Search results for: unmanned space robots
3760 Detectability Analysis of Typical Aerial Targets from Space-Based Platforms
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to achieve effective detection of aerial targets over long distances from space-based platforms, the mechanism of interaction between the radiation characteristics of the aerial targets and the complex scene environment including the sunlight conditions, underlying surfaces and the atmosphere are analyzed. A large simulated database of space-based radiance images is constructed considering several typical aerial targets, target working modes (flight velocity and altitude), illumination and observation angles, background types (cloud, ocean, and urban areas) and sensor spectrums ranging from visible to thermal infrared. The target detectability is characterized by the signal-to-clutter ratio (SCR) extracted from the images. The influence laws of the target detectability are discussed under different detection bands and instantaneous fields of view (IFOV). Furthermore, the optimal center wavelengths and widths of the detection bands are suggested, and the minimum IFOV requirements are proposed. The research can provide theoretical support and scientific guidance for the design of space-based detection systems and on-board information processing algorithms.Keywords: space-based detection, aerial targets, detectability analysis, scene environment
Procedia PDF Downloads 1443759 Comparison of Leeway Space Predictions Using Moyers and Tanaka-Johnston Upper Jaw and Lower Jaw on Batak Tribe Between Male and Female in Elementary School Students in Medan City, Sumatera Utara, Indonesia: A Cross-sectional Study
Authors: Hilda Fitria Lubis, Erna Sulistyawati
Abstract:
Objective: The study aims to compare Leeway space averages between Moyers and Tanaka-Johnston's analysis of elementary school students from the Batak tribe in Medan City. Material and Methods: The study involved 106 students from the Batak tribe elementary school in Medan, comprising 53 male and 53 female students. The samples obtained were then printed on both jaws to obtain a working model, and the mesiodistal width of the four permanent biting teeth of the lower jaw and the amount of space available on the canine-premolar region, as well as the predicted mesiodistal number of the canine-premolar on the Moyers probability table with a 75% degree of confidence and the Tanaka-Johnston formula. Results: Using Moyers analysis, students at Batak Elementary School in Medan City have an average Leeway space value of 2 mm on the upper jaw and 2.78 mm on the lower jaw. The average Leeway spatial value using Tanaka-Johnston analysis in the Batak tribe in elementary school in Medan City is 1.33 mm on the top jaw and 2.39 mm on the bottom jaw. Conclusion: According to Moyers and Tanaka-Johnsnton's analysis of both the upper and lower jaws in elementary school students of the Batak tribe in Medan City, there is a significant difference between Leeway's average space.Keywords: leeways space, batak tribe, genders, diagnosis
Procedia PDF Downloads 313758 Coding and Decoding versus Space Diversity for Rayleigh Fading Radio Frequency Channels
Authors: Ahmed Mahmoud Ahmed Abouelmagd
Abstract:
The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, convolution coding, viterbi decoding, space diversity
Procedia PDF Downloads 4423757 Influence and Depiction of Power in an Urban Space
Authors: Kalpeshkumar Patel, Nikita Manvi
Abstract:
The paper is an attempt to understand the influence and depiction of power in an urban space by throwing light across a few examples across the architectural timeline. Power has been the medium through which ideologies function, as witnessed across the timeline. The center to understand this ideology is to apprehend how power is formed, captured, owned, traded, and distorted. Every urban space has power embedded in it, either for the people who are imposing it or for the public who are receiving it. The most fundamental question in the issue of power is who – who will judge, whose tastes will matter and whose interests are being served. Power is expressed and reinforced by regular means, a boundary and gates, a parade route, a dominant landmark, play of shape or scale in elevation, ceremonial axis, boulevards and avenues, the vista, bilateral symmetry, or regular order. Even if people accept the psychological efficacy of these forms, the way they perceive them may vary depending on the subject. They are cold devices of power used to make some people submit to others. Yet it is also true that these symbolic forms are attractive because they speak to the deep emotions of people. They do indeed give us a sense of security, stability and continuity, awe and pride. The Urban Space for mass assembly is an idea that continues to seduce dictators and democracies. It is a tradition as old as an agora and as manipulative as Baroque Rome.Keywords: urban space, aggrandization, city planning, landscape, supremacy, democratic
Procedia PDF Downloads 1273756 Quantum Localization of Vibrational Mirror in Cavity Optomechanics
Authors: Madiha Tariq, Hena Rabbani
Abstract:
Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field
Procedia PDF Downloads 1503755 On Lie Groupoids, Bundles, and Their Categories
Authors: P. G. Romeo
Abstract:
A Lie group is a highly sophisticated structure which is a smooth manifold whose underlying set of elements is equipped with the structure of a group such that the group multiplication and inverse-assigning functions are smooth. This structure was introduced by the Norwegian mathematician So- phus Lie who founded the theory of continuous groups. The Lie groups are well developed and have wide applications in areas including Mathematical Physics. There are several advances and generalizations for Lie groups and Lie groupoids is one such which is termed as a "many-object generalization" of Lie groups. A groupoid is a category whose morphisms are all invertible, obviously, every group is a groupoid but not conversely. Definition 1. A Lie groupoid G ⇒ M is a groupoid G on a base M together with smooth structures on G and M such that the maps α, β: G → M are surjective submertions, the object inclusion map x '→ 1x, M → G is smooth, and the partial multiplication G ∗ G → G is smooth. A bundle is a triple (E, p, B) where E, B are topological spaces p: E → B is a map. Space B is called the base space and space E is called total space and map p is the projection of the bundle. For each b ∈ B, the space p−1(b) is called the fibre of the bundle over b ∈ B. Intuitively a bundle is regarded as a union of fibres p−1(b) for b ∈ B parametrized by B and ’glued together’ by the topology of the space E. A cross-section of a bundle (E, p, B) is a map s: B → E such that ps = 1B. Example 1. Given any space B, a product bundle over B with fibre F is (B × F, p, B) where p is the projection on the first factor. Definition 2. A principal bundle P (M, G, π) consists of a manifold P, a Lie group G, and a free right action of G on P denoted (u, g) '→ ug, such that the orbits of the action coincide with the fibres of the surjective submersion π : P → M, and such that M is covered by the domains of local sections σ: U → P, U ⊆ M, of π. Definition 3. A Lie group bundle, or LGB, is a smooth fibre bundle (K, q, M ) in which each fibre (Km = q−1(m), and the fibre type G, has a Lie group structure, and for which there is an atlas {ψi: Ui × G → KUi } such that each {ψi,m : G → Km}, is an isomorphism of Lie groups. A morphism of LGB from (K, q, M ) to (K′, q′, M′) is a morphism (F, f ) of fibre bundles such that each Fm: Km → K′ is a morphism of Lie groups. In this paper, we will be discussing the Lie groupoid bundles. Here it is seen that to a Lie groupoid Ω on base B there is associated a collection of principal bundles Ωx(B, Ωx), all of which are mutually isomorphic and conversely, associated to any principal bundle P (B, G, p) there is a groupoid called the Ehresmann groupoid which is easily seen to be Lie. Further, some interesting properties of the category of Lie groupoids and bundles will be explored.Keywords: groupoid, lie group, lie groupoid, bundle
Procedia PDF Downloads 773754 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects
Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha
Abstract:
The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).Keywords: artificial intelligence, space traffic management, space situational awareness, space debris
Procedia PDF Downloads 2583753 ΕSW01: A Methodology for Approaching the Design of Interior Spaces
Authors: Eirini Krasaki
Abstract:
This paper addresses the problem of designing spaces in a consistently changing environment. Space is considered as a totality of forces that coexist in the same place. Forces form the identity of space and characterize the entities that coexist within the same totality. Interior space is considered as a totality of forces which develop within an envelope. This research focuses on the formation of the tripole space-forces-totality and studies the relation of this tripole to the interior space. The point of departure for this investigation has been set the historic center of Athens, a city center where the majority of building mass is unused. The objective of the study is to connect the development of interior spaces to the alterations of the conceptions that form the built environment. The research focuses on Evripidou street, an axis around which expand both commercial and residential centers. Along Evripidou street, three case studies elaborate: a) In case study 01, Evripidou street is examined as a megastructure in which totalities of interior spaces develop. b) In case study 02, a particular group of entities (polykatoikia) that expand in Evripidou street is investigated. c) In case study 03, a particular group of entities (apartment) that derives from a specific envelope is investigated. Throughout the studies and comparisons of different scales, a design methodology that addresses the design of interior space in relation to the dynamics of the built environment is evolved.Keywords: methodology, research by design, interior, envelope, dynamics
Procedia PDF Downloads 1753752 Effects of Colour Choices On the Moods of People in Residential Interiors
Authors: Nishtha Kumar
Abstract:
In order to understand how people like their interiors and how they feel inside a space, it is important to know the effect that the Colour of the space has on these individuals. Understanding this effect with the help of variables like colour choices of walls, furnishings, lighting, and the lifestyle of people will give a more clear understanding of the individual’s preferences and choices and how they feel about various colours and spaces. This paper focuses on understanding the various moods of people and the psychological effect that the colour of space has on the person living in it. An extensive literature review was conducted to analyse the effect of these variables of colour on the moods of people living in residential interiors. Alongside, a questionnaire survey was conducted to note the responses of people living in residential buildings who have got their interiors done regarding how different colours in their houses makes them feel and if it affects their mood. The results of this survey have helped in providing a better understanding of the relationship between various colours and how different people associate different moods with the same colour. Thus, such results allow us to have a deeper understanding of the effect of colour in residential interiors on individuals and how the colour of a space can affect the state of mind and mood of an individual. This result helps interior designers to incorporate colours into space according to the moods of the individual and understand how every colour depicts a different emotion in different human beings.Keywords: colour, residental interiors, psychological effect, people, different moods
Procedia PDF Downloads 1103751 Thinking about Drawing: The Evolution of Architectural Education in China After 1949
Authors: Wang Yanze
Abstract:
Architectural design results from the interaction between space and drawing. Stemming from the Beaux-Arts architectural education, drawing kept its dominant position in teaching and learning process for centuries. However, this education system is being challenged in the present time due to the development of the times. Based on the architectural education of China after 1949, a brief introduction to the history of the evolution of the design concept and drawing is given in this paper. Illustrating with the reference to the students’ works in Nanjing Institute of Technology, the predecessor of Southeast University, in China, the paper analyses the relationship between concept and representation, as well as the participation of Space, the modernism discourse. This process contains the transmission of the character of architects, the renovation of drawing skills and the profound social background. With different purposes, the emphasis on representation tends to be combined with the operation on space, and the role of drawing in architectural design process also changes. Therefore, based on the continuity of the traditional architectural education system, the discussion on the “Drawing of Space” in contemporary education system is proposed.Keywords: architectural education, beaux-arts, drawing, modernism
Procedia PDF Downloads 4863750 Approximation to the Hardy Operator on Topological Measure Spaces
Authors: Kairat T. Mynbaev, Elena N. Lomakina
Abstract:
We consider a Hardy-type operator generated by a family of open subsets of a Hausdorff topological space. The family is indexed with non-negative real numbers and is totally ordered. For this operator, we obtain two-sided bounds of its norm, a compactness criterion, and bounds for its approximation numbers. Previously, bounds for its approximation numbers have been established only in the one-dimensional case, while we do not impose any restrictions on the dimension of the Hausdorff space. The bounds for the norm and conditions for compactness earlier have been found using different methods by G. Sinnamon and K. Mynbaev. Our approach is different in that we use domain partitions for all problems under consideration.Keywords: approximation numbers, boundedness and compactness, multidimensional Hardy operator, Hausdorff topological space
Procedia PDF Downloads 1043749 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping
Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope
Abstract:
The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing
Procedia PDF Downloads 813748 Design Intervention to Achieve Space Efficiency for Commercial Interiors
Authors: Hari Krishna Ayyappa, Reenu Singh
Abstract:
Rising population and restricted land for development has led towards the growth of vertical buildings and small complexes. It provides many possibilities to change the shape and size of internal space in addition to the social impacts on the commercial spaces. With the increased volatility of necessities of people, the need for mental and physical comfort has continuously increased. . Living in a small space musts minimalist and space- saving cabinetwork results to sustain mortal good. This paper attempts to explore the Influence of Using Minimalist Furniture on the Efficiency of the commercial Space interiors by means of the variable resulting from preceding studies based on literature. A literature review was conducted on research articles to understand the contributing variables in a well designed small commercial spaces. A questionnaire survey was conducted to understand the layout of small commercial spaces with respect to Environmental impact, material, Design elements, Modern approach, Layered lightings, and colours. The problem of small spaces can be resolved by some ways; it's still needed for cabinetwork to develop to be more innovative to accommodate small living spaces. Since cabinetwork is a necessity and not luxury, everybody is in need of it. The spatial factors affecting overall satisfaction at a detailed position were bandied. The variable helped in proposing design ideation and mock ups to explore improved interiors. This paper concludes that most of the principles of the minimalist approach have been overlooked at, which had an impact on the space efficiency in commercial spaces like storage rooms, office area, retail stores, restaurants, and other spaces where business is conducted.Keywords: materials, modern approach, space efficiency, tall commercial buildings
Procedia PDF Downloads 1103747 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data
Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao
Abstract:
Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing
Procedia PDF Downloads 4403746 Microgreenspace Regeneration in an Inclusive Perspective
Authors: Li Shiyue
Abstract:
In an urban built environment, urban green space is scarce, especially around old residential areas. Due to the innate design deficiency and the non-core location of these areas, they lack green space, and the recreational opportunities of the surrounding residents are not guaranteed. Micro greenspace becomes a "patch" to compensate for the urban function. To realize the renewal and transformation of micro greenspace, and make it meet the use needs of most groups, this paper introduces the concept of inclusive design. Based on relevant research at home and abroad, this paper discusses the connotation and current situation of micro greenspace. Combining with the realistic conditions of China, this paper thinks about the planning path of inclusive renewal from the aspects of selecting micro greenspace transformation potential points and exploring the key points of site renewal. Among them, the key points of site renewal are explored from five angles: land guarantee, systematic coordination, refined design, and shared space creation, to provide useful references for related research and practice.Keywords: inclusive design, micro greenspace, old city area, space renewal
Procedia PDF Downloads 653745 A New Approach to Interval Matrices and Applications
Authors: Obaid Algahtani
Abstract:
An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.Keywords: interval analysis, interval matrices, state space model, Kalman Filter
Procedia PDF Downloads 4253744 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have become popular and considerable interest by researcher are given on them. A fast Space-Vector Pulse Width Modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analysed.Keywords: five-level inverter, space vector pulse wide modulation, diode clamped inverter, electrical engineering
Procedia PDF Downloads 3883743 The Exploration on the Mode of Renovation and Reconstruction of Old Factory Buildings for Cultural and Creative Industrial Parks
Authors: Yu Pan, Jing Wu, Lingwan Shen
Abstract:
Since the reform and opening, China's cities have developed rapidly, and the industrial structure has been constantly adjusted and optimized. A large number of industrial plants have lost their production functions and become idle buildings. The renovation projects for the old factory buildings are important parts of the urban renewal, and most of them are the cultural and creative industrial park projects. In this paper, a statistical analysis of renovation projects of the representative cultural and creative industrial parks in recent years was conducted. According to the user's spatial experience satisfaction survey, the physical and spatial factors affecting the space regeneration of the old factory were concluded. Thus the relationship between space regeneration and material, structure, internal and external space design has been derived. Finally, we summarized the general spatial processing model in which the contradiction between ‘new’ and ‘old’ can be grafted and transformed.Keywords: renovation of factory buildings, urban renewal, the cultural and creative industrial park, space regeneration, reconstruction mode
Procedia PDF Downloads 1473742 Generator Subgraphs of the Wheel
Authors: Neil M. Mame
Abstract:
We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel.Keywords: edge space, edge-induced subgraph, generator subgraph, wheel
Procedia PDF Downloads 4643741 Autonomic Sonar Sensor Fault Manager for Mobile Robots
Authors: Martin Doran, Roy Sterritt, George Wilkie
Abstract:
NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.Keywords: autonomic, self-adaption, self-healing, self-optimization
Procedia PDF Downloads 3503740 A Comparative Analysis about the Effects of a Courtyard in Indoor Thermal Environment of a Room with and without Transitional Space Adjacent to Courtyard of a House in Old Dhaka, Bangladesh
Authors: Fatema Tasmia, Brishti Majumder, Atiqur Rahman
Abstract:
Attaining appropriate comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it is resided at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. Courtyards are the part of buildings which are used as space for outdoor household activities, social gathering and it is also proved to have indoor thermal comfort as an effect of courtyard. This paper aims to investigate the effect of courtyard in indoor thermal environment of a room adjacent to the courtyard and a room next to transitional space after a courtyard through field measurements of a case study house. The field measurement was conducted in a two-storey house. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature in both situations. Ventilation or air movement was considered to have no impact because of the rooms’ layout and location. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of courtyards and in its relation to indoor space while achieving thermal comfort.Keywords: courtyard, old Dhaka, temperature, thermal comfort, transitional space
Procedia PDF Downloads 2243739 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System
Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal
Abstract:
The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.Keywords: microgravity effect, response surface, terminal speed, unmanned system
Procedia PDF Downloads 1733738 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms
Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson
Abstract:
This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection
Procedia PDF Downloads 4643737 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts
Abstract:
There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.Keywords: robotics, computational thinking, programming, young children, flow chart
Procedia PDF Downloads 1463736 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 643735 Colors and Interiority - A Study on the Relationship of Colors and Interior Spaces
Authors: Mahwish Ghulam Rasool
Abstract:
The design of a space is a complex process that involves multiple stages, from conceptualization, identifying design problems to understanding the context, materiality, and functionality of the space. Out of all the design elements, color is one of the most dominant and expressive factors that affect the spatial dynamics of the interior space. Color affects aesthetic comfort in space and has a lasting impact on human perception and psychology. Using color as a tool for creating spatial experiences is a new paradigm. Color semantics in spaces are not only used for surface treatment or aesthetics, but it also has more powerful functional characteristics. As interior spaces are evolving and becoming experiential with each decade, designers are looking for new processes to enhance the spatial and experiential quality of interior spaces. The relationship between color and interior typologies is a relatively new paradigm. This paper discusses the role of colors in interior spaces from various perspectives, exploring their impact on the formation of interior typologies and the use of colors in space design. The paper analyzes interior typologies worldwide, from residential to commercial interior spaces, where color semantics plays a prominent role in the design. The paper also emphasizes the design process and the creation of design language, unveiling the possibilities of applying colors in interior spaces that can be in harmony with the building context, space functionality, or in opposition to the existing building envelope or environment. The paper aims to contribute to the field of interior design education and practices. By using experimental and various research methodologies for investigation, it aims to fill the gap in the literature regarding color semantics and the relationship between interior typologies.Keywords: color psychology, color semantics, interior environments, interior typologies
Procedia PDF Downloads 873734 Understanding Walkability in the Libyan Urban Space: Policies, Perceptions and Smart Design for Sustainable Tripoli
Authors: A. Abdulla Khairi Mohamed, Mohamed Gamal Abdelmonem, Gehan Selim
Abstract:
Walkability in civic and public spaces in Libyan cities is challenging due to the lack of accessibility design, informal merging into car traffic, and the general absence of adequate urban and space planning. The lack of accessible and pedestrian-friendly public spaces in Libyan cities has emerged as a major concern for the government if it is to develop smart and sustainable spaces for the 21st century. A walkable urban space has become a driver for urban development and redistribution of land use to ensure pedestrian and walkable routes between sites of living and workplaces. The characteristics of urban open space in the city centre play a main role in attracting people to walk when attending their daily needs, recreation and daily sports. There is significant gap in the understanding of perceptions, feasibility and capabilities of Libyan urban space to accommodate enhance or support the smart design of a walkable pedestrian-friendly environment that is safe and accessible to everyone. The paper aims to undertake observations of walkability and walkable space in the city of Tripoli as a benchmark for Libyan cities; assess the validity and consistency of the seven principal aspects of smart design, safety, accessibility and 51 factors that affect the walkability in open urban space in Tripoli, through the analysis of 10 local urban spaces experts (town planner, architect, transport engineer and urban designer); and explore user groups’ perceptions of accessibility in walkable spaces in Libyan cities through questionnaires. The study sampled 200 respondents in 2015-16. The results of this study are useful for urban planning, to classify the walkable urban space elements which affect to improve the level of walkability in the Libyan cities and create sustainable and liveable urban spaces.Keywords: walkability, sustainability, liveability, accessibility
Procedia PDF Downloads 4413733 Modes of Seeing in Interactive Exhibitions: A Study on How Technology Can Affect the Viewer and Transform the Exhibition Spaces
Authors: Renata P. Lopes
Abstract:
The current art exhibit scenario presents a multitude of visualization features deployed in experiences that instigate a process of art production and design. The exhibition design through multimedia devices - from the audiovisual to the touch screen - has become a medium from which art can be understood and contemplated. Artistic practices articulated, during the modern period, the spectator's perception in the exhibition space, often challenging the architecture of museums and galleries. In turn, the museum institution seeks to respond to the challenge of welcoming the viewer whose experience is mediated by technological artifacts. When the beholder, together with the technology, interacts with the exhibition space, important displacements happen. In this work, we will analyze the migrations of the exhibition space to the digital environment through mobile devices triggered by the viewer. Based not on technological determinism, but on the conditions of the appearance of this spectator, this work is developed, with the aim of apprehending the way in which technology demarcates the differences between what the spectator was and what becomes in the contemporary atmosphere of the museums and galleries. These notions, we believe, will contribute to the formation of an exhibition design space in conformity with this participant.Keywords: exhibition, museum, exhibition design, digital media
Procedia PDF Downloads 1363732 Incorporating Chinese Calligraphic Concept in 3D Space
Authors: Woon Lam Ng.
Abstract:
This paper explores the basic structures of Chinese calligraphy brushwork, its textures, its characteristic forms, and how its strength can be incorporated into 3d animation. It investigates how these structures could create visual simplification and suggest movement. The conceptual difference between realistic rendering and the Chinese calligraphic concept of simplification is discussed. With the help of the Python programmable environment in Maya, the concept of Chinese calligraphy in 3d space and its idea of visual simplification and abstraction were explored. The work demonstrates how the Chinese calligraphic brushwork could suggest the dynamics of motion in 3d space. Some limitations of the Maya emitting process are also discussed. Possible further explorations through additional mathematical adjustments to the selected Maya shader are also suggested to enhance the presentation.Keywords: calligraphy, brushwork, dynamics, movements
Procedia PDF Downloads 2593731 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array
Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk
Abstract:
In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.Keywords: antenna pattern, array, signal processing, spatial resolution
Procedia PDF Downloads 180