Search results for: nano water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9294

Search results for: nano water

8844 Water Education in the Middle East: Case Study of Iran and Turkey

Authors: Seyedeh Zahra Seyed Sharifi, M. R. M. Tabatabaei

Abstract:

Due to increase of population and healthy food demand, management and conservation of water resources have become one of the main concerns of governments, scientists and economists. In recent years, Iran has exposed to water scarcity as a result of which its rivers, lakes and wetlands have dried up or are in the drying process. Therefore, water crisis has become the most important environmental issue in the country. Under these circumstances, increasing public awareness by promoting their culture as well as public collaboration to protect water resources could only be possible by making courses to reflect water importance. This could be approached by school and high-school students to learn optimum use of water resources. This study initially focuses on the current position of water courses in levels of school and high-school educations in Iran and Turkey and then deals with the challenges to be faced for the promotion of the system. The course titles and number of pages related to water in all primary and secondary textbooks of the education system of Iran and Turkey were determined using content analysis method and the results were presented. The results indicate that primary and secondary textbooks in both countries must focus on water shortage and water protection and teach children the optimum use of water in order to promote water protection.

Keywords: educational system, environmental awareness, Iran, Turkey, water crisis

Procedia PDF Downloads 277
8843 Detection of Brackish Water Biological Fingerprints in Potable Water

Authors: Abdullah Mohammad, Abdullah Alshemali, Esmaeil Alsaleh

Abstract:

The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines.

Keywords: potable water, brackish water, pseudomonas aeroginosa, multidrug resistance

Procedia PDF Downloads 90
8842 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 63
8841 Comparison of the Effect of Nano Calcium Carbonate and CaCO₃ on Egg Production, Egg Traits and Calcium Retention in Laying Japanese Quail

Authors: Farhad Ahmadi, Hammed Kimiaee

Abstract:

Context: This research study focuses on the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. The study aims to determine the impact of nano calcium carbonate (NCC) and calcium carbonate (CC) on these factors. Research Aim: The main objective of this research is to investigate the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. Specifically, the study aims to compare the effects of NCC and CC on these parameters. Methodology: The research was conducted using a total of 280 laying quail with an average age of 8 weeks. The quails were randomly distributed in a completely randomized design (CRD) with 7 treatments, 4 replications, and 10 quails in each pen. The study lasted for 90 days. The experimental diets included a control group (T1) with a basal diet consisting of 3.17% CaCO₃, and other groups supplemented with different levels (0.5%, 0.1%, and 0.15%) of either calcium carbonate (CC) or nano calcium carbonate (NCC). The quails had free access to water and feed throughout the study period. Findings: The results of the study showed that NCC at the levels of 0.1% and 0.15% (T6 and T7) improved eggshell thickness, shell thickness, and shell breaking strength compared to the control group. Although not statistically significant, there was an increasing trend in quail egg production and calcium retention in the calcareous shell of the egg in birds that consumed the experimental diets containing different levels of NCC compared to the control and other treatment groups. Theoretical Importance: This research contributes to our understanding of the effect of NCC and CC on egg production, egg traits, and calcium retention in laying Japanese quail. It highlights the potential benefits of using NCC as a calcium source in quail diets, specifically in improving the quantity and quality of eggs and calcium retention. Data Collection and Analysis Procedures: Quail egg production was recorded monthly for each treatment group. At the end of the study, a total of 40 eggs (10 eggs/replicate) from each treatment group were randomly selected for analysis. Parameters such as eggshell thickness, shell thickness, shell breaking strength, and calcium retention were measured. Statistical analysis was performed to compare the results between the different treatment groups. Questions Addressed: This research aimed to answer the following questions: What is the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail? How does nano calcium carbonate compare to calcium carbonate in terms of these parameters? Conclusion: In conclusion, this study suggests that NCC at the levels of 0.1% and 0.15% can improve the quantity and quality of eggs and calcium retention in laying Japanese quail. These findings highlight the potential benefits of using NCC as a calcium source in quail diets. Further research could be conducted to explore the mechanisms behind these improvements and optimize the dosage of NCC for maximum effect.

Keywords: egg, calcium, nanoparticles, retention

Procedia PDF Downloads 44
8840 TiO2 Adsorbed on Cement Balls for Effective Photomineralization of Organic Pollutants under UV Light Irradiation

Authors: Tarun Jain, Lovnish Gupta, Soumen Basu

Abstract:

Organic pollutants like phenols and organic dyes present in industrial waste water are posing a hazardous threat to aquatic ecosystem. Several measures have been adopted for the neutralization and photodecomposition of these harmful organic moieties, among these semiconductor photocatalysis has been provided a major thrust after the discovery of Honda-Fujishema effect. Present study demonstrates the adsorption of TiO2- P25 in nano size (~36 nm) on cement balls for effective photodegradation of Alizarin and penta chlorophenol (PCP) under UV light illumination. Triton-X was used as a stabilizer for effective adsorption of TiO2 on cement balls (TCB) followed by calcination at ~300oC for 4 h. The TCB’s were dispersed randomly in a self designed reactor for phototcatalytic performance as shown in scheme 1. The change in concentration of alizarin and PCP was observed under UV-Vis spectroscopy, PCP was detoxified within 40 min while alizarin photodecomposed within 15 min of UV light irradiation. Taking into consideration the go green slogan and future prospective this technique can be also utilized under visible light and on mass scale because this is an effective tool for environmental remediation and waste water treatment.

Keywords: organic pollutants, TiO2 cement balls, photodegradation, UV light irradiation

Procedia PDF Downloads 231
8839 Production of Energetic Nanomaterials by Spray Flash Evaporation

Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer

Abstract:

Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.

Keywords: continuous synthesis, energetic material, nanoscale, nanoexplosive, nanothermite

Procedia PDF Downloads 238
8838 Impact of Climate Change on Water Resource Systems in Taiwan

Authors: Chia-Ling Chang, Hao-Bo Chang

Abstract:

Global climate change alters rainfall characteristics, while the variation of these characteristics further influences environmental conditions, such as hydrologic responses, landslide areas, and the amounts of diffuse pollution. The variations of environmental conditions may impact the stability of water resource systems. The objective of this study is to assess the present conditions of major water resource systems in Taiwan. The impact of climate change on each system is also discussed herein. Compared to the water resource systems in northern Taiwan, the ratio of the precipitation during the rainy season to that during the dry season has a larger increase in southern Taiwan. This variation of hydrologic condition impacts the stability of water resource systems and increases the risk of normal water supply. The findings in this work can be important references for water resource management.

Keywords: basin management, climate change, water resource system, water resource management

Procedia PDF Downloads 352
8837 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5

Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying

Abstract:

Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.

Keywords: alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition

Procedia PDF Downloads 191
8836 Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka

Authors: Iranga Weerakkody, Palitha Sri Geegana Arachchige, Dasith Tilakaratna

Abstract:

The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys.

Keywords: folklife, Ingini seeds, Strychnos potatorum, organic forest produce, water purification

Procedia PDF Downloads 153
8835 Synthesis and D.C. Conductivity Measurements of Polyaniline/CopperOxide Nanocomposites

Authors: L. N. Shubha, P. Madhusudana Rao

Abstract:

The Polyaniline / Copper Oxide(PANI / CuO) nanocomposite was prepared by solution mixing of prepared Polyaniline and copper Oxide in Dimethyl sulfoxide (DMSO). The synthesis involved the formation of dark green colored Polyaniline-Copper Oxide nanocomposite. The synthesized polymer nano composites were characterized by XRD, FTIR, SEM and UV-Visible Spectroscopy. The characteristic peaks in XRD, FTIR and UV-Visible spectra confirmed the presence of CuO in the polymer structure. SEM analysis revealed formation of PANI/CuO nano composite The D.C. conductivity measurements were performed using two probe method for various temperatures.

Keywords: polyaniline/copper oxide (PANI/CuO) nanocomposite, XRD, SEM, FTIRand DC- conductivity, UV-visible spectra

Procedia PDF Downloads 274
8834 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs

Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha

Abstract:

Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.

Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide

Procedia PDF Downloads 347
8833 Designing of Nano-materials for Waste Heat Conversion into Electrical Energy Thermoelectric generator

Authors: Wiqar Hussain Shah

Abstract:

The electrical and thermal properties of the doped Tellurium Telluride (Tl10Te6) chalcogenide nano-particles are mainly characterized by a competition between metallic (hole doped concentration) and semi-conducting state. We have studied the effects of Sn doping on the electrical and thermoelectric properties of Tl10-xSnxTe6 (1.00 ≤x≤ 2.00), nano-particles, prepared by solid state reactions in sealed silica tubes and ball milling method. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. Additionally crystal structure data were used to model the data and support the findings. The particles size was calculated from the XRD data by Scherrer’s formula. The EDS was used for an elemental analysis of the sample and declares the percentage of elements present in the system. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. The electrical conductivity was investigated by four probe resistivity techniques revealed that the electrical conductivity decreases with increasing temperature, and also simultaneously with increasing Sn concentration. While for Seebeck coefficient the trend is opposite which is increases with increasing temperature. These increasing behavior of Seebeck coefficient leads to high power factor which are increases with increasing temperature and Sn concentration except For Tl8Sn2Te6 because of lowest electrical conductivity but its power factor increases well with increasing temperature.

Keywords: Sn doping in Tellurium Telluride nano-materials, electron holes competition, Seebeck co-efficient, effects of Sn doping on Electrical conductivity, effects on Power factor

Procedia PDF Downloads 24
8832 An Experimental Investigation of Air Entrainment Due to Water Jets in Crossflows

Authors: Mina Esmi Jahromi, Mehdi Khiadani

Abstract:

Vertical water jets discharging into free surface turbulent cross flows result in the ingression of a large amount of air in the body of water and form a region of two-phase air-water flow with a considerable interfacial area. This research presents an experimental study of the two-phase bubbly flow using image processing technique. The air ingression and the trajectories of bubble swarms under different experimental conditions are evaluated. The rate of air entrainment and the bubble characteristics such as penetration depth, and dispersion pattern were found to be affected by the most influential parameters of water jet and cross flow including water jet-to-crossflow velocity ratio, water jet falling height, and cross flow depth. This research improves understanding of the underwater flow structure due to the water jet impingement in crossflow and advances the practical applications of water jets such as artificial aeration, circulation, and mixing where crossflow is present.

Keywords: air entrainment, image processing, jet in cross flow, two-phase flow

Procedia PDF Downloads 340
8831 Studies on the Solubility of Oxygen in Water Using a Hose to fill the Air with Different Shapes

Authors: Wichan Lertlop

Abstract:

This research is to study the solubility of oxygen in water taking the form of aeration pipes that have different shaped objectives of the research to compare the amount of oxygen dissolved in the water, whice take the form of aeration pipes. Shaped differently When aeration 5 minutes on air for 10 minutes, and when air fills 30 minutes, as well as compare the durability of the oxygen is dissolved in the water of the inlet air refueling shaped differently when you fill the air 30 minutes and when. aeration and 60 minutes populations used in this study, the population of pond water from Rajabhat University in February 2014 used in this study consists of 1. Aerator 2. Hose using a hose to fill the air with 3 different shape, different shapes pyramid whose base is on the water tank. Shaped rectangular water tank onto the ground. And shapes in a vertical pipe. 3 meter, dissolved oxygen, dissolved in water to get the calibration standard. 4. The clock for timer 5. Three water tanks which are 39 cm wide, 51 cm long and 32 cm high.

Keywords: aeration, dissolve oxygen, different shapes

Procedia PDF Downloads 288
8830 Quantitative Evaluation of Diabetic Foot Wound Healing Using Hydrogel Nanosilver Based Dressing vs. Traditional Dressing: A Prospective Randomized Control Study

Authors: Ehsan A. Yahia, Ayman E. El-Sharkawey, Magda M. Bayoumi

Abstract:

Background: Wound dressings perform a crucial role in cutaneous wound management due to their ability to protect wounds and promote dermal and epidermal tissue regeneration. Aim: To evaluate the effectiveness of using hydrogel/nano silver-based dressing vs. traditional dressing on diabetic foot wound healing. Methods: Sixty patients with type-2 diabetes hospitalized for diabetic foot wound treatment were recruited from selected Surgical departments. A prospective randomized control study was carried. Results: The results showed that the percentage of a reduction rate of the ulcer by the third week of the treatment in the hydrogel/nano silver-based dressing group was higher (15.11%) than in the traditional wound dressing group (33.44%). Moreover, the mean ulcer size "sq mm" in the hydrogel/nano silver-based dressing group recognized a faster healing rate (15.11±7.89) and considerably lesser in comparison to the traditional in the third week (21.65±8.4). Conclusion: The hydrogel/nanosilver-based dressing showed better results than traditional dressing in managing diabetic ulcer foot.

Keywords: diabetes, wound care, diabetic foot, wound dressing, hydrogel nanosilver

Procedia PDF Downloads 86
8829 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village

Authors: Corinna Barraco, Ornella Salimbene

Abstract:

This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.

Keywords: drinking water, Ethiopia, treatments, water pumping

Procedia PDF Downloads 130
8828 Phosphate Sludge Ceramics: Effects of Firing Cycle Parameters on Technological Properties and Ceramic Suitability

Authors: Mohamed Loutou, Mohamed Hajjaji, Mohamed Ait Babram, Mohammed Mansori, Rachid Hakkou, Claude Favotto

Abstract:

More than 26,4 million tons of phosphates are produced by the phosphates industries in Morocco (2010), generating huge amounts of sludge by flocculation during the ore beneficiation. They way are stored at the end of the process in open air ponds. Its accumulation and storage may have an impact on several scales such as ground water and human being. For this purpose, an efficient way to use it the field of the ceramic is proposed. The as received sludge and a clay-rich sediment have been studied in terms of chemical, mineralogical and micro-structural side using various analytical methods. Several formulations have been performed by mixing the sludge with the binder shaped in the form of granules. After being dried at 105 °C, the samples were heated in the range of 900-1200 °C. As well as the ceramic properties (firing shrinkage, water absorption, total porosity and compressive strength) the micro structure has been investigated using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The relations between properties and the operating factors were formulated using the design of experiments (DOE). Gehlenite was the only phase neo-formed in the sintering samples. SEM micrographs revealed the presence of nano metric stains. Based on RSM results, all factors had positive effects on Firing shrinkage, compressive strength and total porosity. However, they manifested opposite effects on density and water absorption.

Keywords: phosphate sludge, clay, ceramic properties, granule

Procedia PDF Downloads 480
8827 A Connected Structure of All-Optical Logic Gate “NOT-AND”

Authors: Roumaissa Derdour, Lebbal Mohamed Redha

Abstract:

We present a study of the transmission of the all-optical logic gate using a structure connected with a triangular photonic crystal lattice that is improved. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the air holes. In addition to the simplicity, the response time is very short, and the designed nano-resonator increases the bit rate of the logic gate. The two-dimensional finite difference time domain (2DFDTD) method is used to simulate the structure; the transmission obtained is about 98% with very negligible losses. The proposed photonic crystal AND logic gate is widely used in future integrated optical microelectronics.

Keywords: logic gates, photonic crystals, optical integrated circuits, resonant cavities

Procedia PDF Downloads 70
8826 Assessment of Quality of Drinking Water in Residential Houses of Kuwait by Using GIS Method

Authors: Huda Aljabi

Abstract:

The existence of heavy metals similar to cadmium, arsenic, lead and mercury in the drinking water be able to be a threat to public health. The amount of the substances of these heavy metals in drinking water has expected importance. The National Primary Drinking Water Regulations have set limits for the concentrations of these elements in drinking water because of their toxicity. Furthermore, bromate shaped during the disinfection of drinking water by Ozonation can also be a health hazard. The Paper proposed here will concentrate on the compilation of all available data and information on the presence of trace metals and bromate in the drinking water at residential houses distributed over different areas in Kuwait. New data will also be collected through a sampling of drinking water at some of the residential houses present in different areas of Kuwait and their analysis for the contents of trace metals and bromate. The collected data will be presented on maps showing the distribution of these metals and bromate in the drinking water of Kuwait. Correlation among different chemical parameters will also be investigated using the GRAPHER software. This will help both the Ministry of Electricity and Water (MEW) and the Ministry of Health (MOH) in taking corrective measures and also in planning the infrastructure activities for the future.

Keywords: bromate, ozonation, GIS, heavy metals

Procedia PDF Downloads 152
8825 Multifunctional 1D α-Fe2O3/ZnO Core/Shell Semiconductor Nano-Heterostructures: Heterojunction Engineering

Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar

Abstract:

This study reports the facile fabrication of 1D ZnO/α-Fe2O3 semiconductor nano-heterostructures (SNHs), and we investigate the strong interfacial interactions at the heterojunction, resulting in novel multifunctionality in the hybrid structure. ZnO-coated α-Fe2O3 nanowires (NWs) have been prepared by combining electrodeposition and wet chemical methods. Significant improvement in electrical conductivity, photoluminescence, and room temperature magnetic properties have been observed for the ZnO/α-Fe2O3 SNHs over the pristine α-Fe2O3 NWs because of the contribution of the ZnO nanolayer. The increase in electrical conductivity in ZnO/α-Fe2O3 SNHs is because of the increase in free electrons in the conduction band of the SNHs due to the formation of type-II n-n band configuration at the heterojunction. The SNHs are found to exhibit enhanced visible green photoluminescence along with the UV emission at room temperature. The band-gap emission of the α-Fe2O3 NWs coupled to the defect emissions of the ZnO in SNHs can be attributed to the profound enhancement of the visible green luminescence. Ferromagnetism of the SNHs is found to be increased nearly five times in magnitude over the primeval α-Fe2O3 NWs, which can be ascribed to the exchange coupling of the interfacial spin at ZnO/α-Fe2O3 interface, the surface spin of ZnO nanolayer, along with the structural defects like the cation vacancies (VZn) and the singly ionized oxygen vacancies (Vo•) present in SNHs.

Keywords: nano-heterostructures, photoluminescence, electrical property, magnetism

Procedia PDF Downloads 231
8824 Assessment of Environmental Impact of Rain Water and Industrial Water Leakage in the Libyan Iron and Steel Company in the Sea Water

Authors: Mohamed Alzarug Aburugba, Rashid Mohamed Eltanashi

Abstract:

Rainwater is considered an essential water resource, as it contributes to filling the deficit in water resources, especially in countries that suffer from a scarcity of natural water sources. One of the important issues facing the Water and Gas Services Department at the Libyan Iron and Steel Company is the large loss of quantities of industrial water, both direct and indirect cooling water (DCW, ICW), produced within the company due to leaks in the cooling systems of the factories of the Libyan Iron and Steel Company. These amounts of polluted industrial water leakage are mixed with rainwater collected by stormwater stations (6 stations) in LISCO, which is pumped to the sea through pumps with a very high flow rate, and thus, this will carry a lot of waste, heavy metals, and oils to the sea, which negatively affects marine environmental resources. This paper assesses the environmental impact of the quantities of rainwater and mixed industrial water in stormwater stations in the Libyan Iron and Steel Company and methods of mitigation, treating pollutants and reusing them as industrial water in the production processes of the steel industry.

Keywords: rainwater, mitigation, impact, sewage, heavy metals, assessment, pollution, environment, natural resources, industrial water.

Procedia PDF Downloads 31
8823 Research on Steam Injection Technology of Extended Range Engine Cylinder for Waste Heat Recovery

Authors: Zhiyuan Jia, Xiuxiu Sun, Yong Chen, Liu Hai, Shuangqing Li

Abstract:

The engine cooling water and exhaust gas contain a large amount of available energy. In order to improve energy efficiency, a steam injection technology based on waste heat recovery is proposed. The models of cooling water waste heat utilization, exhaust gas waste heat utilization, and exhaust gas-cooling water waste heat utilization were constructed, and the effects of the three modes on the performance of steam injection were analyzed, and then the feasibility of in-cylinder water injection steam technology based on waste heat recovery was verified. The research results show that when the injection water flow rate is 0.10 kg/s and the temperature is 298 K, at a cooling water temperature of 363 K, the maximum temperature of the injection water heated by the cooling water can reach 314.5 K; at an exhaust gas temperature of 973 K and an exhaust gas flow rate of 0.12 kg/s, the maximum temperature of the injection water heated by the exhaust gas can reach 430 K; Under the condition of cooling water temperature of 363 K, exhaust gas temperature of 973 K and exhaust gas flow rate of 0.12 kg/s, after cooling water and exhaust gas heating, the maximum temperature of the injection water can reach 463 K. When the engine is 1200 rpm, the water injection volume is 30 mg, and the water injection time is 36°CA, the engine power increases by 2% and the fuel consumption is reduced by 2.6%.

Keywords: cooling water, exhaust gas, extended range engine, steam injection, waste heat recovery

Procedia PDF Downloads 162
8822 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 108
8821 Pinch Technology for Minimization of Water Consumption at a Refinery

Authors: W. Mughees, M. Alahmad

Abstract:

Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 452
8820 Development and Characterization of Hydroxyapatite Based Nanocomposites for Local Drug Delivery to Periodontal Pockets

Authors: Indu Lata Kanwar, Preeti K. Suresh

Abstract:

The aim of this study is to fabricate hydroxyapatite based nanocomposites for local drug delivery in periodontal pockets. Hydroxyapatite is chemically similar to the mineral component of bones and hard tissues in mammals. Synthetic biocompatibility and bioactivity with human teeth and bone, making it very attractive for biomedical applications. Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometres (nm), or structures having nano­scale repeat distances between the different phases that make up the material. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Nano-sized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. The specific biological properties of the nanocomposites, as well as their interaction with cells, include the use of bioactive molecules. The approach of periodontal tissue engineering is considered promising to restore bone defect through the use of engineered materials with the aim that they will prohibit the invasion of fibrous connective tissue and help repair the function during bone regeneration.

Keywords: bioactive, hydroxyapatite, nanocomposities, periondontal

Procedia PDF Downloads 305
8819 Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine

Authors: Abbas Ali Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni

Abstract:

An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nano particles as additive in neat diesel and diesel-bio diesel blends. In the first phase of the experiments, stability of neat diesel and diesel-bio diesel fuel blends with the addition of cerium oxide nano particles are analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability.In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamo meter and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nano particles can be used as additive in diesel and diesel-bio diesel blends to improve complete combustion of the fuel significantly.

Keywords: engine, cerium oxide, biodiesel, deposit

Procedia PDF Downloads 315
8818 Development of Multilayer Capillary Copper Wick Structure using Microsecond CO₂ Pulsed Laser

Authors: Talha Khan, Surendhar Kumaran, Rajeev Nair

Abstract:

The development of economical, efficient, and reliable next-generation thermal and water management systems to provide efficient cooling and water management technologies is being pursued application in compact and lightweight spacecraft. The elimination of liquid-vapor phase change-based thermal and water management systems is being done due to issues with the reliability and robustness of this technology. To achieve the motive of implementing the principle of using an innovative evaporator and condenser design utilizing bimodal wicks manufactured using a microsecond pulsed CO₂ laser has been proposed in this study. Cylin drical, multilayered capillary copper wicks with a substrate diameter of 39 mm are additively manufactured using a pulsed laser. The copper particles used for layer-by-layer addition on the substrate measure in a diameter range of 225 to 450 micrometers. The primary objective is to develop a novel, high-quality, fast turnaround, laser-based additive manufacturing process that will eliminate the current technical challenges involved with the traditional manufacturing processes for nano/micro-sized powders, like particle agglomeration. Raster-scanned, pulsed-laser sintering process has been developed to manufacture 3D wicks with controlled porosity and permeability.

Keywords: liquid-vapor phase change, bimodal wicks, multilayered, capillary, raster-scanned, porosity, permeability

Procedia PDF Downloads 163
8817 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections

Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei

Abstract:

A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.

Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles

Procedia PDF Downloads 582
8816 Geographical Information System for Sustainable Management of Water Resources

Authors: Vakhtang Geladze, Nana Bolashvili, Nino Machavariani, Tamazi Karalashvili, Nino Chikhradze, Davit Kartvelishvili

Abstract:

Fresh water deficit is one of the most important global problems today. In the countries with scarce water resources, they often become a reason of armed conflicts. The peaceful settlement of relations connected with management and water consumption issues within and beyond the frontiers of the country is an important guarantee of the region stability. The said problem is urgent in Georgia as well because of its water objects are located at the borders and the transit run-off that is 12% of the total one. Fresh water resources are the major natural resources of Georgia. Despite of this, water supply of population at its Eastern part is an acute issue. Southeastern part of the country has been selected to carry out the research. This region is notable for deficiency of water resources in the country. The region tends to desertification which aggravates fresh water problem even more and presumably may lead to migration of local population from the area. The purpose of study was creation geographical information system (GIS) of water resources. GIS contains almost all layers of different content (water resources, springs, channels, hydrological stations, population water supply, etc.). The results of work provide an opportunity to identify the resource potential of the mentioned region, control and manage it, carry out monitoring and plan regional economy.

Keywords: desertification, GIS, irrigation, water resources

Procedia PDF Downloads 668
8815 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production

Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara

Abstract:

Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.

Keywords: foam glass, foaming, silicon carbide, waste glass

Procedia PDF Downloads 339