Search results for: molecular identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4697

Search results for: molecular identification

4247 Preliminary Analysis of a Phylogeography Study of Dendropsophus minutus in the Guiana Shield

Authors: Mera-Martínez Daniela

Abstract:

Dendropsophus minutus, is a species distributed in South America including the slopes of the Andes, the Amazon basin, forests of southeastern Brazil and in Guyana where tropical forests are characteristic. The relationship of amphibians found in this locality is evidenced by molecular markers, with the objective of analyzing if the geographic distance is influencing the structure of the populations of D. minutus in Guyana; we analyzed 65 sequences from the 3 localities of Guyana where haplotype networks, Mantel Test and phylogeny were realized to know the influence. It was evidenced that there is a haplotypic difference in the locality of Guyana compared to Suriname and French Guyana, but this does not have a correlation with the geographic distance, but this one can be influenced by the conditions of the places.

Keywords: phylogeography, Dendropsophus, geographic distance, molecular markers

Procedia PDF Downloads 184
4246 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 103
4245 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification

Authors: Rebecca Angeles

Abstract:

This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.

Keywords: Internet of Things (IOT), radio frequency identification (RFID), structurational model of technology (Orlikowski), supply chain management

Procedia PDF Downloads 213
4244 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 261
4243 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling

Procedia PDF Downloads 439
4242 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy

Authors: Van Tran Thi Thuy, Dukjoon Kim

Abstract:

A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.

Keywords: magnetic, nano, PNIPAM, polysuccinimide

Procedia PDF Downloads 389
4241 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 403
4240 Waste Identification Diagrams Effectiveness: A Case Study in the Manaus Industrial Pole

Authors: José Dinis-Carvalho, Levi Guimarães, Celina Leão, Rui Sousa, Rosa Eliza Vieira, Larissa Thomaz, Kelliane Guerreiro

Abstract:

This research paper investigates the efficacy of waste identification diagrams (WIDs) as a tool for waste reduction and management within the Manaus Industrial Pole. The study focuses on assessing the practical application and effectiveness of WIDs in identifying, categorizing, and mitigating various forms of waste generated across industrial processes. Employing a mixed-methods approach, including a qualitative questionnaire applied to 5 companies and quantitative data analysis with SPSS statistical software, the research evaluates the implementation and impact of WIDs on waste reduction practices in select industries within the Manaus Industrial Pole. The findings contribute to understanding the utility of WIDs as a proactive strategy for waste management, offering insights into their potential for fostering sustainable practices and promoting environmental stewardship in industrial settings. The study also discusses challenges, best practices, and recommendations for optimizing the utilization of WIDs in industrial waste management, thereby addressing the broader implications for sustainable industrial development.

Keywords: waste identification diagram, value stream mapping, overall equipment effectiveness, lean manufacturing

Procedia PDF Downloads 25
4239 Distribution of Malaria-Infected Anopheles Mosquitoes in Kudat, Ranau and Tenom of Sabah, Malaysia

Authors: Ahmad Fakhriy Hassan, Rohani Ahmad, Zurainee Mohamed Nor, Wan Najdah Wan Mohamad Ali

Abstract:

In Malaysia, it was realized that while the incidence of human malaria is decreasing, the incidence of Plasmodium knowlesi malaria appears to be on the rise, especially in rural areas of Sabah, East Malaysia. The primary vector for P. knowlesi malaria in Sabah is An. balabacensis a species found abundant in rural areas, shown to rest and feed outdoor throughout the night, which makes its control very challenging. This study aims to examine the distribution of malaria-infected Anopheles mosquitoes in three areas in Sabah, namely Kudat, Ranau, and Tenom, known as areas in Sabah that presented high number of malaria cases. Briefly, mosquitoes were caught every 6 weeks for the period of 18 months using Human Landing Catching (HLC) technique from May 2016 to November 2017. Identification of species was done using microscopy and molecular methods. Molecular method is also used to detect malaria parasite in all mosquito collected. An. balabacensis was present in all the study areas. In Kudat, six other Anopheles species were also detected, namely, An. barumbrosus, An. latens, An. letifer, An. maculatus, An. sundaicus and An. tesselatus. In Ranau five other Anopheles species were detected, namely, An. barumbrosus, An. donaldi., An. hodgkini, An. maculatus, and An. tesselatus while in Tenom seven more species An. donaldi, An. umbrosus, An. barumbrosus, An.latens, An. hodgkini, An. maculatus, and An. tesselatus were detected. This study showed 24% out of 259, 39% out of 127, and 26% out of 265 Anopheles mosquito collected in Kudat, Ranau, and Tenom were detected positive for malaria parasite respectively. In Kudat An. balabacensis, An. barumbrosus, An. latens, An. maculatus, An. sundaicus and An. tesselatus were the six out of eight Anopheles species that were found infected with malaria parasite. All Anopheles species collected in Ranau were positive for malaria while In Tenom, only five out of eight species; An. balabacensus, An. donaldi, An. hodgkini, An. maculatus, and An. latens were detected positive for malaria parasite. Interestingly, for all study areas An. balabacensis was shown to be the only species infected with four malaria species; P. falciparum, P. knowlesi, P. vivax, and Plasmodium sp. This finding clearly indicates that An. balabacensis is the dominant malaria vector in Kudat, Ranau, and Tenom.

Keywords: Anopheles balabacensis, human landing catching technique, nested PCR, Plasmodium knowlesi, Simian malaria

Procedia PDF Downloads 123
4238 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: identification, Hammerstein-Wiener, optimization, quantization

Procedia PDF Downloads 245
4237 Applying Computer Simulation Methods to a Molecular Understanding of Flaviviruses Proteins towards Differential Serological Diagnostics and Therapeutic Intervention

Authors: Sergio Alejandro Cuevas, Catherine Etchebest, Fernando Luis Barroso Da Silva

Abstract:

The flavivirus genus has several organisms responsible for generating various diseases in humans. Special in Brazil, Zika (ZIKV), Dengue (DENV) and Yellow Fever (YFV) viruses have raised great health concerns due to the high number of cases affecting the area during the last years. Diagnostic is still a difficult issue since the clinical symptoms are highly similar. The understanding of their common structural/dynamical and biomolecular interactions features and differences might suggest alternative strategies towards differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV, DENV and YFV non-structural proteins 1 (NS1) protein. By means of computational studies, we calculated the main physical chemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil that could suggest possible molecular mechanisms for the increase of the virulence of ZIKV. It is interesting to note that despite the small changes in the protein sequence due to the high sequence identity among the studied strains, the electrostatic properties are strongly impacted by the pH which also impact on their biomolecular interactions with partners and, consequently, the molecular viral biology. African and Asian strains are distinguishable. Exploring the interfaces used by NS1 to self-associate in different oligomeric states, and to interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can explain the different immunological response. By the comparison with the known antibody structure available for the West Nile virus, we demonstrated that the antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high specificity antibodies.

Keywords: zika, biomolecular interactions, electrostatic interactions, molecular mechanisms

Procedia PDF Downloads 107
4236 Isolement and Identification of Major Constituents from Essential Oil of Launaea nudicaulis

Authors: M. Yakoubi, N. Belboukhari, A. Cheriti, K. Sekoum

Abstract:

Launaea nudicaulis (L.) Hook.f. is a desert, spontaneous plant and endemic to northem Sahara, which belongs to the Asteraceae family. This species exists in the region of Bechar (Local name; El-Rghamma). In our knowledge, no work has been founded, except studies showing the antimicrobial and antifungal activity of methalonic extract of this plant. The present paper describes the chemical composition of the essential oil from Launaea nudicaulis and qualification of isolation and identification of some pure products by column chromatography. The essential oil from the aerial parts of Launaea nudicaulis (Asteraceae) was obtained by hydroditillation in 0.4% yield, led to isolation of four several new products. The isolation is made by column chromatography and followed by GC-IK and GC-MS analysis.

Keywords: Launaea nudicaulis, asteraceae, essential oil, column chromatography, GC-FID, GC-MS

Procedia PDF Downloads 279
4235 Identification and Selection of a Supply Chain Target Process for Re-Design

Authors: Jaime A. Palma-Mendoza

Abstract:

A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.

Keywords: decision support systems, multiple criteria analysis, supply chain management

Procedia PDF Downloads 471
4234 In Vitro Effect of Cobalt(II) Chloride (CoCl₂)-Induced Hypoxia on Cytokine Production by Human Breast Cancer Cells

Authors: Radoslav Stojchevski, Leonid Poretsky, Dimiter Avtanski

Abstract:

Proinflammatory cytokines play an important role in cancer initiation and progression by mediating the intracellular communication between the cancer cells and tumor microenvironment. Increased tumor growth causing reduced oxygen concentration and oxygen pressure commonly result in hypoxia. Mechanistically, hypoxia is characterized by stabilization and nuclear translocation of hypoxia-inducible factor 1 alpha (HIF-1α) followed by propagation of molecular pathway cascade involving multiple downstream targets. Cobalt(II) chloride (CoCl₂) is commonly used to mimic hypoxia in experimental conditions since it directly induces the expression of HIF-1α. The aim of the present study was to investigate the in vitro effects and the molecular mechanisms by which hypoxia regulates the cytokine secretory profile of breast cancer cells. As a model for this study, we used several breast cancer cell lines bearing various molecular characteristics and metastatic potential (MDA-MB-231 (clauding low, ER-/PR-/HER²⁻), MCF-7 (luminal A, ER⁺/PR⁺/HER²⁻), and BT-474 (liminal B, ER⁺/PR⁺/HER²⁺)). We demonstrated that breast cancer cells secrete numerous cytokines and cytokine ligands, including interleukins, chemokines, and growth factors. Treatment with CoCl₂significantly modulated the breast cancer cells' cytokine expression in a concentration- and time-dependent manner. These effects were mediated via activation of several signaling pathways (JNK/SAPK1, NF-κB, STAT5A/B, and Erk/MAPK1/2). Taken together, the present data define some of the molecular mechanisms by which hypoxia affects the breast cancer cells' cytokine secretory profile, thus contributing to the development of novel therapies for metastatic breast cancer.

Keywords: breast cancer, cytokines, cobalt(II) chloride (CoCl₂), hypoxia

Procedia PDF Downloads 194
4233 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 324
4232 Synthesis, Molecular Docking, and Cytotoxic Activity of Novel Triazolopyridazine Derivatives

Authors: Azza T. Tahera, Eman M. Ahmeda, Nadia A. Khalila, Yassin M. Nissanb

Abstract:

New 3-(pyridin-4-yl)-[1,2,4] triazolo [4,3-b] pyridazine derivatives 2a-i, 4a,b and 6a,b were designed, synthesized and evaluated as cytotoxic agents. All compounds were investigated for their in vitro cytotoxicity at a single dose 10-5M concentration towards 60 cancer cell lines according to USA NCI protocol. The preliminary screening results showed that the majority of tested compounds exhibited remarkable activity against SR (leukemia) cell panel. Molecular docking for all synthesized compounds was performed on the active site of c-Met kinase. The most active compounds, 2f and 4a were further evaluated at a seven dose level screening and their IC50 as a c-Met kinase inhibitors were determined in vitro.

Keywords: triazolopyridazines, pyridazines, cytotoxic activity, cell panel

Procedia PDF Downloads 511
4231 A Study of Anthraquinone Dye Removal by Using Chitosan Nanoparticles

Authors: Pyar S. Jassal, Sonal Gupta, Neema Chand, Rajni Johar

Abstract:

In present study, Low molecular weight chitosan naoparticles (LMWCNP) were synthesized by using low molecular weight chitosan (LMWC) and sodium tripolyphosphate for the adsorption of anthraquinone dyes from waste water. The ionic-gel technique was used for this purpose. Size of nanoparticles was determined by “Scherrer equation”. The absorbance was carried out with UV-visible spectrophotometer for Acid Green 25 (AG25) and Reactive Blue 4 (RB4) dyes solutions at λmax 644 and λmax 598 nm respectively. The removal of dyes was dependent on the pH and the optimum adsorption was between pH 2 to 9. The extraction of dyes was linearly dependent on temperature. The equilibrium parameters, RL was calculated by using the Langmuir isotherm and shows that adsorption of dyes is favorable on the LMWCNP. The XRD images of LMWC show a crystalline nature whereas LMWCNP is amorphous one. The thermo gravimetric analysis (TGA) shows that LMWCNP thermally more stable than LMWC. As the contact time increases, percentage removal of Acid Green 25 and Reactive Blue 4 dyes also increases. TEM images reveal the size of the LMWCNP were in the range of 45-50 nm. The capacity of AG25 dye on LMWC was 5.23 mg/g, it compared with LMWCNP capacity which was 6.83 mg/g respectively. The capacity of RB4 dye on LMWC was 2.30 mg/g and 2.34 mg/g was on LMWCNP.

Keywords: low molecular weight chitosan nanoparticles, anthraquinone dye, removal efficiency, adsorption isotherm

Procedia PDF Downloads 112
4230 Radio Frequency Identification Encryption via Modified Two Dimensional Logistic Map

Authors: Hongmin Deng, Qionghua Wang

Abstract:

A modified two dimensional (2D) logistic map based on cross feedback control is proposed. This 2D map exhibits more random chaotic dynamical properties than the classic one dimensional (1D) logistic map in the statistical characteristics analysis. So it is utilized as the pseudo-random (PN) sequence generator, where the obtained real-valued PN sequence is quantized at first, then applied to radio frequency identification (RFID) communication system in this paper. This system is experimentally validated on a cortex-M0 development board, which shows the effectiveness in key generation, the size of key space and security. At last, further cryptanalysis is studied through the test suite in the National Institute of Standards and Technology (NIST).

Keywords: chaos encryption, logistic map, pseudo-random sequence, RFID

Procedia PDF Downloads 379
4229 Gait Biometric for Person Re-Identification

Authors: Lavanya Srinivasan

Abstract:

Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.

Keywords: biometric, gait, silhouettes, YOLO

Procedia PDF Downloads 156
4228 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route

Authors: Sudhir Kumar Sharma, Ramesh Jagannathan

Abstract:

The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.

Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route

Procedia PDF Downloads 115
4227 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method

Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand

Abstract:

Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.

Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir

Procedia PDF Downloads 65
4226 Forensic Analysis of MTDNA Hypervariable Region HVII by Sanger Sequence Method in Iraq Population

Authors: H. Imad, Y. Cheah, O. Aamera

Abstract:

The aims of this research are to study the mitochondrial non-coding region by using the Sanger sequencing technique and establish the degree of variation characteristics of a fragment. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. A portion of a non-coding region encompassing positions 37 to 340 amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column then sequenced and detected by using the ABI 3730xL DNA Analyzer. New polymorphic positions 57, 63, and 101 are described may in future be suitable sources for identification purpose. The data obtained can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants.

Keywords: encompassing nucleotide positions 37 to 340, HVII, Iraq, mitochondrial DNA, polymorphism, frequency

Procedia PDF Downloads 735
4225 Endothelin Cells and Its Molecular Biology and Microbiology

Authors: Chro Kawyan

Abstract:

Endothelin-1 (ET-1), the principal individual from the newfound mammalian endothelin group of organically dynamic peptides, was initially distinguished as a 21 buildup powerful vasoconstrictor peptide in vascular endothelial cells. However, it has since been demonstrated to have a wide range of pharmacological activities in tissues both inside and outside the cardiovascular system. Additionally, peptides that have a striking resemblance to ET-1 have been identified as the primary toxic component of snake venom. In addition, late examinations have proposed that warm blooded creatures, including people, produce three unmistakable individuals from this peptide family, ET-1, ET-2 and ET-J, which might have various profiles of organic action and may follow up on particular subtypes of endothelin receptor. Masashi Yanagisawa and Tomoh Masaki survey the ongoing status of the organic chemistry and sub-atomic science of endothelin.

Keywords: thelin, microbiology, molecular biology, cell

Procedia PDF Downloads 51
4224 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan

Abstract:

The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.

Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation

Procedia PDF Downloads 234
4223 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 307
4222 Identification and Molecular Characterization of Cryptosporidium Spp. in Pre-Wean Dairy Calves in Mashhad, Northeastern of Iran

Authors: Mohammad Asadpour, Gholamreza Razmi, Gholamreza Mohammadi, Abolghasem Naghibi

Abstract:

Cryptosporidium Spp., protozoan parasites of the phylum Apicomplexa, have a wide spectrum of hosts including humans, domestic animals and wild mammals, birds, reptiles, amphibians and fish. Dairy cattle have been identified in numerous reports as a major source of environmental contamination with this pathogen. In this study, a Polymerase Chain Reaction (PCR), Restriction Fragment Length Polymorphism (RFLP) analysis of the Small-Subunit (SSU) rRNA gene was used to detect and identify Cryptosporidium Spp. in 300 fecal specimens from 1 to 30 days pre-wean calves in 10 farms in Mashhad, Iran. Eighty five (28.3%) and forty five (15%) of the specimens were positive for Cryptosporidium by microscopic and PCR examination respectively. Restriction digestion of the PCR products by VSPI and Ssp1 restriction enzymes and analysis of sequence data revealed the presence of C. parvum, bovine genotype in all isolates. Our findings suggest that cattle can be a source of Cryptosporidial infections for humans and animals in Mashhad area. This is the first published description of Cryptosporidium sub genotyping in Mashhad.

Keywords: cryptosporidium, genotype, dairy calves, 18S rRNA, Mashhad

Procedia PDF Downloads 397
4221 Molecular Insights into the Genetic Integrity of Long-Term Micropropagated Clones Using Start Codon Targeted (SCoT) Markers: A Case Study with Ansellia africana, an Endangered, Medicinal Orchid

Authors: Paromik Bhattacharyya, Vijay Kumar, Johannes Van Staden

Abstract:

Micropropagation is an important tool for the conservation of threatened and commercially important plant species of which orchids deserve special attention. Ansellia africana is one such medicinally important orchid species having much commercial significance. Thus, development of regeneration protocols for producing clonally stable regenerates using axillary buds is of much importance. However, for large-scale micropropagation to become not only successful but also acceptable by end-users, somaclonal variations occurring in the plantlets need to be eliminated. In the light of the various factors (genotype, ploidy level, in vitro culture age, explant and culture type, etc.) that may account for the somaclonal variations of divergent genetic changes at the cellular and molecular levels, genetic analysis of micropropagated plants using a multidisciplinary approach is of utmost importance. In the present study, the clonal integrity of the long term micropropagated A. africana plants were assessed using advanced molecular marker system i.e. Start Codon Targeted Polymorphism (SCoT). Our studies recorded a clonally stable regeneration protocol for A. africana with a very high degree of clonal fidelity amongst the regenerates. The results obtained from these molecular analyses could help in modifying the regeneration protocols for obtaining clonally stable true to type plantlets for sustainable commercial use.

Keywords: medicinal orchid micropropagation, start codon targeted polymorphism (SCoT), RAP), traditional African pharmacopoeia, genetic fidelity

Procedia PDF Downloads 403
4220 Investigations on the Cytotoxicity and Antimicrobial Activities of Terezine E and 14-Hydroxyterezine D

Authors: Mariam Mojally, Randa Abdou, Wisal Bokhari, Sultan Sab, Mohammed Dawoud, Amjad Albohy

Abstract:

Secondary metabolites produced by endophytes are an excellent source of biologically active compounds. In our current study, we evaluated terezine E and 14-hydroxyterezine D for binding to the active site of histone deacetylase (PDB ID: 4CBT) and matrix metalloproteinase 9 (PDB ID: 4H3X) by molecular docking using AutoDock Vina software after having tested their cytotoxic activities on three cell lines (human ductal breast epithelial tumor cells (T47D)-HCC1937), human hepatocarcinoma cell line (HepG2)-HB8065), and human colorectal carcinoma cells (HCT-116)-TCP1006, purchased from ATCC, USA)). Additionally, their antimicrobial activities were investigated, and their minimum inhibitory concentration (MIC) values were determined against P. notatum and S. aureus by the broth microdilution method. Higher cytotoxicity was observed for terezine E against all tested cell lines compared to 14-hydroxyterezine D. Molecular docking results supported the high cytotoxicity of terezine E and showed higher binding affinity with 4CBT with an energy score of 9 kcal/mol. Terezine E showed higher antibacterial and antifungal activities than 14-hydroxyrerezine D: MIC values were 15.45 and 21.73 mg/mL against S. aureus and 8.61 and 11.54 mg/mL against P. notatum, respectively

Keywords: Terezine E, 14-Hydroxyterezine D, cytotoxicity, antimicrobial activity, molecular docking

Procedia PDF Downloads 44
4219 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan

Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi

Abstract:

This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).

Keywords: PAHs, source identification, diagnostic ratio, principal component analysis, positive matrix factorization

Procedia PDF Downloads 251
4218 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System

Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana

Abstract:

Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.

Keywords: automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA

Procedia PDF Downloads 530