Search results for: petroleum operation
2829 Proprietary Blend Synthetic Rubber as Loss Circulation Material in Drilling Operation
Authors: Zatil Afifah Omar, Siti Nur Izati Azmi, Kathi Swaran, Navin Kumar
Abstract:
Lost circulation has always been one of the greatest problems faced by drilling companies during drilling operations due to excessive drilling Fluids losses. Loss of circulation leads to Huge cost and non-productive time. The objective of this study is to evaluate the sealing efficiency of a proprietary blend of synthetic rubber as loss circulation material in comparison with a conventional product such as calcium carbonate, graphite, cellulosic, and nutshells. Sand Bed Tester with a different proprietary blend of synthetic rubber compositions has been used to determine the effectiveness of the LCM in preventing drilling fluids losses in a lab scale. Test results show the proprietary blend of synthetic rubber have good bridging properties and sealing Off fractures of various sizes. The finish product is environmentally friendly with lower production lead time and lower production cost compared to current conventional loss circulation materials used in current drilling operations.Keywords: loss circulation materials, drilling operation, sealing efficiency, LCM
Procedia PDF Downloads 1822828 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System
Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji
Abstract:
Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources
Procedia PDF Downloads 1402827 3D Modelling of Fluid Flow in Tunnel Kilns
Authors: Jaber H. Almutairi, Hosny Z. Abou-Ziyan, Issa F. Almesri, Mosab A. Alrahmani
Abstract:
The present work investigates the behavior of fluid flow inside tunnel kilns using 3D-CFD (Computational Fluid Dynamics) simulations. The CFD simulations are carried out with the FLUENT software and validated against experimental results on fluid flow and heat transfer in tunnel kilns. A grid dependency study is conducted in the current work to improve the accuracy of the results. Three turbulence models k–ω, standard k–ε, and RNG k–ε are tested where k–ω model gives the best results in comparison with the experiment. The numerical results reveal an intriguing phenomenon where a long flow separation zone behind the setting is observed under different geometric and operation conditions. It was found that the uniformity of flow distribution can be substantially improved by rearranging the geometrical parameters of brick setting relative to kiln/setting. This improvement of flow distribution plays a critical role to enhance the quality and quantity of the production. It can be concluded that a better design and operation of tunnel kilns in terms of productivity and energy consumption can be obtained by taking into consideration the flow uniformity inside the tunnel kilns using CFD modelling.Keywords: tunnel kilns, flow separation, flow uniformity, computational fluid dynamics
Procedia PDF Downloads 3292826 Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems
Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy
Abstract:
Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched
Procedia PDF Downloads 1292825 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling
Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo
Abstract:
Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery
Procedia PDF Downloads 782824 A Rare Case of Endometriosis Lesion in Caecum Causing Acute Small Bowel Obstruction
Authors: Freda Halim
Abstract:
Endometriosis in bowel is rare condition, about 3-37% of endometriosis cases. Most of bowel endometriosis rising in the rectosigmoid (90% of bowel endometriosis). The incidence of caecal endometriosis is very low ( < 5% of bowel endometriosis) and almost never causing acute small bowel obstruction. The aim of this paper is to show that although bowel obstruction caused by caecal endometriosis is difficult to diagnose as it is rare, and may require laparotomy to make definite diagnosis, but it should be considered in infertile female patient. The case is 37 years old woman infertile woman with intestinal obstruction with pre-operative diagnosis total acute small bowel obstruction caused by right colonic mass, with sepsis as the complication. Before the acute small bowel obstruction, she complained of chronic right lower quadrant pain with chronic constipation alternate with chronic diarrhea, symptoms that happened both in bowel endometriosis and colorectal malignancy. She also complained of chronic pelvic pain and dysmenorrhea. She was married for 10 years with no child. The patient was never diagnosed with endometriosis and never seek medical attention for infertility and the chronic pelvic pain. The patient underwent Abdominal CT Scan, with results: massive small bowel obstruction, and caecal mass that causing acute small bowel obstruction. Diagnosis of acute small bowel obstruction due to right colonic mass was made, and exploratory laparotomy was performed in the patient. During the laparotomy, mass at caecum and ileocaecal that causing massive small bowel obstruction was found and standard right hemicolectomy and temporary ileostomy were performed. The pathology examination showed ectopic endometriosis lesions in caecum and ileocaecal valve. The histopathology also confirmed with the immunohistochemistry, in which positive ER, PR, CD 10 and CD7 was found the ileocaecal and caecal mass. In the second operation, reanastomosis of the ileum was done 3 months after the first operation. The chronic pelvic pain is decreasing dramatically after the first and second operation. In conclusion, although bowel obstruction caused by caecal endometriosis is a rare cause of intestinal obstruction, but it can be considered as a cause in infertile female patientKeywords: acute, bowel obstruction, caecum, endometriosis
Procedia PDF Downloads 1502823 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 2832822 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen
Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying
Abstract:
One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.Keywords: reactor, modeling, methanol, steam reforming
Procedia PDF Downloads 2982821 The Impact of Internal Dynamics of Standing Committees on Legislative Productivity in the Korean National Assembly
Authors: Lee Da Hyun
Abstract:
The purpose of this study is to explore the relation between the internal dynamics of standing committees and legislative productivity of the Korean National Assembly using statistical methods. Studies on legislation in South Korea have been largely revolved around political parties due to the uniqueness of its political context including strong party cohesion and party’s nomination right. However, as standing committees have been at the center of legislatures since the 6th National Assembly, there is a growing need for studying the operation and effectiveness of standing committees in legislation process. Thus, through panel data analysis for the sixteen standing committees across the four terms of the Korean National Assembly-from the 16th to the 19th-this article attempts to reveal that legislators’ bill passing rate is not a sole function of factors pertaining to political party as the existing studies have believed. By measuring the ideological distribution within a committee and the bill passing rate, this article provides differentiated interpretation from established theories of standing committees and presents compelling evidence describing complex interactions and independent operation of the standing committees with the subsequent legislative results.Keywords: collective decision-making, lawmaking, legislation, political polarization, standing committees
Procedia PDF Downloads 1442820 Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter
Authors: S. Masoud Barakati, Mohsen Rahmani Haredasht
Abstract:
Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency.Keywords: T-type nested neutral point clamped converter, reliability, continuous operation, open-circuit faults, fault-tolerant converters
Procedia PDF Downloads 1202819 Comparative Analysis between Corn and Ramon (Brosimum alicastrum) Starches to Be Used as Sustainable Bio-Based Plastics
Authors: C. R. Ríos-Soberanis, V. M. Moo-Huchin, R. J. Estrada-Leon, E. Perez-Pacheco
Abstract:
Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. Finding new uses for agricultural commodities is also an important area of research. Therefore, it is crucial to get new sources of natural materials that can be used in different applications. Ramon tree (Brosimum alicastrum) is a tropical plant that grows freely in Yucatan countryside. This paper focuses on the seeds recollection, processing and starch extraction and characterization in order to find out about its suitability as biomaterial. Results demonstrated that it has a high content of qualities to be used not only as comestible but also as an important component in polymeric blends.Keywords: biomaterials, characterization techniques, natural resource, starch
Procedia PDF Downloads 3252818 Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur
Authors: Krishnendu Mukhopadhyay, Subhashis Kundu, Mayank Tiwari, Sameeran Pani, Padmapal, Uttam Singh
Abstract:
Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years.Keywords: hanging, channelling, blast furnace, coke
Procedia PDF Downloads 1952817 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification
Authors: Kunio Yoshikawa, Ding Lu
Abstract:
Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).Keywords: biomass carbonization, densification, distributed power generation, gasification
Procedia PDF Downloads 1552816 Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer
Authors: Emad A. Jaffar Al-Mulla
Abstract:
In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants.Keywords: polycaprolactone, starch, biodegradable, nanocomposite
Procedia PDF Downloads 3572815 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1
Authors: Mohamed Mehdi Kadri
Abstract:
The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin
Procedia PDF Downloads 992814 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture
Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain
Abstract:
Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.Keywords: oil spill, graphene, oil-water separation, nanocomposite
Procedia PDF Downloads 1732813 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks
Authors: Juan José Mesas, Luis Sainz
Abstract:
The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis
Procedia PDF Downloads 782812 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application
Authors: Miroslav Čulík, Petr Gurný
Abstract:
This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility
Procedia PDF Downloads 5482811 Intensification of Heat Transfer in Magnetically Assisted Reactor
Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy
Abstract:
The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile
Procedia PDF Downloads 1962810 Yield Enhancement and Reduced Nutrient Removal by Weeds in Winter Irrigated Cotton Using Potassium Salt Based Glyphosate
Authors: N. Viji, K. Siddeswaran
Abstract:
Field experiment was conducted at Eastern Block farm, Department of Farm Management, Tamil Nadu Agricultural University, Coimbatore during winter season of 2011-2012 to evaluate potassium salt based glyphosate (Roundup Crop Shield 460 SL) with and without intercultural operations on seed cotton yield and weed nutrient removal in irrigated cotton. The experiment was laid out in Randomized Block Design with treatments replicated thrice. The treatments consisted of POE glyphosate (Roundup Crop Shield 460 SL) at 1350 (T1), 1800 (T2), 2250 (T3) g a.e. ha-1, 1800 g a.e. ha-1 + IC (T4), PE pendimethalin at 750 g a.i. ha-1 + IC (T5), HW at 35 and 70 DAS + IC (T6), HWW at 35 and 70 DAS + IC (T7), PWW at 35 and 70 DAS + IC (T8), HW at 25 and 45 DAS (T9) and Unweeded control (T10). Among the weed management methods, decreased nutrient removal by weeds were observed with POE glyphosate at 1800 g a.e. ha-1 + IC which was comparable with PE pendimethalin at 750 g a.i. ha-1 + IC. Higher seed cotton yield was obtained with POE glyphosate at 1800 g a.e. ha-1 at 35 and 70 DAS with + IC at 45 and 55 DAS which was comparable with PE pendimethalin at 750 g a.i. ha-1 + IC at 45 and 55 DAS. Comparing treatments without intercultural operation, intercultural operation carried out treatments performed better and recorded more seed cotton yield.Keywords: cotton, weed, glyphosate, nutrient
Procedia PDF Downloads 6352809 Basavaraj Kabade, K. T. Nagaraja, Swathi Ramanathan, A. Veeraragavan, P. S. Reashma
Authors: Dechrit Maneetham
Abstract:
Pick and place task is one among the most important tasks in industrial field handled by 'Selective Compliance Assembly Robot Arm' (SCARA). Repeatability with high-speed movement in a horizontal plane is a remarkable feature of this type of manipulator. The challenge of design SCARA is the difficulty of achieving stability of high-speed movement with the long length of links. Shorter links arm can move more stable. This condition made the links should be considered restrict then followed by restriction of operation area (workspace). In this research, authors demonstrated on expanding SCARA robot’s workspace in horizontal area via linear sliding actuator that embedded to base link of the robot arm. With one additional prismatic joint, the previous robot manipulator with 3 degree of freedom (3-DOF), 2 revolute joints and 1 prismatic joint becomes 4-DOF PRRP manipulator. This designation increased workspace of robot from 0.5698m² performed by the previous arm (without linear actuator) to 1.1281m² by the proposed arm (with linear actuator). The increasing rate was about 97.97% of workspace with the same links' lengths. The result of experimentation also indicated that the operation time spent to reach object position was also reduced.Keywords: kinematics, linear sliding actuator, manipulator, control system
Procedia PDF Downloads 2622808 EZOB Technology, Biomass Gasification, and Microcogeneration Unit
Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála
Abstract:
This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot air turbo set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.Keywords: biomass, combustion, gasification, microcogeneration
Procedia PDF Downloads 3302807 Biomass Gasification and Microcogeneration Unit–EZOB Technology
Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála
Abstract:
This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.Keywords: biomass, combustion, gasification, microcogeneration
Procedia PDF Downloads 4892806 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces
Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz
Abstract:
The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.Keywords: carbon nanotubes, static friction, dynamic friction
Procedia PDF Downloads 3142805 Optimization of Maritime Platform Transport Problem of Solid, Special and Dangerous Waste
Authors: Ocotlán Díaz-Parra, Jorge A. Ruiz-Vanoye, Alejandro Fuentes-Penna, Beatriz Bernabe-Loranca, Patricia Ambrocio-Cruz, José J. Hernández-Flores
Abstract:
The Maritime Platform Transport Problem of Solid, Special and Dangerous Waste consist of to minimize the monetary value of carry different types of waste from one location to another location using ships. We offer a novel mathematical, the characterization of the problem and the use CPLEX to find the optimal values to solve the Solid, Special and Hazardous Waste Transportation Problem of offshore platforms instances of Mexican state-owned petroleum company (PEMEX). The set of instances used are WTPLib real instances and the tool CPLEX solver to solve the MPTPSSDW problem.Keywords: oil platform, transport problem, waste, solid waste
Procedia PDF Downloads 4712804 The Environmental Impact Assessment of Land Use Planning (Case Study: Tannery Industry in Al-Garma District)
Authors: Husam Abdulmuttaleb Hashim
Abstract:
The environmental pollution problems represent a great challenge to the world, threatening to destroy all the evolution that mankind has reached, the organizations and associations that cares about environment are trying to warn the world from the forthcoming danger resulted from excessive use of nature resources and consuming it without looking to the damage happened as a result of unfair use of it. Most of the urban centers suffers from the environmental pollution problems and health, economic, and social dangers resulted from this pollution, and while the land use planning is responsible for distributing different uses in urban centers and controlling the interactions between these uses to reach a homogeneous and perfect state for the different activities in cities, the occurrence of environmental problems in the shade of existing land use planning operation refers to the disorder or insufficiency in this operation which leads to presence of such problems, and this disorder lays in lack of sufficient importance to the environmental considerations during the land use planning operations and setting up the master plan, so the research start to study this problem and finding solutions for it, the research assumes that using accurate and scientific methods in early stages of land use planning operation will prevent occurring of environmental pollution problems in the future, the research aims to study and show the importance of the environmental impact assessment method (EIA) as an important planning tool to investigate and predict the pollution ranges of the land use that has a polluting pattern in land use planning operation. This research encompasses the concept of environmental assessment and its kinds and clarifies environmental impact assessment and its contents, the research also dealt with urban planning concept and land use planning, it also dealt with the current situation of the case study (Al-Garma district) and the land use planning in it and explain the most polluting use on the environment which is the industrial land use represented in the tannery industries and then there was a stating of current situation of this land use and explaining its contents and environmental impacts resulted from it, and then we analyzed the tests applied by the researcher for water and soil, and perform environmental evaluation through applying environmental impact assessment matrix using the direct method to reveal the pollution ranges on the ambient environment of industrial land use, and we also applied the environmental and site limits and standards by using (GIS) and (AUTOCAD) to select the site of the best alternative of the industrial region in Al-Garma district after the research approved the unsuitability of its current site location for the environmental and site limitations, the research conducted some conclusions and recommendations regard clarifying the concluded facts and to set the proper solutions.Keywords: EIA, pollution, tannery industry, land use planning
Procedia PDF Downloads 4492803 High-Frequency Full-Bridge Isolated DC-DC Converter for Fuel Cell Power Generation Systems
Authors: Nabil A. Ahmed
Abstract:
DC-DC converters are necessary to interface low-voltage fuel cell power generation systems to a higher voltage DC bus system. A system and method for generating a regulated output power from fuel cell power generation systems is proposed in this paper, this includes a soft-switching isolated DC-DC converter to reduce the idling and circulating currents. The system incorporates a high-frequency center tap transformer link DC-DC converter using secondary-side soft switching control. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS) in the primary side of the high-frequency transformer. Therefore, no extra resonant components are required for ZVS. The inherent soft-switching capability allows high power density, efficient power conversion, and compact packaging. A prototype rated at 6.5 kW is proposed and simulated. Simulation results confirmed a wide range of soft-switching operation and consequently high conversion efficiency will be achieved.Keywords: secondary-side, phase-shift, high-frequency transformer, zero voltage, zero current, soft switching operation, switching losses
Procedia PDF Downloads 3102802 Comparative Public Administration: A Case Study of ASEAN Member States
Authors: Nattapol Pourprasert
Abstract:
This research is to study qualitative research having two objectives: 1. to study comparison of private sector of government to compare with ASEAN Member States, 2. to study trend of private enterprise administration of ASEAN Member States. The results are: (1) Thai people focus on personal resource administrative system, (2) Indonesia focuses on official system by good administrative principles, (3) Malaysia focuses on technology development to service people, (4) Philippines focuses on operation system development, (5) Singapore focuses on public service development, (6) Brunei Darussalam focuses on equality in government service of people, (7) Vietnam focuses on creating government labor base and develop testing and administration of operation test, (8) Myanmar focuses on human resources development, (9) Laos focuses on form of local administration, (10) Cambodia focuses on policy revolution in personal resources. The result of the second part of the study are: (1) Thailand created government personnel to be power under qualitative official structural event, (2) Indonesia has Bureaucracy Reform Roadmap of Bureaucracy Reform and National Development Plan Medium Term, (3) Malaysia has database for people service, (4) Philippines follows up control of units operation by government policy, (5) Singapore created reliability, participation of people to set government policy people’s demand, (6) Brunei Darussalam has social welfare to people, (7) Vietnam revolved testing system and administration including manpower base construction of government effectively, (8) Myanmar creates high rank administrators to develop country, (9) Laos distributes power to locality, and (10) Cambodia revolved personnel resource policy.Keywords: public administration development, ASEAN member states, private sector, government
Procedia PDF Downloads 2522801 Displacement Situation in Federally Administered Tribal Areas of Pakistan: Issues and Challenges
Authors: Sohail Ahmad, Inayat Kaleem
Abstract:
Federally Administered Tribal Area(FATA) of Pakistan is one of the most neglected regions in the world as far as development is concerned. It has been the hub of all sorts of illegal activities including militancy and export of terrorism. Therefore, it became inevitable for the government of Pakistan to take action against militants through military operations. Small and large scale military operations are being taken against the non-state actors in FATA with continuity. Over the years, hundreds of thousands have been displaced from the tribal areas of the country. Moreover, military operation Zarb-e-Azb has been launched in North Waziristan Agency in June 2014 to counter militancy across the Af-Pak border region. Though successful in curbing militancy, the operation has displaced around 0.5 million people from the area. Most of them opt to take shelter in the government installed shelter camps, some of them take refuge outside tent villages in the country while some of them prefer to cross into Afghanistan rather their own country Pakistan. This paper will evaluate how the influx of these internally displaced persons in the country is influencing the socio-economic situation of not only the displaced but of the hosting areas as well. Secondly, attention would be given to gauge the impact of such a huge number of displaced population on the law and order and security situation in the host areas.Keywords: Af-Pak, federally administered tribal area, IDPs, internal displacement, Pakistan
Procedia PDF Downloads 3142800 Optimization of Turbocharged Diesel Engines
Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz
Abstract:
The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC(Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP(Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital®madules in concepts NREC® respectively.Keywords: turbocharger, wastegate, diesel engine, concept NREC programs
Procedia PDF Downloads 243