Search results for: design parameter
9384 The Correlation between Three-Dimensional Implant Positions and Esthetic Outcomes of Single-Tooth Implant Restoration
Authors: Pongsakorn Komutpol, Pravej Serichetaphongse, Soontra Panmekiate, Atiphan Pimkhaokham
Abstract:
Statement of Problem: The important parameter of esthetic assessment in anterior maxillary implant include pink esthetic of gingiva and white esthetic of restoration. While the 3 dimensional (3D) implant position are recently concerned as a key for succeeding in implant treatment. However, to our knowledge, the authors did not come across any publication that demonstrated the relations of esthetic outcome and 3D implant position. Objectives: To investigate the correlation between positional accuracy of single-tooth implant restoration (STIR) in all 3 dimensions and their esthetic outcomes. Materials and Methods: 17 patients’ data who had a STIR at central incisor with pristine contralateral tooth were included in this study. Intraoral photographs, dental models, and cone beam computed tomography (CBCT) images were retrieved. The esthetic outcome was assessed in accordance with pink esthetic score and white esthetic score (PES/WES). While the number of correct position in each dimension (mesiodistal, labiolingual, apicocoronal) of the implant were evaluated and defined as 'right' or 'wrong' according to ITI consensus conference by one investigator using CBCT data. The different mean score between right and wrong position in all dimensions was analyzed by Mann-Whitney U test with 0.05 was the significant level of the study. Results: The average score of PES/WES was 15.88 ± 1.65 which was considered as clinically acceptable. The average PES/WES score in 1, 2 and 3 right dimension of the implant position were 16.71, 15.75 and 15.17 respectively. None of the implants placed wrongly in all three dimensions. Statistically significant difference of the PES/WES score was found between the implants that placed right in 3 dimensions and 1 dimension (p = 0.041). Conclusion: This study supported the principle of 3D position of implant. The more properly implant was placed, the higher esthetic outcome was found.Keywords: accuracy, dental implant, esthetic, 3D implant position
Procedia PDF Downloads 1799383 Exploring the Potential of Modular Housing Designs for the Emergency Housing Need in Türkiye after the February Earthquake in 2023
Authors: Hailemikael Negussie, Sebla Arın Ensarioğlu
Abstract:
In February 2023 Southeastern Türkiye and Northwestern Syria were hit by two consecutive earthquakes with high magnitude leaving thousands dead and thousands more homeless. The housing crisis in the affected areas has resulted in the need for a fast and qualified solution. There are a number of solutions, one of which is the use of modular designs to rebuild the cities that have been affected. Modular designs are prefabricated building components that can be quickly and efficiently assembled on-site, making them ideal to build structures with faster speed and higher quality. These structures are flexible, adaptable, and can be customized to meet the specific needs of the inhabitants, in addition to being more energy-efficient and sustainable. The prefabricated nature also assures that the quality of the products can be easily controlled. The reason for the collapse of most of the buildings during the earthquakes was found out to be the lack of quality during the construction stage. Using modular designs allows a higher control over the quality of the construction materials being used. The use of modular designs for a project of this scale presents some challenges, including the high upfront cost to design and manufacture components. However, if implemented correctly, modular designs can offer an effective and efficient solution to the urgent housing needs. The aim of this paper is to explore the potential of modular housing for mid- and long-term earthquake-resistant housing needs in the affected disaster zones after the earthquakes of February 2023. In the scope of this paper the adaptability of modular, prefabricated housing designs for the post-disaster environment, the advantages and disadvantages of this system will be examined. Elements such as; the current conditions of the region where the destruction happened, climatic data, topographic factors will be examined. Additionally, the paper will examine; examples of similar local and international modular post-earthquake housing projects. The region is projected to enter a rapid reconstruction phase in the following periods. Therefore, this paper will present a proposal for a system that can be used to produce safe and healthy urbanization policies without causing new aggrievements while meeting the housing needs of the people in the affected regions.Keywords: post-disaster housing, earthquake-resistant design, modular design, housing, Türkiye
Procedia PDF Downloads 889382 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability
Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy
Abstract:
This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality
Procedia PDF Downloads 2579381 Review of Vertical Axis Wind Turbine
Authors: Amare Worku, Harikrishnan Muralidharan
Abstract:
The research for more environmentally friendly sources of energy is a result of growing environmental awareness. In this aspect, wind energy is a very good option and there are two different wind turbines, horizontal axis wind turbine (HAWT) and vertical axis turbine (VAWT). For locations outside of integrated grid networks, vertical axis wind turbines (VAWT) present a feasible solution. However, those turbines have several drawbacks related to various setups, VAWT has a very low efficiency when compared with HAWT, but they work under different conditions and installation areas. This paper reviewed numerous measurements taken to improve the efficiency of VAWT configurations, either directly or indirectly related to the performance efficiency of the turbine. Additionally, the comparison and advantages of HAWT and VAWT turbines and also the findings of the design methodologies used for the VAWT design have been reviewed together with efficiency enhancement revision. Most of the newly modified designs are based on the turbine blade structure modification but need other studies on behalf other than electromechanical modification. Some of the techniques, like continuous variation of pitch angle control and swept area control, are not the most effective since VAWT is Omni-directional, and so wind direction is not a problem like HAWT. Hybrid system technology has become one of the most important and efficient methods to enhance the efficiency of VAWT. Besides hybridization, the contra-rotating method is also good if the installation area is big enough in an urban area.Keywords: wind turbine, horizontal axis wind turbine, vertical axis wind turbine, hybridization
Procedia PDF Downloads 1029380 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent
Authors: E. A. Kiridi, A. O. Ogunlela
Abstract:
Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH₄⁺ -N), nitrite- nitrogen (NO₂⁻ -N), nitrate- nitrogen (NO₃⁻ -N), phosphate –phosphorus (PO₄³⁻ -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO₂⁻ -N, NO₃⁻ -N and 70% for NH₄⁺ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.Keywords: aquaculture effluent, macrophytes, mathematical model, phytoremediation
Procedia PDF Downloads 2259379 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption
Authors: Hadis Pouyafar, D. Matin Alaghmandan
Abstract:
Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells
Procedia PDF Downloads 949378 Development of Method for Recovery of Nickel from Aqueous Solution Using 2-Hydroxy-5-Nonyl- Acetophenone Oxime Impregnated on Activated Charcoal
Authors: A. O. Adebayo, G. A. Idowu, F. Odegbemi
Abstract:
Investigations on the recovery of nickel from aqueous solution using 2-hydroxy-5-nonyl- acetophenone oxime (LIX-84I) impregnated on activated charcoal was carried out. The LIX-84I was impregnated onto the pores of dried activated charcoal by dry method and optimum conditions for different equilibrium parameters (pH, adsorbent dosage, extractant concentration, agitation time and temperature) were determined using a simulated solution of nickel. The kinetics and adsorption isotherm studies were also evaluated. It was observed that the efficiency of recovery with LIX-84I impregnated on charcoal was dependent on the pH of the aqueous solution as there was little or no recovery at pH below 4. However, as the pH was raised, percentage recovery increases and peaked at pH 5.0. The recovery was found to increase with temperature up to 60ºC. Also it was observed that nickel adsorbed onto the loaded charcoal best at a lower concentration (0.1M) of the extractant when compared with higher concentrations. Similarly, a moderately low dosage (1 g) of the adsorbent showed better recovery than larger dosages. These optimum conditions were used to recover nickel from the leachate of Ni-MH batteries dissolved with sulphuric acid, and a 99.6% recovery was attained. Adsorption isotherm studies showed that the equilibrium data fitted best to Temkin model, with a negative value of constant, b (-1.017 J/mol) and a high correlation coefficient, R² of 0.9913. Kinetic studies showed that the adsorption process followed a pseudo-second order model. Thermodynamic parameter values (∆G⁰, ∆H⁰, and ∆S⁰) showed that the adsorption was endothermic and spontaneous. The impregnated charcoal appreciably recovered nickel using a relatively smaller volume of extractant than what is required in solvent extraction. Desorption studies showed that the loaded charcoal is reusable for three times, and so might be economical for nickel recovery from waste battery.Keywords: charcoal, impregnated, LIX-84I, nickel, recovery
Procedia PDF Downloads 1519377 Sustainability of Performing Venues Considering Urban Connectivity and Facility Utilization
Authors: Wei-Hwa Chiang, Wei-Ting Hsu, Yuan-Chi Liu, Cheng-Che Tsai
Abstract:
A sustainable built environment aims for minimizing both regional and global environmental impact while maintaining a healthy living for individuals. Sustainability of performing venues has rarely been discussed when compared with residential, office, and other popular building types. Life-cycle carbon emission due to the high standard requirements in acoustics, stage engineering, HVAC, and building structure need to be carefully examined. This can be complicated by social-economic and cultural concerns in addition to technical excellence. This paper reported case-based study and statistics of performing venues regarding urban connectivity and spatial layouts in enhancing facility usage and promoting cultural vitality. Interviews conducted for a major venue at Taipei indicated high linkage with surrounding leisure activity and the need for quality pedestrian and additional spaces open to the general public. Statistics of venues with various size and function suggested the possibility and strategies limit the size and height of reception and foyer spaces, and to maximize their use when there are no performances. Design strategies are identified to increase visual contact or facility sharing between the artists and the audience or the general public in reducing facility size and promoting potential involvement in cultural activities.Keywords: sustainability, performing venue, design, operation
Procedia PDF Downloads 1219376 Salinity Response of Some Chickpea (Cicer arietinum L.) Genotypes in Germination and Seedling Growth of Periods
Authors: Onder Aldemir, Ercan Ceyhan
Abstract:
The research was conducted to determine effects of salt concentrations on emergence and seedling development of chickpea genotypes. Trials were performed during the year of 2013 on the laboratory and greenhouse of Agricultural Faculty, Selcuk University. Emergency trial was set up according to ‘Randomized Plots Design’ by two factors and four replications; greenhouse trial was also set up according to ‘Randomized Plots Design’ by two factors with three replications. The chickpea genotypes; CA119, CA132, CA149, CA150, CA215, CA222, CA235, CA261, Bozkır and Gokce were used as material for both of the trials. Effects of the five doses of salt concentrations (control, 30 mM, 60 mM, 90 mM and 120 mM) on the ratio of emergency, speed of emergency, average time for emergency, index of sensibility, length of shoot and root, fresh weight of shoot and root, dry weight of shoot and root, index of salt tolerance were evaluated. Responses of the chickpea genotypes for salt concentrations were found different. Comparing to the control, all of the investigated characteristics on the chickpea genotypes showed significant reduction by depending on the increasing salt level. According to the effects of salt application, the chickpea genotypes Gokce, CA215 and CA222 were the most tolerant in respect to plant dry weights while the chickpea genotypes CA149 and CA150 were the most sensitive.Keywords: chickpea, emergence, salt tolerant, seedling development
Procedia PDF Downloads 2349375 Scoliosis Effect towards of Incidence of the Secondary Osteoarthritis on the Knee in Athletes at the National Sports Cibubur Hospital on July 2013-April 2014
Authors: Basuki Supartono, Nunuk Nugrohowati, Ryan Gamma Andiraldi
Abstract:
Osteoarthritis of the knee can occur due to scoliosis. The purpose of this study is to determine the effect of scoliosis cause secondary osteoarthritis on the knee. This research use an analytic cross-sectional design. The total sample of 92 athletes scoliosis taken by simple random sampling technique. The data obtained were analyzing with Chi-square test, Fisher and Prevalence Ratio. The results of analysis show that there are influences on the incidence of scoliosis secondary osteoarthritis on the knee in athletes at the National Sports Hospital. Based on the criteria in the Cobbs angle had the results (p = 0.022 (p <0.05)), moderate Cobbs angle degree were 7.5 times more at risk of causing secondary osteoarthritis on the knee than a mild degree. While the shape of the curve scoliosis is getting results (p = 0.038 (p <0.05)), the shape of the S curve scoliosis 3.2 times more at risk of causing secondary osteoarthritis on the knee than the curve C. It can be concluded that there is significant influence between the Cobbs angle, shape of the curve scoliosis on the incidence of secondary osteoarthritis on the knee in National Sports Cibubur Hospital on July 2013- April 2014Keywords: Cobbs angle, curve shape scoliosis, secondary osteoarthritis on the knee, analytic cross-sectional design
Procedia PDF Downloads 4919374 Charting the Course: Using group Charters to Enhance Engagement and Learning Outcomes
Authors: Angela Knox
Abstract:
Student diversity in postgraduate classes puts major challengesoneducatorsseekingtoencouragestudentengagementand desired learning outcomes. This paper outlines the impact of a set of teaching initiatives aimed at addressing challenges associated with teaching and learning in an environment characterized by diversity in the student cohort. The study examines postgraduate students completing the core capstone unit within a specialized business degree. Although relatively small, the student cohort is highly diverse in terms of cultural backgrounds represented, prior learning and/or qualifications,aswellasdurationandtypeofworkexperiencerelevant to the degree being completed. The wide range of cultures, existing knowledge, and experience create enormous challenges with respect to students’ learning needs and outcomes. Subsequently, a suite of teaching innovations has been adopted to enhance curriculum content/delivery and the design of assessments. This paperexplores the impact of formalized group charters on students’ learning outcomes. Data from surveys and focus groups are used to assess the effectiveness of these practices. The results highlight the effectiveness of formalizedgroup charters in addressing diverse student needs and enhancing student engagement and learning outcomes. Thesefindings suggest that such practices would benefit students’ learning in environments marked by diversity in the student cohort. Specific recommendationsareofferedforothereducatorsworkingwithdiverse classes.Keywords: assessment design, curriculum content, curriculum delivery, group charter, student diversity
Procedia PDF Downloads 1359373 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products
Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh
Abstract:
Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask
Procedia PDF Downloads 4669372 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism
Authors: Rui Liu, Pengyu Cui, Nan Jiang
Abstract:
At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion
Procedia PDF Downloads 1999371 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant
Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea
Abstract:
In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.Keywords: flow, aeration, bioreactor, oxygen concentration
Procedia PDF Downloads 3899370 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000
Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair
Abstract:
This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.Keywords: extraction, ultrasonication, response surface methodology, box behnken design
Procedia PDF Downloads 509369 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom
Authors: Tugba Gurler, Irfan Kurtbas
Abstract:
Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.Keywords: phase change material, regional energy demand, roof layers, thermal energy storage
Procedia PDF Downloads 1029368 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix
Authors: Yoonjung An, Yongtae Park
Abstract:
Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design
Procedia PDF Downloads 6419367 Living Lab as a Service: Developing Context Induced, Co-creational Innovation Routines as a Process Tool for Nature Based Solutions
Authors: Immanuel Darkwa
Abstract:
Climate change and environmental degradation are existential threats requiring urgent transnational action. The SDGs, as well as regional initiatives the like European Green Deal, as ambitious as they are, put an emphasis on innovatively tackling threats posed by climate change regionally. While co-creational approaches are being propagated, there is no reference blueprint for how potential solutions, particularly nature-based solutions, may be developed and implemented within urban-settings. Using a single case study in Zagreb, Croatia, this paper proposes a workshop-tool for a Living Lab as a Service model for sustainable Nature-Based-Thinking, Nature–Centred-Design and Nature based solutions. The approach is based on a co-creational methodology developed through literature synthesis, expert interviews, focus group discussions, surveys and synthesized through rigorous research analysis and participatory observation. The ensuing tool involves workshop-processes, tested with through-the-process identified stakeholders with distinctive roles and functions. The resulting framework proposes a Nature-Based-Centred-Thinking process tool involving ‘green’ routines supported by a focal unit and a collaborative network, and that allows for the development of nature-based solutions.Keywords: living labs, nature-based solutions, nature- based design, innovation processes, innovation routines and tools
Procedia PDF Downloads 769366 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity
Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan
Abstract:
Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM
Procedia PDF Downloads 1229365 Optimization of Black Grass Jelly Formulation to Reduce Leaching and Increase Floating Rate
Authors: M. M. Nor, H. I. Sheikh, M. F. H. Hassan, S. Mokhtar, A. Suganthi, A. Fadhlina
Abstract:
Black grass jelly (BGJ) is a popular black jelly used in preparing various drinks and desserts. Food industries often use preservatives to maintain the physicochemical properties of foods, such as color and texture. These preservatives (e.g., phosphoric acid) are linked with deleterious health effects such as kidney disease. Using gelling agents, carrageenan, and gelatin to make BGJ could improve its physiochemical and textural properties. This study was designed to optimize BGJ-selected physicochemical and textural properties using carrageenan and gelatin. Various black grass jelly formulations (BGJF) were designed using an I-optimal mixture design in Design Expert® software. Data from commercial BGJ were used as a reference during the optimization process. The combination of carrageenan and gelatin added to the formulations was up to 14.38g (~5%), respectively. The results showed that adding 2.5g carrageenan and 2.5g gelatin at approximately 5g (~5%) effectively maintained most of the physiochemical properties with an overall desirability function of 0.81. This formulation was selected as the optimum black grass jelly formulation (OBGJF). The leaching properties and floating duration were measured on the OBGJF and commercial grass jelly for 20 min and 40 min, respectively. The results indicated that OBGJF showed significantly (p<0.0001) lower leaching rate and floating time (p<0.05). Hence, further optimization is needed to increase the floating duration of carrageenan and gelatin-based BGJ.Keywords: cincau, Mesona chinensis, black grass jelly, carrageenan, gelatin
Procedia PDF Downloads 829364 Research on Renovation of Existing Interior Space Based on Post Occupancy Evaluation: A Case Study of the Atrium Space of Zhejiang University Library in Hangzhou
Authors: Qin Dai
Abstract:
The renovation of existing interior space is big issue for architects in today’s China. However the traditional way of space renovation in China mostly focuses on the object itself, and the method also focuses on subjective level without the support of specific data. This research focuses the application of renovation of existing interior space based on post occupancy evaluation by a case study of a typical interior space. The research hopes to give a more scientific method of interior space renovation for architects and help promoting and guiding renovation practice. This research studies the post occupancy evaluation of the atrium space of Zhejiang University Library including subjective satisfaction and physical environmental satisfaction. The result provides necessary data support to conclude the design principles and strategies of renovation. Then the research uses simulation software to verify the availability of the strategy given based on the study. In conclusion, the research summarizes the application process of design methods of renovation of existing interior space based on the post-occupancy evaluation, and testifies to the practical significance of the renovation of existing interior space.Keywords: existing interior space, physical environmental satisfaction, post occupancy evaluation, renovation of space, subjective satisfaction of space
Procedia PDF Downloads 2409363 An Experimental Study of the External Thermal Insulation System’s (ETICS) Efficiency in Buildings during Spring Conditions
Authors: Carmen Viñas Arrebola, Antonio Rodriguez Sanchez, Sheila Varela Lujan, Mariano Gonzalez Cortina, Cesar Porras Amores
Abstract:
The research group TEMA from the School of Building (UPM) is working in the line of energy efficiency and comfort in building. The need to reduce energy consumption in the building construction implies designing new constructive systems. These systems help to reduce both consumption and energy losses in order to achieve adequate thermal comfort for people in any type of building. In existing buildings the best option is the rehabilitation focused on thermal insulation. The aim of this paper is to design, monitor and analyze the first results of thermal behavior of the ETICS system in façades. This retrofitting solution consists of adding thermal insulation on the outside of the building, helping to create a continuous envelope on the façades. The analysis is done by comparing a rehabilitated part of the building with ETICS system and another part which has not been rehabilitated, and it is taken as reference. Both of them have the same characteristics. Temperature measurements were taken with type K thermocouples according to the previous design of the monitoring and in the same period of time. The pilot building of the study is situated in Benimamet Street, in San Cristobal de Los Ángeles, in the south of Madrid. It was built in the late 50s. The 51st entrance hall, which is restored, and the 47th entrance hall, in original conditions, have been studied.Keywords: comfort in building, energy efficiency in building, ETICS, thermal properties
Procedia PDF Downloads 3159362 The Application of Mapping, Practicing, Using Strategy with Instructional Materials Based on the School Curriculum toward the English Achievement of Indonesian EFL Students
Authors: Eny Syatriana
Abstract:
English proficiency of Indonesian secondary school students is below standard. The low proficiency may come from poor teaching materials that do not meet the students’ need. The main objective for English teachers is to improve the English proficiency of the students. The purpose of this study is to explore the application Mapping, Practicing, Using (MPU) strategy with Instructional Materials Based on the School Curriculum toward the English achievement of Indonesian EFL Students. This paper is part my dissertation entitles 'Designing instructional materials for secondary school students based on the school curriculum' consisting of need analysis, design, development, implementation, and evaluation; this paper discusses need analysis and creates a model of creating instructional materials through deep discussion among teachers of secondary schools. The subject consisted of six English teachers and students of three classes at three different secondary schools in Makassar, South Sulawesi, Indonesia. Pretest and posttest design were administered to see the effectiveness of the MPU strategy. Questionnaires were administered to see the teachers and students’ perception toward the instructional materials. The result indicates that the MPU strategy is effective in improving the English achievement; instructional materials with different strategies improve the English achievement of the students. Both teachers and students argue that the presented instructional materials are effective to be used in the teaching and learning process to increase the English proficiency of the students.Keywords: proficiency, development, English for secondary school students, instructional materials
Procedia PDF Downloads 3329361 Feasibility of Simulating External Vehicle Aerodynamics Using Spalart-Allmaras Turbulence Model with Adjoint Method in OpenFOAM and Fluent
Authors: Arpit Panwar, Arvind Deshpande
Abstract:
The study of external vehicle aerodynamics using Spalart-Allmaras turbulence model with adjoint method was conducted. The accessibility and ease of working with the Fluent module of ANSYS and OpenFOAM were considered. The objective of the study was to understand and analyze the possibility of bringing high-level aerodynamic simulation to the average consumer vehicle. A form-factor of BMW M6 vehicle was designed in Solidworks, which was analyzed in OpenFOAM and Fluent. The turbulence model being a single equation provides much faster convergence rate when clubbed with the adjoint method. Fluent being commercial software still does not allow us to solve Spalart-Allmaras turbulence model using the adjoint method. Hence, the turbulence model was solved using the SIMPLE method in Fluent. OpenFOAM being an open source provide flexibility in simulation but is not user-friendly. It supports solving the defined turbulence model with the adjoint method. The result generated from the simulation gives us acceptable values of drag, when validated with the result of percentage error in drag values for a notch-back vehicle model on an extensive simulation produced at 6th ANSA and μETA conference, Greece. The success of this approach will allow us to bring more aerodynamic vehicle body design to all segments of the automobile and not limiting it to just the high-end sports cars.Keywords: Spalart-Allmaras turbulence model, OpenFOAM, adjoint method, SIMPLE method, vehicle aerodynamic design
Procedia PDF Downloads 2009360 Body Composition Analyser Parameters and Their Comparison with Manual Measurements
Authors: I. Karagjozova, B. Dejanova, J. Pluncevic, S. Petrovska, V. Antevska, L. Todorovska
Abstract:
Introduction: Medical checking assessment is important in sports medicine. To follow the health condition in subjects who perform sports, body composition parameters, such as intracellular water, extracellular water, protein and mineral content, muscle and fat mass might be useful. The aim of the study was to show available parameters and to compare them to manual assessment. Material and methods: A number of 20 subjects (14 male and 6 female) at age of 20±2 years were determined in the study, 5 performed recreational sports, while others were professional ones. The mean height was 175±7 cm, the mean weight was 72±9 cm, and the body mass index (BMI) was 23±2 kg/m2. The measured compartments were as following: intracellular water (IW), extracellular water (EW), protein component (PC), mineral component (MC), skeletal muscle mass (SMM) and body fat mass (BFM). Lean balance were examined for right and left arm (LA), trunk (T), right leg (RL) and left leg (LL). The comparison was made between the calculation derived by manual made measurements, using Matejka formula and parameters obtained by body composition analyzer (BCA) - Inbody 720 BCA Biospace. Used parameters for the comparison were muscle mass (SMM), body fat mass (BFM). Results: BCA obtained values were for: IW - 22.6±5L, EW - 13.5±2 L, PC - 9.8±0.9 kg, MC - 3.5±0.3, SMM - 27±3 kg, BFM - 13.8±4 kg. Lean balance showed following values for: RA - 2.45±0.2 kg, LA - 2.37±0.4, T - 20.9±5 kg, RL - 7.43±1 kg, and LL - 7.49 ±1.5 kg. SMM showed statistical difference between manual obtained value, 51±01% to BCA parameter 45.5±3% (p<0.001). Manual obtained values for BFM was lower (17±2%) than BCA obtained one, 19.5±5.9% (p<0.02). Discussion: The obtained results showed appropriate values for the examined age, regarding to all examined parameters which contribute to overview the body compartments, important for sport performing. Due to comparison between the manual and BCA assessment, we may conclude that manual measurements may differ from the certain ones, which is confirmed by statistical significance.Keywords: athletes, body composition, bio electrical impedance, sports medicine
Procedia PDF Downloads 4779359 Preliminary Design of an Aerodynamic Protection for the Scramjet Engine Inlet of the Brazilian Technological Demonstrator Scramjet 14-X S
Authors: Gustavo J. Costa, Felipe J. Costa, Bruno L. Coelho, Ronaldo L. Cardoso, Rafael O. Santos, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro
Abstract:
The Prof. Henry T. Nagamatsu Aerothermodynamics and Hipersonics Laboratory, of the Institute for Advanced Studies (IEAv) conducts research and development (R&D) of the Technological Demonstrator scramjet 14-X S, aiming atmospheric flight at 30 km altitude with the speed correspondent to Mach number 7, using scramjet technology providing hypersonic propulsion system based on supersonic combustion. Hypersonic aerospace vehicles with air-breathing supersonic propulsion system face extremal environments for super/hypersonic flights in terms of thermal and aerodynamic loads. Thus, it is necessary to use aerodynamic protection at the scramjet engine inlet to face the thermal and aerodynamic loads without compromising the efficiency of scramjet engine, taking into account: i) inlet design (boundary layer, oblique shockwave and reflected oblique shockwave); ii) wall temperature of the cowl and of the compression ramp; iii) supersonic flow into the combustion chamber. The aerodynamic protection of the scramjet engine inlet will act to prevent the engine unstart and match the predictions made by theoretical-analytical, numerical analysis and experimental research, during the atmospheric flight of the Technological Demonstrator scramjet 14-X S.Keywords: 14-X, hypersonic, scramjet, supersonic combustion
Procedia PDF Downloads 4259358 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 4459357 Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou
Authors: Guo-Hui Lu, Jing-Yi Cai, Ke-Yan Tan, Xiao-Cai Yin, Yu Zheng, Peng-Wei Shao, Yong-Liang Yang
Abstract:
Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites.Keywords: heavy metal, risk assessment, sediment, suspended matter, Wanshan mercury mine, small tributary system
Procedia PDF Downloads 1309356 Sustainable Development of Medium Strength Concrete Using Polypropylene as Aggregate Replacement
Authors: Reza Keihani, Ali Bahadori-Jahromi, Timothy James Clacy
Abstract:
Plastic as an environmental burden is a well-rehearsed topic in the research area. This is due to its global demand and destructive impacts on the environment, which has been a significant concern to the governments. Typically, the use of plastic in the construction industry is seen across low-density, non-structural applications due to its diverse range of benefits including high strength-to-weight ratios, manipulability and durability. It can be said that with the level of plastic consumption experienced in the construction industry, an ongoing responsibility is shown for this sector to continually innovate alternatives for application of recycled plastic waste such as using plastic made replacement from polyethylene, polystyrene, polyvinyl and polypropylene in the concrete mix design. In this study, the impact of partially replaced fine aggregate with polypropylene in the concrete mix design was investigated to evaluate the concrete’s compressive strength by conducting an experimental work which comprises of six concrete mix batches with polypropylene replacements ranging from 0.5 to 3.0%. The results demonstrated a typical decline in the compressive strength with the addition of plastic aggregate, despite this reduction generally mitigated as the level of plastic in the concrete mix increased. Furthermore, two of the six plastic-containing concrete mixes tested in the current study exceeded the ST5 standardised prescribed concrete mix compressive strength requirement at 28-days containing 1.50% and 2.50% plastic aggregates, which demonstrated the potential for use of recycled polypropylene in structural applications, as a partial by mass, fine aggregate replacement in the concrete mix.Keywords: compressive strength, concrete, polypropylene, sustainability
Procedia PDF Downloads 1409355 Optimization of Alkali Silicate Glass Heat Treatment for the Improvement of Thermal Expansion and Flexural Strength
Authors: Stephanie Guerra-Arias, Stephani Nevarez, Calvin Stewart, Rachel Grodsky, Denis Eichorst
Abstract:
The objective of this study is to describe the framework for optimizing the heat treatment of alkali silicate glasses, to enhance the performance of hermetic seals in extreme environments. When connectors are exposed to elevated temperatures, residual stresses develop due to the mismatch of thermal expansions between the glass, metal pin, and metal shell. Excessive thermal expansion mismatch compromises the reliability of hermetic seals. In this study, a series of heat treatment schedules will be performed on two commercial sealing glasses (one conventional sealing glass and one crystallizable sealing glass) using a design of experiments (DOE) approach. The coefficient of thermal expansion (CTE) will be measured pre- and post-heat treatment using thermomechanical analysis (TMA). Afterwards, the flexural strength of the specimen will be measured using a four-point bend fixture mounted in a static universal testing machine. The measured material properties will be statistically analyzed using MiniTab software to determine which factors of the heat treatment process have a strong correlation to the coefficient of thermal expansion and/or flexural strength. Finally, a heat-treatment will be designed and tested to ensure the optimal performance of the hermetic seals in connectors.Keywords: glass-ceramics, design of experiment, hermetic connectors, material characterization
Procedia PDF Downloads 150