Search results for: polymer electrolyte membrane fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7113

Search results for: polymer electrolyte membrane fuel cell

2313 Synthesis and Characterization of Zr and V Co-Doped BaTiO₃ Ceramic

Authors: Kanta Maan Sangwan, Neetu Ahlawat, Rajender Singh Kundu

Abstract:

BaZrTiO3 ceramics having high dielectric constant and low dielectric loss are interesting material for being used as commercial capacitor applications. BZT (BaZrTiO3) has attracted attentions for their many applications for the microwave technology as the doping of Zr4+ on Ti4+ has advantage to the stability of the system. In the present work, co-doping of Zr and V with BaTiO3 ceramics was synthesized by the conventional solid state reaction technique and sintered at 1200 K for 6 hours, and their structural and ferroelectric properties were studied. The XRD (x-ray diffraction) pattern of BZT (BaZrTiO3) ceramics shows that the crystalline sample is single phase tetragonal structure with P4mm space group. The result revealed that Zr ion enters the unit cell maintaining the perovskite structure of BZT ceramics and the impedance spectroscopy of the sample performed in selected frequency and temperature range.

Keywords: ferroelectric, impedance spectroscopy, space group, tetragonal

Procedia PDF Downloads 204
2312 Development of Catalyst from Waste Egg Shell for Biodiesel Production by Using Waste Vegetable Oil

Authors: Victor Chinecherem Ejeke, Raphael Eze Nnam

Abstract:

The main objective of this research is to produce biodiesel from waste vegetable oil using activated eggshell waste as solid catalysts. A transesterification reaction was performed for the conversion to biodiesel. Waste eggshells were calcined at 700°C, 800°C and 900°C for a time period of 3hrs for the preparation of the renewable catalyst. The calcined waste eggshell catalyst was characterized using X-Ray Florescence (XRF) Spectroscopy, which revealed CaO as the major constituent (90.86%); this was further confirmed by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analyses. The prepared catalyst was used for transesterification reaction and the effects of calcination temperature (700 to 900°C), Deep Eutectic Solvent DES loading (3 to 18 wt. %), Waste Egg Shell (WES) catalyst loading (6 to 14 wt. %) on the conversion to biodiesel were studied. The yield of biodiesel using a waste eggshell catalyst (91%) is comparable to conventional catalyst like sodium hydroxide with a yield of 80-90%. The maximum biodiesel production yield was obtained at a specific oil-to methanol molar ratio of 1:10, a temperature of 65°C and a catalyst loading of 14g-wt%. The biodiesel produced was characterized as being composed of methyl Tetradecanoate (C₁₄H₂₈O₂) 30.92% using the Gas Chromatographic (GC-MS) analysis. The fuel properties of the biodiesel (Flashpoint 138ᵒC) were comparable to commercial diesel, and hence it can be used in compression-ignition engines. The results indicated that the catalysts derived from waste eggshell had high potential to be used as biodiesel production catalysts in transesterification of waste vegetable oil with the advantage of reusability and also not requiring water washing steps.

Keywords: waste vegetable oil, catalyst , biodiesel , waste egg shell

Procedia PDF Downloads 208
2311 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 193
2310 Oxidosqualene Cyclase: A Novel Inhibitor

Authors: Devadrita Dey Sarkar

Abstract:

Oxidosqualene cyclase is a membrane bound enzyme in which helps in the formation of steroid scaffold in higher organisms. In a highly selective cyclization reaction oxidosqualene cyclase forms LANOSTEROL with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. In humans OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. The enzyme oxidosqualene: lanosterol cyclase (OSC) represents a novel target for the treatment of hypercholesterolemia. OSC catalyzes the cyclization of the linear 2,3-monoepoxysqualene to lanosterol, the initial four-ringed sterol intermediate in the cholesterol biosynthetic pathway. OSC also catalyzes the formation of 24(S), 25-epoxycholesterol, a ligand activator of the liver X receptor. Inhibition of OSC reduces cholesterol biosynthesis and selectively enhances 24(S),25-epoxycholesterol synthesis. Through this dual mechanism, OSC inhibition decreases plasma levels of low-density lipoprotein (LDL)-cholesterol and prevents cholesterol deposition within macrophages. The recent crystallization of OSC identifies the mechanism of action for this complex enzyme, setting the stage for the design of OSC inhibitors with improved pharmacological properties for cholesterol lowering and treatment of atherosclerosis. While studying and designing the inhibitor of oxidosqulene cyclase, I worked on the pdb id of 1w6k which was the most worked on pdb id and I used several methods, techniques and softwares to identify and validate the top most molecules which could be acting as an inhibitor for oxidosqualene cyclase. Thus, by partial blockage of this enzyme, both an inhibition of lanosterol and subsequently cholesterol formation as well as a concomitant effect on HMG-CoA reductase can be achieved. Both effects complement each other and lead to an effective control of cholesterol biosynthesis. It is therefore concluded that 2,3-oxidosqualene cyclase plays a crucial role in the regulation of intracellular cholesterol homeostasis. 2,3-Oxidosqualene cyclase inhibitors offer an attractive approach for novel lipid-lowering agents.

Keywords: anticholesteraemic, crystallization, statins, homeostasis

Procedia PDF Downloads 349
2309 Improved Performance of Cooperative Scheme in the Cellular and Broadcasting System

Authors: Hyun-Jee Yang, Bit-Na Kwon, Yong-Jun Kim, Hyoung-Kyu Song

Abstract:

In the cooperative transmission scheme, both the cellular system and broadcasting system are composed. Two cellular base stations (CBSs) communicating with a user in the cell edge use cooperative transmission scheme in the conventional scheme. In the case that the distance between two CBSs and the user is distant, the conventional scheme does not guarantee the quality of the communication because the channel condition is bad. Therefore, if the distance between CBSs and a user is distant, the performance of the conventional scheme is decreased. Also, the bad channel condition has bad effects on the performance. The proposed scheme uses two relays to communicate well with CBSs when the channel condition between CBSs and the user is poor. Using the relay in the high attenuation environment can obtain both advantages of the high bit error rate (BER) and throughput performance.

Keywords: cooperative communications, diversity gain, OFDM, interworking system

Procedia PDF Downloads 574
2308 Experimental Investigation of Partially Premixed Laminar Methane/Air Co-Flow Flames Using Mach-Zehnder Interferometry

Authors: Misagh Irandoost Shahrestani, Mehdi Ashjaee, Shahrokh Zandieh Vakili

Abstract:

In this paper, partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame was established on an axisymmetric coannular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame features and to develop a nonintrusive method for temperature measurement of methane/air partially premixed flame using Mach-Zehnder interferometry method. Different equivalence ratios and Reynolds numbers are considered. Flame generic visible appearance was also investigated and its various structures were studied. Three distinguished flame regimes were seen based on its appearance. A double flame structure can be seen for the equivalence ratio in the range of 1<Φ<2.1. By adding air to the mixture up to Φ=4 the flame has the characteristics of both premixed and non-premixed flames. Finally for 4<Φ<∞ the flame mainly becomes non-premixed like and the luminous sooting region on its tip is the obvious feature of this type of flames. The Mach-Zehnder method is used to obtain temperature field of a transparent fluid by means of index of refraction. Temperature obtained from optical techniques was compared with that of obtained from thermocouples in order to validate the results. Good agreement was observed for these two methods.

Keywords: flame structure, Mach-Zehnder interferometry, partially premixed flame, temperature field

Procedia PDF Downloads 480
2307 Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study

Authors: Nino Kupatadze, Shorena Tskhadadze, Mzevinar Bedinashvili, David Tugushi, Ramaz Katsarava

Abstract:

Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now.

Keywords: biodegradation, bionanocompositions, polymer, nanosilver

Procedia PDF Downloads 340
2306 Important of Innovation for Entrepreneurs

Authors: Eetedal Alanjem, Majedah Alnajem

Abstract:

The importance of innovation in entrepreneurship can be seen in the invention of new ways to produce products or improved solutions. A service industry can expand with new or improved types of services to fulfill the ever changing needs of their clients. Manufacturers can come up with new products from raw materials and by-products. Innovation is vital for the durability of any business. Innovation usually begins with a need. Small businesses are generally directly involved in their communities and they know exactly what the communities need and strive to come up with solutions to fulfill those needs. They seize the opportunity to innovate to ease communal problems and make lives more comfortable. And then, these solutions keep getting better, easier and more useful as entrepreneurs and their small businesses come up with improved formulas and solutions. Keeping abreast with current trends and demands is an important factor for entrepreneurs to fuel their creativity and innovation. Manufacturers are constantly innovating to produce more without sacrificing quality. Small businesses should make innovation as a fundamental part of their organisational development since innovation creates business success. Entrepreneurs must not see just one solution to a need. They should come up with ideas for multiple solutions. It is imperative for small businesses to encourage growth of innovation among their employees. Competition is another factor that elevates the importance of innovation in entrepreneurship. It motivates entrepreneurs to come up with better, improved products and services than their competitors for a higher share of the market. In this paper will go in-depth for each factor and will discuss some of cases studies to know how innovation it’s important for entrepreneurs by facts & lessons?

Keywords: innovation, entrepreneurship, creativity, organisational development

Procedia PDF Downloads 416
2305 An Ecosystem Approach to Natural Resource Management: Case Study of the Topčiderska River, Serbia

Authors: Katarina Lazarević, Mirjana Todosijević, Tijana Vulević, Natalija Momirović, Ranka Erić

Abstract:

Due to increasing demand, climate change, and world population growth, natural resources are getting exploit fast. One of the most important natural resources is soil, which is susceptible to degradation. Erosion as one of the forms of land degradation is also one of the most global environmental problems. Ecosystem services are often defined as benefits that nature provides to humankind. Soil, as the foundation of basic ecosystem functions, provides benefits to people, erosion control, water infiltration, food, fuel, fibers… This research is using the ecosystem approach as a strategy for natural resources management for promoting sustainability and conservation. The research was done on the Topčiderska River basin (Belgrade, Serbia). The InVEST Sediment Delivery Ratio model was used, to quantify erosion intensity with a spatial distribution output map of overland sediment generation and delivery to the stream. InVEST SDR, a spatially explicit model, is using a method based on the concept of hydrological connectivity and (R) USLE model. This, combined with socio-economic and law and policy analysis, gives a full set of information to decision-makers helping them to successfully manage and deliver sustainable ecosystems.

Keywords: ecosystem services, InVEST model, soil erosion, sustainability

Procedia PDF Downloads 136
2304 Antifungal Susceptibility of Saprolegnia parasitica Isolated from Rainbow Trout and Its Host Pathogen Interaction in Zebrafish Disease Model

Authors: Sangyeop Shin, D. C. M. Kulatunga, S. H. S. Dananjaya, Chamilani Nikapitiya, Jehee Lee, Mahanama De Zoysa

Abstract:

Saprolegniasis is one of the most devastating fungal diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated fungi belong to the member of S. parasitica, supported by its typical fungal features including cotton-like whitish mycelium, zoospores (primary and secondary) and phylogenetic analysis with internal transcribed spacer (ITS) region. Pathogenicity of isolated S. parasitica was developed in embryo, larvae, juvenile and adult zebrafish as a disease model. Up regulation of host genes encoding ZfTnf-α, Zfc-Rel, ZfIl-12, ZfLyz-c, Zfβ-def, and ZfHsp-70 was identified in zebrafish larvae after experimental challenge of S. parasitica showing the host immune responses against the S. parasitica. Survival of the juveniles upon fungal infection might be due to the increased immune protection in the host. Investigation of antifungal susceptibility of S. parasitica with natural lawsone (2-hydroxy-1,4-naphthoquinone) revealed the minimum inhibitory concentration (MIC) and percentage inhibition of radial growth (PIRG %) as 200 µg/mL and 31.8%, respectively. Lawsone was able to change the membrane permeability, and cause irreversible damage and disintegration to the cellular membranes of S. parasitica which might have effect on fungi growth inhibition. Moreover, the mycelium exposed to lawsone (MIC level) changed the transcriptional responses of S. parasitica genes. Overall results indicate that lawsone could be a potential and novel anti-S. parasitica agent for controlling S. parasitica infection.

Keywords: host-pathogen interactions, lawsone, rainbow trout, Saprolegnia parasitica, Saprolegniasis, zebrafish

Procedia PDF Downloads 248
2303 Impact of Wind Energy on Cost and Balancing Reserves

Authors: Anil Khanal, Ali Osareh, Gary Lebby

Abstract:

Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper, the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here, we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study shows how the increases in wind generation will affect power system economics.

Keywords: wind power generation, wind power penetration, cost analysis, economic dispatch (ED) model

Procedia PDF Downloads 564
2302 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species

Authors: Kamel Al-Khaled

Abstract:

Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.

Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species

Procedia PDF Downloads 374
2301 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Shaheen Bachy, Jörg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: laser structuring, simulation, finite element analysis, thermal modeling

Procedia PDF Downloads 346
2300 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid

Authors: Anindita Sen

Abstract:

Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.

Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid

Procedia PDF Downloads 57
2299 Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi

Authors: Daomao Yang, Qizhi Wang

Abstract:

Monoterpenoids are mainly found in plant essential oils and they are ideal substrates for biotransformation into oxygen-containing derivatives with important commercial value due to their low price and simple structure. In this paper, eleven strains of endophytic fungi from Praxelis clematidea were used as test strains to conduct the whole cell biotransformation of the monoterpenoids: (+)-limonene, (-)-limonene and myrcene. The fungi were inoculated in 50 ml Sabouraud medium and incubated at 30 ℃ with the agitation of 150 r/min for 6 d, and then 0.5% (v/v) substrates were added into the medium and biotransformed for further 3 d. Afterwards the cultures were filtered, and extracted using equal volume of ethyl acetate. The metabolites were analyzed by GC-MS technique with NIST database. The Total Ion Chromatogram of the extractions from the eleven strains showed that the main product of (+)- and (-)-limonene biotransformation was limonene-1,2-diol, while it is limonene and linalool oxide for biotransformation of myrcene. This work will help screen the microorganisms to biotransform the monoterpenes.

Keywords: endophytic fungi, (+)–limonene, (-)–limonene, myrcene

Procedia PDF Downloads 126
2298 Environmental and Economic Analysis of Absorption Air Conditioning Unit Onboard Marine Vehicles: Case Study of Passenger Vessel

Authors: Ibrahim S. Seddiek, Nader R. Ammar

Abstract:

One of the most important equipment that affects the performance of passenger ships is the air conditioning system, which in turn consumes considerable electric loads. In this paper, the waste heat energies of exhaust gases and jacket cooling water of marine diesel engines for these ships are analyzed to be used as heat sources for absorption refrigeration unit (ARU). Economic and environmental analysis of the absorption refrigeration cycle operated with the two heat sources that use lithium bromide as absorbent is carried out. In addition, environmental and economic analysis for the absorption cycle is performed. As a case study, high-speed passenger vessel operating in the Red Sea area has been investigated. The results show that a considerable specific economic benefit could be achieved in case of applying absorption air condition that operates by water cooling system over that operates by main engine exhaust gases. Environmentally, applying ARU machine during cruise will reduce total ship’s fuel consumption by about 104 ton per year. This will result in reducing NOₓ, SOₓ, and CO₂ emissions with cost-effectiveness of 6.99 $/kg, 18.44 $/kg, and 0.117 $/kg, respectively.

Keywords: ship emissions, IMO, lithium bromide-water ARU, analysis, thermodynamic, economic and environmental analysis

Procedia PDF Downloads 282
2297 Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution

Authors: T. Moremedi, L. Katata-Seru, S. Sardar, A. Bandyopadhyay, E. Makhado, M. Joseph Hato

Abstract:

The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.

Keywords: xanthan gum, adsorbents, rhodamine B, Freundlich

Procedia PDF Downloads 127
2296 Prevalence of Cutaneous Leishmaniasis in Human Population of District Kurram, Khyber Pakhtunkhwa, Pakistan

Authors: Shah Abid

Abstract:

Leishmaniasis is a collection of zoonotic infections that affect the viscera, skin, and mucous membrane and are spread by several species of female sandflies in the subfamily phlebotominae. The study's goal was to assess the prevalence of Cutaneous Leishmaniasis in District Kurram using descriptive and cross-sectional methods. From December 2022 to May 2023, the study was carried out at Tehsil Head Quarter (THQ) Hospital, Sadda, District Kurram in the Dermatology Department. The disease was identified using a laboratory method based on clinical manifestations of leishmaniasis. A clean slide's surface was applied to the scraped-off portion of the lesions and rubbed over the blood to make a smear on the slide. The slides were methanol-fixed, stained with traditional Giemsa, and meticulously examined at high magnification to search for LD bodies. The necessary information, such as residence area, lesion kind and location, age, sex, and the total number of lesions, was meticulously acquired. During the time of the investigation, 393 instances of cutaneous leishmaniasis were observed. 1 year to 70 years old was the age range (mean age: 35.45). The age group that was most severely impacted, 16 years and older, had 23 (11.67%) children with this condition. Male to female ratio was 9.7:10. Most of the cases (n=52, 26.29%), were reported in the month of May. Majority of the patients 102 (51.77%) had lesion on face. 42 (16.73) patients had multiple lesions on their body. Face was the most common site followed by lower limbs 93 (37.05). Weekly intralesional injections of sodium stibogluconate (glucantime) were administered to all patients. Without any noticeable adverse effects, all patients had positive responses to the treatment. The condition affects adults more commonly than children, according to analysis of the combined results, and it is more common in women than in men.

Keywords: District Kurram, cutaneous leishmaniasis, zoonosis, glucantime

Procedia PDF Downloads 6
2295 The Functionality of Ovarian Follicle on Steroid Hormone Secretion under Heat Stress

Authors: Petnamnueng Dettipponpong, Shuen E. Chen

Abstract:

Heat stress is known to have negative effects on reproductive functions, such as follicular development and ovulation. This study aimed to investigate the specific effects of heat stress on steroid hormone secretion of ovarian follicle cells, particularly in relation to the expression of Apolipoprotein B (ApoB) and microsomal triglyceride transfer protein (MTP). The aim of the study was to understand the impact of heat stress on steroid hormone secretion in ovarian follicle cells and to explore the role of ApoB and MTP in this process. Primary granulosa and theca cells were collected from follicles and cultured under heat stress conditions (42 °C) for various time periods. Controls were maintained under normal conditions (37.5 °C ). The culture medium was collected at different time points to measure levels of progesterone and estradiol using ELISA kits. ApoB and MTP expression levels were analyzed using homemade antibodies and western blot. Data were assessed by a one-way ANOVA comparison test with Duncan’s new multiple-range test. Results were expressed as mean±S.E. Difference was considered significant at P<0.05. The results showed that heat stress significantly increased progesterone secretion in granulosa cells, with the peak observed after 13 hours of recovery under thermoneutral conditions. Estradiol secretion by theca cells was not affected. Heat stress also had a significant negative effect on granulosa cell viability. Additionally, the expression of ApoB and MTP was found to be differentially regulated by heat stress. ApoB expression in theca cells was transiently promoted, while ApoB expression in granulosa cells was consistently suppressed. MTP expression increased after 5 hours of recovery in both cell types. These findings suggest a mechanism by which chicken follicle cells export cellular lipids as very low-density lipoprotein (VLDL) in response to thermal stress. These contribute to our understanding of the role of ApoB and MTP steroidogenesis and lipid metabolism under heat stress conditions. The study involved the collection of primary granulosa and theca cells, culture under different temperature conditions, and analysis of the culture medium for hormone levels using ELISA kits. ApoB and MTP expression levels were assessed using homemade antibodies and western blot. This study aimed to address the effects of heat stress on steroid hormone secretion in ovarian follicle cells, as well as the role of ApoB and MTP in this process. The study demonstrates that heat stress stimulates steroidogenesis in granulosa cells, affecting progesterone secretion. ApoB and MTP expression were found to be differentially regulated by heat stress, indicating a potential mechanism for the export of cellular lipids in response to thermal stress.

Keywords: heat stress, granulosa cells, theca cells, steroidogenesis, chicken, apolipoprotein B, microsomal triglyceride transfer protein

Procedia PDF Downloads 73
2294 Synthesis and Performance Adsorbent from Coconut Shells Polyetheretherketone for Natural Gas Storage

Authors: Umar Hayatu Sidik

Abstract:

The natural gas vehicle represents a cost-competitive, lower-emission alternative to the gasoline-fuelled vehicle. The immediate challenge that confronts natural gas is increasing its energy density. This paper addresses the question of energy density by reviewing the storage technologies for natural gas with improved adsorbent. Technical comparisons are made between storage systems containing adsorbent and conventional compressed natural gas based on the associated amount of moles contained with Compressed Natural Gas (CNG) and Adsorbed Natural Gas (ANG). We also compare gas storage in different cylinder types (1, 2, 3 and 4) based on weight factor and storage capacity. For the storage tank system, we discussed the concept of carbon adsorbents, when used in CNG tanks, offer a means of increasing onboard fuel storage and, thereby, increase the driving range of the vehicle. It confirms that the density of the stored gas in ANG is higher than that of compressed natural gas (CNG) operated at the same pressure. The obtained experimental data were correlated using linear regression analysis with common adsorption kinetic (Pseudo-first order and Pseudo-second order) and isotherm models (Sip and Toth). The pseudo-second-order kinetics describe the best fitness with a correlation coefficient of 9945 at 35 bar. For adsorption isotherms, the Sip model shows better fitness with the regression coefficient (R2) of 0.9982 and with the lowest RSMD value of 0.0148. The findings revealed the potential of adsorbent in natural gas storage applications.

Keywords: natural gas, adsorbent, compressed natural gas, adsorption

Procedia PDF Downloads 59
2293 Exploring the Factors Affecting the Dependability of Mobile Devices in the Current World

Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono

Abstract:

In recent times the level of advancement in electronics and manufacturing technologies for portable electronic devices, especially for mobile devices such as cell phones, smartphones, personal digital assistants and tablet computers is unprecedented. Mobile devices have become indispensable to individuals, and businesses all over the world. The high level of manufacturing and production of mobile devices has led to the rapid release of newer and sleeker models with new features and capabilities. However, these newer models therefore render older models obsolete, and this pushes people to frequently replace their devices. The drawback of such frequent replacements is that a large number of devices are disposed and they end up as e-waste. The fact that e-waste constitutes a major hazard to human health and to the environment is the motivation behind this study whose aim is to develop a model of possible factors that affects the dependability of mobile devices which in turn leads to the obsolescence of these devices.

Keywords: dependability, mobile devices, obsolescence, e-waste

Procedia PDF Downloads 312
2292 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering

Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan

Abstract:

It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.

Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins

Procedia PDF Downloads 302
2291 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal

Procedia PDF Downloads 301
2290 Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process

Authors: Akmez Nabeerasool, Michaelis Massaros, Nigel Brown, David Sanderson, David Parocki, Charlotte Thompson, Mike Lodge, Mikael Khan

Abstract:

The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour.

Keywords: Arvia™ process, adsorption, water treatment, electrochemical oxidation

Procedia PDF Downloads 262
2289 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique

Authors: B. Almassri, F. Almahmoud, R. Francois

Abstract:

Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.

Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX

Procedia PDF Downloads 163
2288 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)

Authors: Refal Hussain, Saifuddin M. Nomanbhay

Abstract:

Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.

Keywords: bioethanol, Escherichia coli, immobilization, optimization

Procedia PDF Downloads 652
2287 Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m × 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered.

Keywords: aluminum window, beech wood window, green building, life cycle assessment, life cycle analysis, SimaPro software, window frame

Procedia PDF Downloads 447
2286 Biobased Toughening Filler for Polylactic Acid from Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Polymethylmethacrylate

Authors: Panyawutthi Rimdusit, Krittapas Charoensuk, Sarawut Rimdusit

Abstract:

A biobased toughening filler for polylactic acid (PLA) based on natural rubber is developed in this work. Deproteinized natural rubber (DPNR) was modified by grafting polymerization with methyl methacrylate monomer (MMA) and further crosslinked by e-beam irradiation and spray drying process to achieve ultrafine full vulcanized powdered natural rubber grafted with polymethylmethacrylate (UFPNRg-PMMA) to solves in the challenges of incompatibility between natural rubber and PLA. Intriguingly, UFPNR-g-PMMA revealed outstanding and unique properties with minimal particle aggregation. The average particle size of rubber powder obtained from UFPNR-g-PMMA at PMMA grafting content of 20 phr reduced to 3.3±1.2 µm, compared to that of neat UFPNR of 5.3±2.3 µm which also showed partial particle aggregation. It is also found that the impact strength of the filled PLA was enhanced to 33.4±5.6 kJ/m2 at PLA/UFPNR-gPMMA 20 wt% compared to neat PLA of 9.6±3 kJ/m2. The thermal degradation temperature of the PLA composites was enhanced with increasing UFPNR-g-PMMA content without affecting the glass transition temperature of the composites. The fracture surface of PLA/ UFPNR-g-PMMA suggested internal cavitation and crazes are the main effects of rubber toughening PLA with substantial interfacial interaction between the filler and the matrix.

Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polylactic acid, polymer composites

Procedia PDF Downloads 10
2285 The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells

Authors: A. Guechi, M. Chegaar

Abstract:

This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass.

Keywords: AlGaAs/GaAs, solar cells, environmental parameters, spectral variation, SMARTS

Procedia PDF Downloads 395
2284 Anti-inflammatory and Hemostatic Activities of Methanolic Extract from Atriplex Halimus. Leaves

Authors: Yahia Massinissa, Benhouda Afaf, Benbia Souhila, Meddour Noura, Takellalet Karima, Zeroual Amina

Abstract:

Introduction: chenopodiaceae family species are known for their important biological activity, in which Atriplex halimus belongs . However, the inflammatory effect of this plant leaves has not been studied. This work aimed at assessing the anti- inflammatory and hemostatic activities of the methanolic extract AHMeOH of Atriplex halimus’s leaves. Methods: The extract was obtained using sonication of leaves powder in 80 % methanol. The analysis of phenolic compounds was carried out using thin-layer chromatography (TLC).The anti-inflammatory activity was determined by studying the plasmical membrane stabilization and albumin denaturation inhibition, the hemostatic activity was evaluated by measuring the plasma in the blood. Results: Quantitative determination of total flavonoids reveals that AHMeOH is rich in flavonoids (16 ± 0.88 μg Q / mg extract) and polyphenols (20 ± 0.20 μg AG / mg extract). about anti-inflammatory activity, the tests show that AHMeOH has a significant effect (P≤0.05) of inhibiting hypotonic-induced hemolysis with concentrations (100 and 200 μg / ml) with 77.55 and 90% respectively, and heat-induced hemolysis with percentages 81.75% and 87.44% respectively with significant difference (P ≤0.05). The obtained results with this plant reveal that the inhibition of denaturation of albumin is dose dependent. The concentration of 400 μg / ml gives denaturation inhibition of 81.00 ± 17.70% and the concentration 600 μg / ml gives an effect of 82.95 ± 17.40%. Regarding the haemostatic activity our extract with the doses 10 mg / ml, 20 mg / ml and 30 mg / ml confer a decrease of the plasma recalcification time in the tube, these concentrations could prolong the time of coagulation significantly compared to the control (P≤0.001). This result is an interesting indication in favor of haemostatic activity of AHMeOH. Conclusion: Atriplex Halimus has a strong anti-inflammatory activity and constitutes a potential source for the development of new treatments.

Keywords: albumin, atriplex halimus, hemostatic activity, methanolic extract

Procedia PDF Downloads 74