Search results for: water crises
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8940

Search results for: water crises

8490 Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company

Authors: Miguel A. Jimenez Barros, Elyn L. Solano Charris, Luis E. Ramirez, Lauren Castro Bolano, Carlos Torres Barreto, Juliana Morales Cubillo

Abstract:

This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact.

Keywords: bio-reactor, potable water, reverse osmosis, water treatment

Procedia PDF Downloads 236
8489 Bottom-up Quantification of Mega Inter-Basin Water Transfer Vulnerability to Climate Change

Authors: Enze Zhang

Abstract:

Large numbers of inter-basin water transfer (IBWT) projects are constructed or proposed all around the world as solutions to water distribution and supply problems. Nowadays, as climate change warms the atmosphere, alters the hydrologic cycle, and perturbs water availability, large scale IBWTs which are sensitive to these water-related changes may carry significant risk. Given this reality, IBWTs have elicited great controversy and assessments of vulnerability to climate change are urgently needed worldwide. In this paper, we consider the South-to-North Water Transfer Project (SNWTP) in China as a case study, and introduce a bottom-up vulnerability assessment framework. Key hazards and risks related to climate change that threaten future water availability for the SNWTP are firstly identified. Then a performance indicator is presented to quantify the vulnerability of IBWT by taking three main elements (i.e., sensitivity, adaptive capacity, and exposure degree) into account. A probabilistic Budyko model is adapted to estimate water availability responses to a wide range of possibilities for future climate conditions in each region of the study area. After bottom-up quantifying the vulnerability based on the estimated water availability, our findings confirm that SNWTP would greatly alleviate geographical imbalances in water availability under some moderate climate change scenarios but raises questions about whether it is a long-term solution because the donor basin has a high level of vulnerability due to extreme climate change.

Keywords: vulnerability, climate change, inter-basin water transfer, bottom-up

Procedia PDF Downloads 400
8488 Evaluation of Toxic Metals in Water Hyacinth (Eichhornia crassipes) from Valsequillo Reservoir, Puebla, Central Mexico

Authors: Jacobo Tabla, P. F. Rodriguez-Espinosa, M. E. Perez-Lopez

Abstract:

Valsequillo reservoir located in Puebla City, Central Mexico receives water from the Atoyac River (Northwest) and from Alseseca River in the north. It has been the receptacle of municipal and industrial wastes for the past few decades affecting the water quality lethally. As a result, there is an outburst of water hyacinths (Eichhornia crassipes) in the reservoir occupying around 50 % of the total area. Therefore, the aim of the present work was to assess the concentration levels of toxic metals (Co, Zn, Ni, Cu and As) in the water hyacinths and the ambient waters during the dry season. Fourteen water samples and three water hyacinth samples were procured from the Valsequillo reservoir. The collected samples of water hyacinth (roots, rhizome, stems and leaves) were analyzed using an Inductively coupled plasma mass spectrometry (ICP-MS) Ultramass 700 (Varian Inc.) to determine the metal levels. Results showed that water hyacinth presented an exhaustion in metal capture from the inlet to outlet of the reservoir. The maximum bioaccumulation factors (BF) of Co, Zn, Ni, Cu and As were 5000, 47474, 4929, 17090 and 74000 respectively. On the other hand, the maximum Translocation Factor (TF) of 0.85 was observed in Zn, whilst Co presented the minimum TF of 0.059. Thus, the results presented the fact that water hyacinth in Valsequillo reservoir proves to be an important environmental utility for efficiently accumulating and translocating heavy metals from the ambient waters to its organelles (stems and leaves).

Keywords: bioaccumulation factor, toxic metals, translocation factor, water hyacinth

Procedia PDF Downloads 258
8487 Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia

Authors: S. A. Che Osmi, W. M. F. Wan Ishak, H. Kim, M. A. Azman, M. A. Ramli

Abstract:

River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia.

Keywords: EFDC, river management, TMDL, water quality modelling

Procedia PDF Downloads 328
8486 Role of the Marshes in the Natural Decontamination of Surface Water: A Case of the Redjla Marsh, North-Eastern Algerian

Authors: S. Benessam, T. H. Debieche, A. Drouiche, S. Mahdid, F. Zahi

Abstract:

The marsh is the impermeable depression. It is not very deep and presents the stagnant water. Their water level varies according to the contributions of water (rain, groundwater, stream etc.), when this last reaches the maximum level of the marsh, it flows towards the downstream through the discharge system. The marsh accumulates all the liquid and solid contributions of upstream part. In the North-East Algerian, the Redjla marsh is located on the course of the Tassift river. Its contributions of water come from the upstream part of the river, often characterized by the presence of several pollutants in water related to the urban effluents, and its discharge system supply the downstream part of the river. In order to determine the effect of the marsh on the water quality of the river this study was conducted. A two-monthly monitoring of the physicochemical parameters and water chemistry of the river were carried out, before and after the marsh, during the period from November 2013 to January 2015. The results show that the marsh plays the role of a natural purifier of water of Tassift river, present by drops of conductivity and concentration of the pollutants (ammonium, phosphate, iron, chlorides and bicarbonates) between the upstream part and downstream of the marsh. That indicates that these pollutants are transformed with other chemical forms (case of ammonium towards nitrate), precipitated in complex forms or/and adsorbed by the sediments of the marsh. This storage of the pollutants in the ground of the marsh will be later on a source of pollution for the plants and river water.

Keywords: marsh, natural purification, urban pollution, nitrogen

Procedia PDF Downloads 263
8485 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 146
8484 Well Water Pollution Caused by Central Batik Industry in Kliwonan, Sragen, Central Java, Indonesia in Ecofeminism Perspective

Authors: Intan Purnama Sari, Fitri Damayanti, Nabiila Yumna Ghina

Abstract:

Kliwonan, Sragen is a famous central batik industry village. In the process of the industry, women are placed into the central role but marginalized in economic mode. Women have the double burden on domestic sector and public sector (work as craftsmen batik). The existence of the batik industry bring on issues related to the pollution of water resources as a result of waste water with the marginalized of women. This research aims to examine the relevance of the pollution of the water from the well in Kliwonan with women as the biggest role holders through ecofeminism perspective. To examine these aspects then made observations, documentation, and interview against women batik craftsmen. The results of the study showed that the wells as sources of water to the inhabitants of contaminated because the liquid waste water batik industry. The impact of women must buy clean water each month to meet the needs of the household water with the reward that is obtained from the result of labor as much as Rp 12,000 per day. It proves the marginalized women on economic mode. Based on the results of research done, it can be concluded that the required environmental planning to promote how women do the rescue environment. The implementation requires kelor (Moringa oleifera seeds) as such as natural coagulants of sources of water-saving and easy to use.

Keywords: well water pollution, ecofeminism, environmental planning, Moringa oleifera

Procedia PDF Downloads 279
8483 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 91
8482 Capability of Intelligent Techniques for Friction Factor Simulation in Water Channels

Authors: Kiyoumars Roushangar, Shabnam Mirheidarian

Abstract:

This study proposes metamodel approaches as a new intelligent technique for the explicit formulation of friction factors of water conveyance structures. For this purpose, experimental data of a movable bed flume with dune bed form were used. Analyzing the result clears the high capability of metamodel approaches (MNE= 0.05, R= 0.92) as a powerful tool for optimizing and explicit simulation of Manning's roughness coefficients of water conveyance structures compared to other nonlinear approaches.

Keywords: intelligent techniques, explicit simulation, roughness coefficient, water conveyance structure

Procedia PDF Downloads 478
8481 Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index

Authors: Samaneh Abolli, Mahdi Ahmadi Nasab, Kamyar Yaghmaeian, Mahmood Alimohammadi

Abstract:

The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺.

Keywords: water quality index, groundwater, chloride, GIS, Garmsar

Procedia PDF Downloads 104
8480 Sustainable Transboundary Water Management: Challenges and Good Practices of Cooperation in International River Basin Districts

Authors: Aleksandra Ibragimow, Moritz Albrecht, Eerika Albrecht

Abstract:

Close international cooperation between all countries within a river basin has become one of the key aspects of sustainable cross-border water management. This is due to the fact that water does not stop at administrative or political boundaries. Therefore, the preferred mode to protect and manage transnational water bodies is close cooperation between all countries and stakeholders within the natural hydrological unit of the river basin. However, past practices have demonstrated that combining interests of different countries and stakeholders with differing political systems and management approaches to environmental issues upstream as well as downstream can be challenging. The study focuses on particular problems and challenges of water management in international river basin districts by the example of the International Oder River Basin District. The Oder River is one of the largest cross-border rivers of the Baltic Sea basin passing through Poland, Germany, and the Czech Republic. Attention is directed towards the activities and the actions that were carried out during the Districts' first management cycle of transnational river basin management (2009-2015). The results show that actions of individual countries have been focused on the National Water Management Plans while a common appointment about identified supra-regional water management problems has not been solved, and conducted actions can be considered as preliminary and merely a basis for future management. This present state raises the question whether the achievement of main objectives of Water Framework Directive (2000/60/EC) can be a realistic task.

Keywords: International River Basin Districts, water management, water frameworkdirective, water management plans

Procedia PDF Downloads 316
8479 An Evaluative Microbiological Risk Assessment of Drinking Water Supply in the Carpathian Region: Identification of Occurrent Hazardous Bacteria with Quantitative Microbial Risk Assessment Method

Authors: Anikó Kaluzsa

Abstract:

The article's author aims to introduce and analyze those microbiological safety hazards which indicate the presence of secondary contamination in the water supply system. Since drinking water belongs to primary foods and is the basic condition of life, special attention should be paid on its quality. There are such indicators among the microbiological features can be found in water, which are clear evidence of the presence of water contamination, and based on this there is no need to perform other diagnostics, because they prove properly the contamination of the given water supply section. Laboratory analysis can help - both technologically and temporally – to identify contamination, but it does matter how long takes the removal and if the disinfection process takes place in time. The identification of the factors that often occur in the same places or the chance of their occurrence is greater than the average, facilitates our work. The pathogen microbiological risk assessment by the help of several features determines the most likely occurring microbiological features in the Carpathian basin. From among all the microbiological indicators, that are recommended targets for routine inspection by the World Health Organization, there is a paramount importance of the appearance of Escherichia coli in the water network, as its presence indicates the potential ubietiy of enteric pathogens or other contaminants in the water network. In addition, the author presents the steps of microbiological risk assessment analyzing those pathogenic micro-organisms registered to be the most critical.

Keywords: drinking water, E. coli, microbiological indicators, risk assessment, water safety plan

Procedia PDF Downloads 334
8478 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre

Authors: Ng Mei Han, Nu'man Abdul Hadi

Abstract:

Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.

Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre

Procedia PDF Downloads 87
8477 Social Network Analysis in Water Governance

Authors: Faribaebrahimi, Mehdi Ghorbani, Mohsen Mohsenisaravi

Abstract:

Ecosystem management is complex because of natural and human issues. To cope with this complexity water governance is recommended since it involves all stakeholders including people, governmental and non-governmental organization who related to environmental systems. Water governance emphasizes on water co-management through consideration of all the stakeholders in the form of social and organizational network. In this research, to illustrate indicators of water governance in Dorood watershed, in Shemiranat region of Iran, social network analysis had been applied. The results revealed that social cohesion among pastoralists in Dorood is medium because of trust links, while link sustainability is weak to medium. According to the results, some pastoralists have high social power and therefore are key actors in the utilization network, regarding to centrality index and trust links. The results also demonstrated that Agricultural Development Office and (Shemshak-Darbandsar Islamic) Council are key actors in rangeland co-management, based on centrality index in rangeland institutional network at regional scale in Shemiranat district.

Keywords: social network analysis, water governance, organizational network, water co-management

Procedia PDF Downloads 352
8476 Urbanization and Water Supply in Lagos State, Nigeria: The Challenges in a Climate Change Scenario

Authors: Amidu Owolabi Ayeni

Abstract:

Studies have shown that spatio-temporal distribution and variability of climatic variables, urban land use, and population have had substantial impact on water supply. It is based on these facts that the impacts of climate, urbanization, and population on water supply in Lagos State Nigeria remain the focus of this study. Population and water production data on Lagos State between 1963 and 2006 were collected, and used for time series and projection analyses. Multi-temporal land-sat images of 1975, 1995 and NigeriaSat-1 imagery of 2007 were used for land use change analysis. The population of Lagos State increased by about 557.1% between 1963 and 2006, correspondingly, safe water supply increased by 554%. Currently, 60% of domestic water use in urban areas of Lagos State is from groundwater while 75% of rural water is from unsafe surface water. Between 1975 and 2007, urban land use increased by about 235.9%. The 46years climatic records revealed that temperature and evaporation decreased slightly while rainfall and Relatively Humidity (RH) decreased consistently. Based on these trends, the Lagos State population and required water are expected to increase to about 19.8millions and 2418.9ML/D respectively by the year 2026. Rainfall is likely to decrease by -6.68mm while temperature will increase by 0.950C by 2026. Urban land use is expected to increase by 20% with expectation of serious congestion in the suburb areas. With these results, over 50% of the urban inhabitants will be highly water poor in future if the trends continue unabated.

Keywords: challenges, climate change, urbanization, water supply

Procedia PDF Downloads 432
8475 Development of an Integrated Framework for Life-Cycle Economic, Environmental and Human Health Impact Assessment for Reclaimed Water Use in Water Systems of Various Scales

Authors: Yu-Yao Wang, Xiao-Meng Hu, Joanne Yeung, Xiao-Yan Li

Abstract:

The high private cost and unquantified external cost limit the development of reclaimed water. In this study, an integrated framework comprising life cycle assessment (LCA), quantitative microbial risk assessment (QMRA), and life cycle costing (LCC) was developed to evaluate both costs of reclaimed water supply in water systems of various scales. LCA assesses the environmental impacts, and QMRA estimates the associated pathogenic impacts. These impacts are monetized as external costs and analyzed with the private cost by LCC to count the total life cycle cost. The framework evaluated the Hong Kong urban water system in the baseline scenario (BS) and five wastewater reuse scenarios (RS). They are RSI: substituting freshwater for toilet flushing only, RSII: substituting both freshwater and seawater for toilet flushing, RSIII: using reclaimed water for all non-potable uses, RSIV: using reclaimed water for all non-potable uses and indirect potable uses, and RSV: non-potable use and indirect potable use by conveying 100% reclaimed water to recharge the reservoirs. The results show that substituting freshwater and seawater for toilet flushing has the least total life cycle cost, exhibiting that it is the most cost-effective option for Hong Kong. Meanwhile, the evaluation results show that the external cost of each scenario is comparable to the corresponding private cost, indicating the importance of the inclusion of comprehensive external cost evaluation in private cost assessment of water systems with reclaimed water supply.

Keywords: life cycle assessment, life cycle costing, quantitative microbial risk assessment, water reclamation, reclaimed water, alternative water resources

Procedia PDF Downloads 122
8474 Dimension of Water Accessibility in the Southern Part of Niger State, Nigeria

Authors: Kudu Dangana, Pai H. Halilu, Osesienemo R. Asiribo-Sallau, Garba Inuwa Kuta

Abstract:

The study examined the determinants of household water accessibility in Southern part of Niger State, Nigeria. Data for the study was obtained from primary and secondary sources using questionnaire, interview, personal observation and documents. 1,192 questionnaires were administered; sampling techniques adopted are combination of purposive, stratified and simple random. Purposive sampling technique was used to determine sample frame; sample unit was determined using stratified sampling method and simple random technique was used in administering questionnaires. The result was analyzed within the scope of “WHO” water accessibility indicators using descriptive statistics. Major sources of water in the area are well; hand and electric pump borehole and streams. These sources account for over 90% of household’s water. Average per capita water consumption in the area is 22 liters per day, while location efficiency of facilities revealed an average of 80 people per borehole. Household water accessibility is affected mainly by the factors of distances, time spent to obtain water, low income status of the majority of respondents to access modern water infrastructure, and to a lesser extent household size. Recommendations includes, all tiers of government to intensify efforts in providing water infrastructures and existing ones through budgetary provisions, and communities should organize fund raising bazaar, so as to raise fund to improve water infrastructures in the area.

Keywords: accessibility, determined, stratified, scope

Procedia PDF Downloads 393
8473 Managing City Pipe Leaks through Community Participation Using a Web and Mobile Application in South Africa

Authors: Mpai Mokoena, Nsenda Lukumwena

Abstract:

South Africa is one of the driest countries in the world and is facing a water crisis. In addition to inadequate infrastructure and poor planning, the country is experiencing high rates of water wastage due to pipe leaks. This study outlines the level of water wastage and develops a smart solution to efficiently manage and reduce the effects of pipe leaks, while monitoring the situation before and after fixing the pipe leaks. To understand the issue in depth, a literature review of journal papers and government reports was conducted. A questionnaire was designed and distributed to the general public. Additionally, the municipality office was contacted from a managerial perspective. The analysis from the study indicated that the majority of the citizens are aware of the water crisis and are willing to participate positively to decrease the level of water wasted. Furthermore, the response from the municipality acknowledged that more practical solutions are needed to reduce water wastage, and resources to attend to pipe leaks swiftly. Therefore, this paper proposes a specific solution for municipalities, local plumbers and citizens to minimize the effects of pipe leaks. The solution provides web and mobile application platforms to report and manage leaks swiftly. The solution is beneficial to the country in achieving water security and would promote a culture of responsibility toward water usage.

Keywords: urban distribution networks, leak management, mobile application, responsible citizens, water crisis, water security

Procedia PDF Downloads 146
8472 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 195
8471 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.

Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village

Procedia PDF Downloads 310
8470 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery

Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa

Abstract:

This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.

Keywords: membrane distillation, heat transfer, heat recovery, desalination

Procedia PDF Downloads 267
8469 Congenital Heart Defect(CHD) “The Silent Crises”; The Need for New Innovative Ways to Save the Ghanaian Child - A Retrospective Study

Authors: Priscilla Akua Agyapong

Abstract:

Background: In a country of nearly 34 million people, Ghana suffers from rapidly growing pediatric CHD cases and not enough pediatric specialists to attend to the burgeoning needs of these children. Most of the cases are either missed or diagnosed late, resulting in increased mortality. According to the National Cardiothoracic Centre, 1 in every 100,000 births in Ghana has CHD; however, there is limited data on the clinical presentation and its management, one of the many reasons I decided to do this case study coupled with the loss my 2 month old niece to multiple Ventricular Septal Defect 3 years ago due late diagnoses. Method: A retrospective cohort study was performed at the child health clinic of one of Ghana’s public tertiary Institutions using data from their electronic health record (EHR) from February 2021 to April 2022. All suspected or provisionally diagnosed cases were included in the analysis. Results: Records of over 3000 children were reviewed with an approximate male to female ratio of 1:1.53 cases diagnosed during the period of study, most of whom were less than 5 years of age. 25 cases had complete clinical records, with acyanotic septal defects being the most diagnosed. 62.5% of the cases were ventricular septal defects, followed by Patent Ductus Arteriosus (23%) and Atrial Septal Defects (4.5%). Tetralogy of Fallot was the most predominant and complex cyanotic CHD with 10%. Conclusion: The indeterminate coronary anatomy of infants makes it difficult to use only echocardiography and other conventional clinical methods in screening for CHDs. There are rising modernizations and new innovative ways that can be employed in Ghana for early detection, hence preventing the delay of a potential surgical repair. It is, therefore, imperative to create the needed awareness about these “SILENT CRISES” and help save the Ghanaian child’s life.

Keywords: congenital heart defect(CHD), ventricular septal defect(VSD), atrial septal defect(ASD), patent ductus arteriosus(PDA)

Procedia PDF Downloads 90
8468 Molecular Detection of Naegleria fowleri and Fecal Indicator Bacteria in Brackish Water of Lake Pontchartrain, Louisiana

Authors: Jia Xue, Frederica G. Lamar, Siyu Lin, Jennifer G. Lamori, Samendra Sherchan

Abstract:

Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and Enterococcus in water collected from Lake Pontchartrain. A total of 158 water samples were analyzed over the 10-month sampling period. Statistically significant positive correlation between water temperature and N. fowleri concentration was observed. N. fowleri target sequence was detected at 35.4% (56/158) of the water samples from ten sites around the Lake ranged from 11.6 GC/100 ml water to 457.8 GC/100 ml water. A single factor (ANOVA) analysis shows the average concentration of N. fowleri in summer (119.8 GC/100 ml) was significantly higher than in winter (58.6 GC/100 ml) (p < 0.01). Statistically significant positive correlations were found between N. fowleri and qPCR E. coli results and N. fowleri and colilert E. coli (culture method), respectively. A weak positive correlation between E. coli and Enterococcus was observed from both qPCR (r = 0.27, p < 0.05) and culture based method (r = 0.52, p < 0.05). Meanwhile, significant positive correlation between qPCR and culture based methods for E. coli (r = 0.30, p < 0.05) and Enterococcus concentration was observed (r = 0.26, p < 0.05), respectively. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column.

Keywords: brackish water, Escherichia coli, Enterococcus, Naegleria fowleri, primary amoebic meningoencephalitis (PAM), qPCR

Procedia PDF Downloads 161
8467 Impact of Disposed Drinking Water Sachets in Damaturu Town, Yobe State, Nigeria

Authors: Meeta Ratawa Tiwary

Abstract:

Damaturu is the capital of Yobe State in northeastern Nigeria where civic amenities and facilities are not adequate even after 24 years of its existence. The volatile security and political situations are most significant causes for the same. The basic facility for the citizens in terms of drinking water and electricity are not available. For the drinking water, they have to rely on personal bore holes or the filtered borehole waters available in packaged sachets in the market. The present study is concerned with the environmental impact of indiscriminate disposal of drinking synthetic polythene water sachets in Damaturu. The sachet water is popularly called as ‘pure water’, but its purity is questionable. Increased production and consumption of sachet water has led to indiscriminate dumping and disposal of empty sachets leading to a serious environmental threat. The evidence of this is seen in the amount of disposed sachets littering the streets and also the drainages blocked by ‘blocks’ of water sachet waste. Sachet water gained much popularity in Nigeria because the product is convenient for use, affordable and economically viable. The present study aims to find out the solution to this environmental problem. The field-based study has found some significant factors that cause environmental and socio-economic effect due to this. Some recommendations have been made based on research findings regarding sustainable waste management, recycling and re-use of the non-biodegradable products in society.

Keywords: civic amenities, non-biodegradable, pure water, sustainable environment, waste disposal

Procedia PDF Downloads 422
8466 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Soil Properties of Rice

Authors: D. A. S. Gamage, B. F. A Basnayake, W. A. J. M. de Costa

Abstract:

Rice is one of the world’s most important cereals. Increasing food production both to meet in-country requirements and to help overcome food crises is one of the major issues facing Sri Lanka today. However, productive land is limited and has mostly been utilized either for food crop production or other uses. Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. A variety of modern agricultural inputs have been introduced, namely ploughs and harvesters, pesticides, fertilizers and lime. Besides, there are several agricultural institutions developing and updating the management of agricultural sector. Modern agricultural inputs cooperate as a catalyst in raising the productivity. However, in the eagerness of gaining profits from the efficient and productive techniques, this modern agricultural input has affected the environment and living things especially those which have been blended from various chemical substance. The increased pressure to maintain a high level of rice output for consumption has resulted in increased use of pesticides and inorganic fertilizer on rice fields in Sri Lanka. The application of inorganic fertilizer has become a burdened to the country in many ways. The excessive reuse of the ground water resources with a considerable application of organic and chemical fertilizers will lead to a deterioration of the quality and quantity of water. Biochar is a form of charcoal produced through the heating of natural organic materials. It has received significant attention recently for its potential as a soil conditioner, a fertilizer and as a means of storing carbon in a sustainable manner. It is the best solution for managing the agricultural wastes while providing a useful product for increasing agricultural productivity and protecting the environment. The objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N, P, K, organic matter in soil and yield of rice production.

Keywords: biochar, paddy husk, soil conditioner, rice straw compost

Procedia PDF Downloads 351
8465 Optimizing Irrigation Scheduling for Sustainable Agriculture: A Case Study of a Farm in Onitsha, Anambra State, Nigeria

Authors: Ejoh Nonso Francis

Abstract:

: Irrigation scheduling is a critical aspect of sustainable agriculture as it ensures optimal use of water resources, reduces water waste, and enhances crop yields. This paper presents a case study of a farm in Onitsha, Anambra State, Nigeria, where irrigation scheduling was optimized using a combination of soil moisture sensors and weather data. The study aimed to evaluate the effectiveness of this approach in improving water use efficiency and crop productivity. The results showed that the optimized irrigation scheduling approach led to a 30% reduction in water use while increasing crop yield by 20%. The study demonstrates the potential of technology-based irrigation scheduling to enhance sustainable agriculture in Nigeria and beyond.

Keywords: irrigation scheduling, sustainable agriculture, soil moisture sensors, weather data, water use efficiency, crop productivity, nigeria, onitsha, anambra state, technology-based irrigation scheduling, water resources, environmental degradation, crop water requirements, overwatering, water waste, farming systems, scalability

Procedia PDF Downloads 78
8464 Numerical Analysis of Water Hammer in a Viscoelastic Pipe System Considering Fluid Structure Interaction

Authors: N. Tavakoli Shirazi

Abstract:

This study investigates the effects of pipe-wall viscoelasticity on water hammer pressures. Tests have been conducted in a reservoir-pipe-valve system configured of a main viscoelastic pipeline and two short steel pipes placed upstream and downstream of the main pipe. Rapid closure of a manually operated valve at the downstream end generates water hammer. Experimental measurements at several positions along the pipeline have been collected from the papers. Computer simulations of the experiment have been performed and the results of runs with various options affecting the water hammer are provided and discussed. It is shown that the incorporation of viscoelastic pipe wall mechanical behavior in the hydraulic transient model contributes to a favorable fitting between numerical results and observed data.

Keywords: pipe system, PVC pipe, viscoelasticity, water hammer

Procedia PDF Downloads 467
8463 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model

Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari

Abstract:

The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.

Keywords: Tigris River, climate change, water resources, SWAT

Procedia PDF Downloads 204
8462 The Gasification of Acetone via Partial Oxidation in Supercritical Water

Authors: Shyh-Ming Chern, Kai-Ting Hsieh

Abstract:

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Keywords: acetone, gasification, SCW, supercritical water

Procedia PDF Downloads 387
8461 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick

Authors: Dalia Bednarska, Marcin Koniorczyk

Abstract:

This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.

Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient

Procedia PDF Downloads 404