Search results for: longitudinal angle of failure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4435

Search results for: longitudinal angle of failure

3985 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm

Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei

Abstract:

This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.

Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network

Procedia PDF Downloads 673
3984 Seismic Response Analysis of Frame Structures Based on Super Joint Element Model

Authors: Li Xu, Yang Hong, T. Zhao Wen

Abstract:

Experimental results of many RC beam-column subassemblage indicate that slippage of longitudinal beam rebar within the joint and the shear deformation of joint core have significant influence on seismic behavior of the subassemblage. However, rigid joint assumption has been generally used in the seismic response analysis of RC frames, in which two kinds of inelastic deformation of joint have been ignored. Based on OpenSees platform, ‘Super Joint Element Model’ with more detailed inelastic mechanism is used to simulate the inelastic response of joints. Two finite element models of typical RC plane frame, namely considering or ignoring the inelastic deformation of joint respectively, were established and analyzed under seven strong earthquake waves. The simulated global and local inelastic deformations of the RC plane frame is shown and discussed. The analyses also confirm the security of the earthquake-resistant frame designed according to Chinese codes.

Keywords: frame structure, beam-column joint, longitudinal bar slippage, shear deformation, nonlinear analysis

Procedia PDF Downloads 413
3983 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness

Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem

Abstract:

Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).

Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow

Procedia PDF Downloads 544
3982 Associated Factors of Hypertension, Hypercholesterolemia and Double Burden Hypertension-Hypercholesterolemia in Patients With Congestive Heart Failure: Hospital Based Study

Authors: Pierre Mintom, William Djeukeu Asongni, Michelle Moni, William Dakam, Christine Fernande Nyangono Biyegue.

Abstract:

Background: In order to prevent congestive heart failure, control of hypertension and hypercholesterolemia is necessary because those risk factors frequently occur in combination. Objective: The aim of the study is to determine the prevalence and risk factors of hypertension, hypercholesterolemia and double burden HTA-Hypercholesterolemia in patients with congestive heart failure. Methodology: A database of 98 patients suffering from congestive heart failure was used. The latter were recruited from August 15, 2017, to March 5, 2018, in the Cardiology department of Deido District Hospital of Douala. This database provides information on sociodemographic parameters, biochemical examinations, characteristics of heart failure and food consumption. ESC/ESH and NCEP-ATPIII definitions were used to define Hypercholesterolemia (total cholesterol ≥200mg/dl), Hypertension (SBP≥140mmHg and/or DBP≥90mmHg). Double burden hypertension-hypercholesterolemia was defined as follows: total cholesterol (CT)≥200mg/dl, SBP≥140mmHg and DBP≥90mmHg. Results: The prevalence of hypertension (HTA), hypercholesterolemia (hyperchol) and double burden HTA-Hyperchol were 61.2%, 66.3% and 45.9%, respectively. No sociodemographic factor was associated with hypertension, hypercholesterolemia and double burden, but Male gender was significantly associated (p<0.05) with hypercholesterolemia. HypoHDLemia significantly increased hypercholesterolemia and the double burden by 19.664 times (p=0.001) and 14.968 times (p=0.021), respectively. Regarding dietary habits, the consumption of rice, peanuts and derivatives and cottonseed oil respectively significantly (p<0.05) exposed to the occurrence of hypertension. The consumption of tomatoes, green bananas, corn and derivatives, peanuts and derivatives and cottonseed oil significantly exposed (p<0.05) to the occurrence of hypercholesterolemia. The consumption of palm oil and cottonseed oil exposed the occurrence of the double burden of hypertension-hypercholesterolemia. Consumption of eggs protects against hypercholesterolemia, and consumption of peanuts and tomatoes protects against the double burden. Conclusion: hypercholesterolemia associated with hypertension appears as a complicating factor of congestive heart failure. Key risk factors are mainly diet-based, suggesting the importance of nutritional education for patients. New management protocols emphasizing diet should be considered.

Keywords: risk factors, hypertension, hypercholesterolemia, congestive heart failure

Procedia PDF Downloads 71
3981 Causes of Death in Neuromuscular Disease Patients: 15-Year Experience in a Tertiary Care Hospital

Authors: Po-Ching Chou, Wen-Chen Liang, I. Chen Chen, Jong-Hau Hsu, Yuh-Jyh Jong

Abstract:

Background:Cardiopulmonary complications seem to cause high morbidity and mortality in patients with neuromuscular diseases (NMD) but so far there is no domestic data reported in Taiwan. We, therefore attempted to analyze the factors to cause the death in NMD patients from our cohort. Methods:From 1998 to 2013, we retrospectively collected the information of the NMD patients treated and followed up in Kaohsiung Medical University Hospital. Forty-two patients with NMD who expired during these fifteen years were enrolled. The medical records of these patients were reviewed and the causes of death and the associated affecting factors were analyzed. Results:Eighteen patients with NMD (mean age=13.3, SD=12.4) with complete medical record and detailed information were finally included in this study, including spinal muscular atrophy (SMA) (n=9, 7/9: type 1), Duchenne muscular dystrophy (n=6), congenital muscular dystrophy (n=1), carnitine acyl-carnitine translocase (CACT) deficiency (n=1) and spinal muscular atrophy with respiratory distress (SMARD)(n=1). The place of death was in ICU (n=11, 61%), emergency room (n=3, 16.6%) or home (n=4, 22.2%). For SMA type 1 patients, most of them (71.4%, 5/7) died in emergency room or home and the other two expired during an ICU admission. The causes of death included acute respiratory failure due to pneumonia (n=13, 72.2 %), ventilator failure or dislocation (n=2, 11.1%), suffocation/choking (n=2, 11.1%), and heart failure with hypertrophic cardiomyopathy (n=1, 5.55%). Among the 15 patients died of respiratory failure or choking, 73.3% of the patients (n=11) received no ventilator care at home. 80% of the patients (n=12) received no cough assist at home. The patient died of cardiomyopathy received no medications for heart failure until the last admission. Conclusion: Respiratory failure and choking are the leading causes of death in NMD patients. Appropriate respiratory support and airway clearance play the critical role to reduce the mortality.

Keywords: neuromuscular disease, cause of death, tertiary care hospital, medical sciences

Procedia PDF Downloads 534
3980 Effect of Crystallographic Characteristics on Toughness of Coarse Grain Heat Affected Zone for Different Heat Inputs

Authors: Trishita Ray, Ashok Perka, Arnab Karani, M. Shome, Saurabh Kundu

Abstract:

Line pipe steels are used for long distance transportation of crude oil and gas under extreme environmental conditions. Welding is necessary to lay large scale pipelines. Coarse Grain Heat Affected Zone (CGHAZ) of a welded joint exhibits worst toughness because of excessive grain growth and brittle microstructures like bainite and martensite, leading to early failure. Therefore, it is necessary to investigate microstructures and properties of the CGHAZ for different welding heat inputs. In the present study, CGHAZ for two heat inputs of 10 kJ/cm and 50 kJ/cm were simulated in Gleeble 3800, and the microstructures were investigated in detail by means of Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD). Charpy Impact Tests were also done to evaluate the impact properties. High heat input was characterized with very low toughness and massive prior austenite grains. With the crystallographic information from EBSD, the area of a single prior austenite grain was traced out for both the welding conditions. Analysis of the prior austenite grains showed the formation of high angle boundaries between the crystallographic packets. Effect of these packet boundaries on secondary cleavage crack propagation was discussed. It was observed that in the low heat input condition, formation of finer packets with a criss-cross morphology inside prior austenite grains was effective in crack arrest whereas, in the high heat input condition, formation of larger packets with higher volume of low angle boundaries failed to resist crack propagation resulting in a brittle fracture. Thus, the characteristics in a crystallographic packet and impact properties are related and should be controlled to obtain optimum properties.

Keywords: coarse grain heat affected zone, crystallographic packet, toughness, line pipe steel

Procedia PDF Downloads 247
3979 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement: A Case Study

Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák

Abstract:

Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.

Keywords: failure, pavement, probability, reliability index, simulation, tensile crack

Procedia PDF Downloads 549
3978 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference

Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo

Abstract:

Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.

Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference

Procedia PDF Downloads 254
3977 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 65
3976 Numerical Study of a Nanofluid in a Truncated Cone

Authors: B. Mahfoud, A. Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 313
3975 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 412
3974 Low-Cost Image Processing System for Evaluating Pavement Surface Distress

Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa

Abstract:

Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.

Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means

Procedia PDF Downloads 184
3973 Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer

Authors: Sung-Hyeon Park, Jin-Wook Jang, Hak-Sung Kim

Abstract:

In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system.

Keywords: terahertz, non-destructive technique, void, IC package

Procedia PDF Downloads 477
3972 Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB

Authors: C. M. Nur Syazwani, M. K. Ahmad Imran, Rizal E. M. Nasir

Abstract:

The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack.

Keywords: blended wing-body, bird-inspired blended wing-body, aerodynamic, stability

Procedia PDF Downloads 511
3971 Pre-Exsisting Attitude, Service Failure, and Recovery: Effect, Attributes, and Process in an Islamic Country

Authors: Niloofar Mobasem, Kambiz Heidarzadeh Hanzaee

Abstract:

Purpose: The study aimed to measure the customer satisfaction with service recovery through the conflict management framework, especially assessing the role of pre-existing attitudes for measuring the customer response to the service failure. Design/ methodology/ approach: The study is based on the experimental research method. The factorial designs are used in the research that measures the variables in two separate studies. In the first study, the factorial design is 3 conflict management style: cooperative, competitive, avoiding; - 3 service performance: exceed expectation, meet expectation, fail to meet expectation; and in the second study includes: - 3 conflict management style: cooperative, competitive, avoiding; - 2 service performance: exceed expectation, fail to meet expectation; - 2 pre-existing attitude: positive, negative. Finding: The results of study based on a scenario indicate that the conflict management style affected on customer satisfaction by service recovery efforts as well as the pre-existing attitudes affected the customer interpretation for service providers (conflict management style) and those who have positive pre-existing attitudes are interested to response to the cooperative approach in dealing with service failure. Research limitation/ implication: According to all researches, the study has several limitations. The nature of scenario in this study may cause to hit the reality of life. Although, the similar scenario approaches commonly are used for such researches, but the approaches are not without criticism. Practical implications: Given the importance of service recovery, companies can understand the importance of creating customer satisfaction achieved by the positive results due to the service recovery during the shortness or service failure by the mentioned companies. Originality/ value: The study highlights the importance of service failure and providing the education in relation to the service recovery.

Keywords: service recovery, pre-existing attitude, service failure, customer satisfaction

Procedia PDF Downloads 546
3970 A Metric to Evaluate Conventional and Electrified Vehicles in Terms of Customer-Oriented Driving Dynamics

Authors: Stephan Schiffer, Andreas Kain, Philipp Wilde, Maximilian Helbing, Bernard Bäker

Abstract:

Automobile manufacturers progressively focus on a downsizing strategy to meet the EU's CO2 requirements concerning type-approval consumption cycles. The reduction in naturally aspirated engine power is compensated by increased levels of turbocharging. By downsizing conventional engines, CO2 emissions are reduced. However, it also implicates major challenges regarding longitudinal dynamic characteristics. An example of this circumstance is the delayed turbocharger-induced torque reaction which leads to a partially poor response behavior of the vehicle during acceleration operations. That is why it is important to focus conventional drive train design on real customer driving again. The currently considered dynamic maneuvers like the acceleration time 0-100 km/h discussed by journals and car manufacturers describe longitudinal dynamics experienced by a driver inadequately. For that reason we present the realization and evaluation of a comprehensive proband study. Subjects are provided with different vehicle concepts (electrified vehicles, vehicles with naturally aspired engines and vehicles with different concepts of turbochargers etc.) in order to find out which dynamic criteria are decisive for a subjectively strong acceleration and response behavior of a vehicle. Subsequently, realistic acceleration criteria are derived. By weighing the criteria an evaluation metric is developed to objectify customer-oriented transient dynamics. Fully-electrified vehicles are the benchmark in terms of customer-oriented longitudinal dynamics. The electric machine provides the desired torque almost without delay. This advantage compared to combustion engines is especially noticeable at low engine speeds. In conclusion, we will show the degree to which extent customer-relevant longitudinal dynamics of conventional vehicles can be approximated to electrified vehicle concepts. Therefore, various technical measures (turbocharger concepts, 48V electrical chargers etc.) and drive train designs (e.g. varying the final drive) are presented and evaluated in order to strengthen the vehicle’s customer-relevant transient dynamics. As a rating size the newly developed evaluation metric will be used.

Keywords: 48V, customer-oriented driving dynamics, electric charger, electrified vehicles, vehicle concepts

Procedia PDF Downloads 409
3969 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers

Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye

Abstract:

Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.

Keywords: energy, ibadan, heat - load, visual-basic.net

Procedia PDF Downloads 414
3968 Analysis of Senior Secondary II Students Performance/Approaches Exhibited in Solving Circle Geometry

Authors: Mukhtari Hussaini Muhammad, Abba Adamu

Abstract:

The paper will examine the approaches and solutions that will be offered by Senior Secondary School II Students (Demonstration Secondary School, Azare Bauchi State Northern Nigeria – Hausa/ Fulani predominant area) toward solving exercises related to the circle theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of the circumference. The Students will be divided in to 2 groups by given them numbers 1, 2; 1, 2; 1, 2, then all 1s formed group I and all 2s formed group II. Group I will be considered as control group in which the traditional method will be applied during instructions. Thus, the researcher will revise the concept of circle, state the theorem, prove the theorem and then solve examples. Group II, experimental group in which the concept of circle will be revised to the students and then the students will be asked to draw different circles, mark arcs, draw angle at the center, angle at the circumference then measure the angles constructed. The students will be asked to explain what they can infer/deduce from the angles measured and lastly, examples will be solved. During the next contact day, both groups will be subjected to solving exercises in the classroom related to the theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of circumference. The solution to the exercises will be marked, the scores compared/analysed using relevant statistical tool. It is expected that group II will perform better because of the method/ technique followed during instructions is more learner-centered. By exploiting the talents of the individual learners through listening to the views and asking them how they arrived at a solution will really improve learning and understanding.

Keywords: circle theorem, control group, experimental group, traditional method

Procedia PDF Downloads 199
3967 Development of Transparent Nano-Structured Super-Hydrophobic Coating on Glass and Evaluation of Anti-Dust Properties

Authors: Abhilasha Mishra, Neha Bhatt

Abstract:

Super-hydrophobicity is an effect in which a surface roughness and chemical composition are combined to produce unusual water and dust repellent surface. The super-hydrophobic surface is widely used in many applications such as windshields of the automobile, aircraft, lens, solar cells, roofing, boat hull, paints, etc. Four coating solutions were prepared by varying compositions of 1,1,1,3,3,3 hexametyldisilazane (HDMS) and tetraethylorthosilicate (TEOS) sol. These solutions were coated on glass slides by a spin coating method and etched at a high temperature ranging 250 -350 oC. All the coatings were studied for its different properties like water repellent, anti-dust, and transparency and contact angle measurements. Stability of coatings was also studied with respect to temperature, external environment, and pH. It was found that all coatings impart a significant super-hydrophobicity on a glass surface with contact angle ranging from 156o to 162o and have good stability in the external environment. The results of the different coatings were observed and compared with each other. On increasing layers of coatings the super-hydrophobicity and anti-dust properties increases but after 3 coatings the transparency of coating starts decreasing.

Keywords: super-hydrophobic, contact angle, coating, anti-dust

Procedia PDF Downloads 262
3966 Damage Analysis in Open Hole Composite Specimens by Acoustic Emission: Experimental Investigation

Authors: Youcef Faci, Ahmed Mebtouche, Badredine Maalem

Abstract:

n the present work, an experimental study is carried out using acoustic emission and DIC techniques to analyze the damage of open hole woven composite carbon/epoxy under solicitations. Damage mechanisms were identified based on acoustic emission parameters such as amplitude, energy, and cumulative account. The findings of the AE measurement were successfully identified by digital image correlation (DIC) measurements. The evolution value of bolt angle inclination during tensile tests was studied and analyzed. Consequently, the relationship between the bolt inclination angles during tensile tests associated with failure modes of fastened joints of composite materials is determined. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions are supported by microscopic visualizations of the composite specimen.

Keywords: tensile test, damage, acoustic emission, digital image correlation

Procedia PDF Downloads 75
3965 Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load

Authors: A. Aarabzadeh, R. Hizaji

Abstract:

Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.

Keywords: deep beam, cyclic load, reinforced concrete, fixed-ended

Procedia PDF Downloads 364
3964 Microstructure Analysis of TI-6AL-4V Friction Stir Welded Joints

Authors: P. Leo, E. Cerri, L. Fratini, G. Buffa

Abstract:

The Friction Stir Welding process uses an inert rotating mandrel and a force on the mandrel normal to the plane of the sheets to generate the frictional heat. The heat and the stirring action of the mandrel create a bond between the two sheets without melting the base metal. As matter of fact, the use of a solid state welding process limits the insurgence of defects, due to the presence of gas in melting bath, and avoids the negative effects of materials metallurgical transformation strictly connected with the change of phase. The industrial importance of Ti-6Al-4V alloy is well known. It provides an exceptional good balance of strength, ductility, fatigue and fracture properties together with good corrosion resistance and good metallurgical stability. In this paper, the authors analyze the microstructure of friction stir welded joints of Ti-6Al-4V processed at the same travel speed (35 mm/min) but at different rotation speeds (300-500 rpm). The microstructure of base material (BM), as result from both optical microscope and scanning electron microscope analysis is not homogenous. It is characterized by distorted α/β lamellar microstructure together with smashed zone of fragmented β layer and β retained grain boundary phase. The BM has been welded in the-as received state, without any previous heat treatment. Even the microstructure of the transverse and longitudinal sections of joints is not homogeneous. Close to the top of weld cross sections a much finer microstructure than the initial condition has been observed, while in the center of the joints the microstructure is less refined. Along longitudinal sections, the microstructure is characterized by equiaxed grains and lamellae. Both the length and area fraction of lamellas increases with distance from longitudinal axis. The hardness of joints is higher than that of BM. As the process temperature increases the average microhardness slightly decreases.

Keywords: friction stir welding, microhardness, microstructure, Ti-6Al-4V

Procedia PDF Downloads 383
3963 Effect of Incremental Forming Parameters on Titanium Alloys Properties

Authors: P. Homola, L. Novakova, V. Kafka, M. P. Oscoz

Abstract:

Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes.

Keywords: incremental forming, metallography, shear spinning, titanium alloys

Procedia PDF Downloads 241
3962 Analytical Method for Seismic Analysis of Shaft-Tunnel Junction under Longitudinal Excitations

Authors: Jinghua Zhang

Abstract:

Shaft-tunnel junction is a typical case of the structural nonuniformity in underground structures. The shaft and the tunnel possess greatly different structural features. Even under uniform excitations, they tend to behave discrepantly. Studies on shaft-tunnel junctions are mainly performed numerically. Shaking table tests are also conducted. Although many numerical and experimental data are obtained, an analytical solution still has great merits of gaining more insights into the shaft-tunnel problem. This paper will try to remedy the situation. Since the seismic responses of shaft-tunnel junctions are very related to directions of the excitations, they are studied in two scenarios: the longitudinal-excitation scenario and the transverse-excitation scenario. The former scenario will be addressed in this paper. Given that responses of the tunnel are highly dependent on the shaft, the analytical solutions would be developed firstly for the vertical shaft. Then, the seismic responses of the tunnel would be discussed. Since vertical shafts bear a resemblance to rigid caissons, the solution proposed in this paper is derived by introducing terms of shaft-tunnel and soil-tunnel interactions into equations originally developed for rigid caissons. The validity of the solution is examined by a validation model computed by finite element method. The mutual influence between the shaft and the tunnel is introduced. The soil-structure interactions are discussed parametrically based on the proposed equations. The shaft-tunnel relative displacement and the soil-tunnel relative stiffness are found to be the most important parameters affecting the magnitudes and distributions of the internal forces of the tunnel. A hinge-joint at the shaft-tunnel junction could significantly reduce the degree of stress concentration compared with a rigid joint.

Keywords: analytical solution, longitudinal excitation, numerical validation , shaft-tunnel junction

Procedia PDF Downloads 165
3961 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank

Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong

Abstract:

Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.

Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline

Procedia PDF Downloads 405
3960 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7

Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam

Abstract:

Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.

Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints

Procedia PDF Downloads 325
3959 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates

Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine

Abstract:

The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.

Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch

Procedia PDF Downloads 405
3958 Bilateral Simultaneous Acute Primary Angle Closure Glaucoma: A Remarkable Case

Authors: Nita Nurlaila Kadarwaty

Abstract:

Purpose: This study presents a rare case of bilateral Acute Primary Angle Closure Glaucoma (PACG). Method: A case report of a 64-year-old woman with a good outcome Acute PACG in both eyes who underwent phacotrabeculectomy surgery. Result: A 64-year-old woman complained of acute pain in both eyes, accompanied by decreased vision, photophobia, and seeing halos for three weeks. There was no history of trauma, steroid or other systemic drugs used, or intraocular surgery before. Ophthalmologic examination revealed a right eye (RE) visual acuity of 0.1, left eye (LE) 0.2. RE intraocular pressure (IOP) was 12 mmhg and LE: 36.4 mmHg in medication of timolol maleat ED and acetazolamide oral. Both eyes' anterior segments revealed mixed injection, corneal edema, shallow anterior chamber, posterior synechiae, mid-dilatation pupil with negative pupillary reflection, and cloudy lens without intumescent. There was a glaucomatous optic and closed iridocorneal angle on the gonioscopy. Initial treatments included oral acetazolamide and potassium aspartate 250 mg three times a day, timolol maleate ED 0.5% twice a day, and prednisolone acetate ED 1% four times a day. This patient underwent trabeculectomy, phacoemulsification, and implantation of IOL in both eyes. One week after the surgeries, both eyes showed decreased IOP and good visual improvement. Conclusion: Bilateral simultaneous Acute PACG is generally severe and results in a poor outcome. It causes rapidly progressive visual loss and is often irreversible. Phacotrabeculectomy has more benefits compared to only phacoemulsification for the intervention regarding the reduced IOP post-surgical.

Keywords: acute primary angle closure glaucoma, intraocular pressure, phacotrabeculectomy, glaucoma

Procedia PDF Downloads 78
3957 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic

Procedia PDF Downloads 429
3956 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis

Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv

Abstract:

The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.

Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, pareto analysis, RPN (Risk Priority Number)

Procedia PDF Downloads 406