Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks
Procedia PDF Downloads 113