Search results for: extended spectrum B-lactamase (ESBL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2550

Search results for: extended spectrum B-lactamase (ESBL)

2100 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial

Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew

Abstract:

Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.

Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration

Procedia PDF Downloads 266
2099 The Role of Androgens in Prediction of Success in Smoking Cessation in Women

Authors: Michaela Dušková, Kateřina Šimůnková, Martin Hill, Hana Hruškovičová, Hana Pospíšilová, Eva Králíková, Luboslav Stárka

Abstract:

Smoking represents the most widespread substance dependence in the world. Several studies show the nicotine's ability to alter women hormonal homeostasis. Women smokers have higher testosterone and lower estradiol levels throughout life compared to non-smoker women. We monitored the effect of smoking discontinuation on steroid spectrum with 40 premenopausal and 60 postmenopausal women smokers. These women had been examined before they discontinued smoking and also after 6, 12, 24, and 48 weeks of abstinence. At each examination, blood was collected to determine steroid spectrum (measured by GC-MS), LH, FSH, and SHBG (measured by IRMA). Repeated measures ANOVA model was used for evaluation of the data. The study has been approved by the local Ethics Committee. Given the small number of premenopausal women who endured not to smoke, only the first 6 week period data could be analyzed. A slight increase in androgens after the smoking discontinuation occurred. In postmenopausal women, an increase in testosterone, dihydrotestosterone, dehydroepiandrosterone, and other androgens occurred, too. Nicotine replacement therapy, weight changes, and age does not play any role in the androgen level increase. The higher androgens levels correlated with failure in smoking cessation. Women smokers have higher androgen levels, which might play a role in smoking dependence development. Women successful in smoking cessation, compared to the non-successful ones, have lower androgen levels initially and also after smoking discontinuation. The question is what androgen levels women have before they start smoking.

Keywords: addiction, smoking, cessation, androgens

Procedia PDF Downloads 378
2098 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 101
2097 Money Laundering Risk Assessment in the Banking Institutions: An Experimental Approach

Authors: Yusarina Mat-Isa, Zuraidah Mohd-Sanusi, Mohd-Nizal Haniff, Paul A. Barnes

Abstract:

In view that money laundering has become eminent for banking institutions, it is an obligation for the banking institutions to adopt a risk-based approach as the integral component of the accepted policies on anti-money laundering. In doing so, those involved with the banking operations are the most critical group of personnel as these are the people who deal with the day-to-day operations of the banking institutions and are obligated to form a judgement on the level of impending risk. This requirement is extended to all relevant banking institutions staff, such as tellers and customer account representatives for them to identify suspicious customers and escalate it to the relevant authorities. Banking institutions staffs, however, face enormous challenges in identifying and distinguishing money launderers from other legitimate customers seeking genuine banking transactions. Banking institutions staffs are mostly educated and trained with the business objective in mind to serve the customers and are not trained to be “detectives with a detective’s power of observation”. Despite increasing awareness as well as trainings conducted for the banking institutions staff, their competency in assessing money laundering risk is still insufficient. Several gaps have prompted this study including the lack of behavioural perspectives in the assessment of money laundering risk in the banking institutions. Utilizing experimental approach, respondents are randomly assigned within a controlled setting with manipulated situations upon which judgement of the respondents is solicited based on various observations related to the situations. The study suggests that it is imperative that informed judgement is exercised in arriving at the decision to proceed with the banking services required by the customers. Judgement forms a basis of opinion for the banking institution staff to decide if the customers posed money laundering risk. Failure to exercise good judgement could results in losses and absorption of unnecessary risk into the banking institutions. Although the banking institutions are exposed with choices of automated solutions in assessing money laundering risk, the human factor in assessing the risk is indispensable. Individual staff in the banking institutions is the first line of defence who are responsible for screening the impending risk of any customer soliciting for banking services. At the end of the spectrum, the individual role involvement on the subject of money laundering risk assessment is not a substitute for automated solutions as human judgement is inimitable.

Keywords: banking institutions, experimental approach, money laundering, risk assessment

Procedia PDF Downloads 262
2096 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses

Authors: Cesar Torres, Robert Briber, Nam Sun Wang

Abstract:

Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.

Keywords: contact lenses, drug delivery, controlled release, ionic surfactant

Procedia PDF Downloads 139
2095 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques

Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet

Abstract:

5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.

Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics

Procedia PDF Downloads 59
2094 Challenging Weak Central Coherence: An Exploration of Neurological Evidence from Visual Processing and Linguistic Studies in Autism Spectrum Disorder

Authors: Jessica Scher Lisa, Eric Shyman

Abstract:

Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by persistent deficits in social communication and social interaction (i.e. deficits in social-emotional reciprocity, nonverbal communicative behaviors, and establishing/maintaining social relationships), as well as by the presence of repetitive behaviors and perseverative areas of interest (i.e. stereotyped or receptive motor movements, use of objects, or speech, rigidity, restricted interests, and hypo or hyperactivity to sensory input or unusual interest in sensory aspects of the environment). Additionally, diagnoses of ASD require the presentation of symptoms in the early developmental period, marked impairments in adaptive functioning, and a lack of explanation by general intellectual impairment or global developmental delay (although these conditions may be co-occurring). Over the past several decades, many theories have been developed in an effort to explain the root cause of ASD in terms of atypical central cognitive processes. The field of neuroscience is increasingly finding structural and functional differences between autistic and neurotypical individuals using neuro-imaging technology. One main area this research has focused upon is in visuospatial processing, with specific attention to the notion of ‘weak central coherence’ (WCC). This paper offers an analysis of findings from selected studies in order to explore research that challenges the ‘deficit’ characterization of a weak central coherence theory as opposed to a ‘superiority’ characterization of strong local coherence. The weak central coherence theory has long been both supported and refuted in the ASD literature and has most recently been increasingly challenged by advances in neuroscience. The selected studies lend evidence to the notion of amplified localized perception rather than deficient global perception. In other words, WCC may represent superiority in ‘local processing’ rather than a deficit in global processing. Additionally, the right hemisphere and the specific area of the extrastriate appear to be key in both the visual and lexicosemantic process. Overactivity in the striate region seems to suggest inaccuracy in semantic language, which lends itself to support for the link between the striate region and the atypical organization of the lexicosemantic system in ASD.

Keywords: autism spectrum disorder, neurology, visual processing, weak coherence

Procedia PDF Downloads 123
2093 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities

Authors: Pranjal Johri, Misbah Ul-Islam

Abstract:

Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing.

Keywords: power transfoemrs, no load current, DGA, power factor

Procedia PDF Downloads 94
2092 Challenges Faced by Teachers during Teaching with Developmental Disable Students at Primary Level in Lahore

Authors: Zikra Faiz, Nisar Abid, Muhammad Waqas

Abstract:

This study aim to examine the challenges faced by teachers during teaching to those students who are intellectually disable, suffering from autism spectrum disorder, learning disability, and ADHD at the primary level. The descriptive research design of quantitative approach was adopted to conduct this study; a cross-sectional survey method was used to collect data. The sample was comprised of 258 (43 male and 215 female) teachers who teach at special education institutes of Lahore district selected through proportionate stratified random sampling technique. Self-developed questionnaire was used which was comprised of 22 closed-ended items. Collected data were analyzed through descriptive and inferential statistical techniques by using Statistical Package for Social Sciences (SPSS) version 21. Results show that teachers faced problems during group activities, to handle bad behavior and different disabilities of students. It is concluded that there was a significant difference between male and female teachers perceptions about challenges faced during teaching with developmental disable students. Furthermore, there was a significant difference exist in the perceptions of teachers regarding challenges faced during teaching to students with developmental disabilities in term of teachers’ age and area of specialization. It is recommended that developmentally disable student require extra attention so that, teacher should trained through pre-service and in-service training to teach developmentally disabled students.

Keywords: intellectual disability, autism spectrum disorder, ADHD, learning disability

Procedia PDF Downloads 133
2091 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 148
2090 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation

Authors: Hugo Sampaio Libero, Max de Castro Magalhaes

Abstract:

The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions are described. An experimental setup is performed to aid this investigation. The experimental tests have shown that the vibration generation in the walls and floors is directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms, respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.

Keywords: vibration transmission, vibration reduction index, impact excitation, experimental tests

Procedia PDF Downloads 89
2089 Effects of Social Stories toward Social Interaction of Students with Autism Spectrum Disorder

Authors: Sawitree Wongkittirungrueang

Abstract:

The objectives of this research were: 1) to study the effect of social stories on social interaction of students with autism. The sample was Pratomsuksa level 5 student with autism, Khon Kaen University Demonstration School, who was diagnosed by the Physician as High Functioning Autism since he was able to read, write, calculate and was studying in inclusive classroom. However, he still had disability in social interaction to participate in social activity group and communication. He could not learn how to develop friendship or create relationship. He had inappropriate behavior in social context. He did not understand complex social situations. In addition, he did seemed not know time and place. He was not able to understand feeling of oneself as well as the others. Consequently, he could not express his emotion appropriately. He did not understand or express his non-verbal language for communicating with friends. He lacked of common interest or emotion with nearby persons. He greeted inappropriately or was not interested in greeting. In addition, he did not have eye contact. He used inadequate language etc. He was elected by Purposive Sampling. His parents were willing to allow them to participate in this study. The research instruments were the lesson plan of social stories, and the picture book of social stories. The instruments used for data collection, were the social interaction evaluation of autistic students. This research was Quasi Experimental Research as One Group Pre-test, Post-test Design. For the Pre-test, the experiment was conducted by social stories. Then, the Post-test was implemented. The statistic used for data analysis, included the Mean, and Standard Deviation. The research findings were shown by Graph. The findings revealed hat the autistic students taught by social stories indicated better social interaction after being taught by social stories.

Keywords: social story, autism spectrum disorder (ASD), autism, social interaction

Procedia PDF Downloads 243
2088 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes

Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana

Abstract:

The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis

Procedia PDF Downloads 45
2087 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems

Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick

Abstract:

This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.

Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms

Procedia PDF Downloads 230
2086 A Novel Method for Isolation of Kaempferol and Quercetin from Podophyllum Hexandrum Rhizome

Authors: S. B. Bhandare, K. S. Laddha

Abstract:

Podphyllum hexandrum belonging to family berberidaceae has gained attention in phytochemical and pharmacological research as it shows excellent anticancer activity and has been used in treatment of skin diseases, sunburns and radioprotection. Chemically it contains lignans and flavonoids such as kaempferol, quercetin and their glycosides. Objective: To isolate and identify Kaempferol and Quercetin from Podophyllum rhizome. Method: The powdered rhizome of Podophyllum hexandrum was subjected to soxhlet extraction with methanol. This methanolic extract is used to obtain podophyllin. Podohyllin was extracted with ethyl acetate and this extract was then concentrated and subjected to column chromatography to obtain purified kaempferol and quercetin. Result: Isolated kaempferol, quercetin were light yellow and dark yellow in colour respectively. TLC of the isolated compounds was performed using chloroform: methanol (9:1) which showed single band on silica plate at Rf 0.6 and 0.4 for kaempferol and quercetin. UV spectrometric studies showed UV maxima (methanol) at 259, 360 nm and 260, 370 nm which are identical with standard kaempferol and quercetin respectively. Both IR spectra exhibited prominent absorption bands for free phenolic OH at 3277 and 3296.2 cm-1 and for conjugated C=O at 1597 and 1659.7 cm-1 respectively. The mass spectrum of kaempferol and quercetin showed (M+1) peak at m/z 287 and 303.09 respectively. 1H NMR analysis of both isolated compounds exhibited typical four-peak pattern of two doublets at δ 6.86 and δ 8.01 which was assigned to H-3’,5’ and H-2’,6’ respectively. Absence of signals less than δ 6.81 in the 1H NMR spectrum supported the aromatic nature of compound. Kaempferol and Quercetin showed 98.1% and 97% purity by HPLC at UV 370 nm. Conclusion: Easy and simple method for isolation of Kaempferol and Quercetin was developed and their structures were confirmed by UV, IR, NMR and mass studies. Method has shown good reproducibility, yield and purity.

Keywords: flavonoids, kaempferol, podophyllum rhizome, quercetin

Procedia PDF Downloads 301
2085 Applied Behavior Analysis and Speech Language Pathology Interprofessional Practice to Support Autistic Children with Complex Communication Needs

Authors: Kimberly Ho, Maeve Donnelly

Abstract:

In this paper, a speech-language pathologist (SLP) and Board Certified Behavior Analysts® (BCBA) with a combined professional experience of almost 50 years will discuss their experiences working with individuals on the autism spectrum. Some autistic children require augmentative and alternative communication (AAC) to meet their communication needs. These learners present with unique strengths and challenges, often requiring intervention from a team of professionals to generalize skills across environments. Collaboration between SLPs and BCBAs will be discussed in terms of strengths and challenges. Applied behavior analysis (ABA) will be defined and explained in the context of the treatment of learners on the autism spectrum with complex communication needs (CCN). The requirement for collaboration will be discussed by the governing boards for both BCBAs and SLPs. The strengths of each discipline will be compared along with difficulties faced when professionals experience disciplinary centrism. The challenges in teaching autistic learners with CCN will be reviewed. Case studies will be shared in which BCBAs and SLPs engage in interprofessional practice to support autistic children who use AAC to participate in a social skills group. Learner outcomes will be shared and assessed through both an SLP and BCBA perspective. Finally, ideas will be provided to promote the interprofessional practice, including establishing a shared framework, avoiding professional jargon and moving towards common terminology, and focusing on the data to ensure the efficacy of treatment.

Keywords: autism, cross disciplinary collaboration, augmentative and alternative communication, generalization

Procedia PDF Downloads 121
2084 Evaluation of a Driver Training Intervention for People on the Autism Spectrum: A Multi-Site Randomized Control Trial

Authors: P. Vindin, R. Cordier, N. J. Wilson, H. Lee

Abstract:

Engagement in community-based activities such as education, employment, and social relationships can improve the quality of life for individuals with Autism Spectrum Disorder (ASD). Community mobility is vital to attaining independence for individuals with ASD. Learning to drive and gaining a driver’s license is a critical link to community mobility; however, for individuals with ASD acquiring safe driving skills can be a challenging process. Issues related to anxiety, executive function, and social communication may affect driving behaviours. Driving training and education aimed at addressing barriers faced by learner drivers with ASD can help them improve their driving performance. A multi-site randomized controlled trial (RCT) was conducted to evaluate the effectiveness of an autism-specific driving training intervention for improving the on-road driving performance of learner drivers with ASD. The intervention was delivered via a training manual and interactive website consisting of five modules covering varying driving environments starting with a focus on off-road preparations and progressing through basic to complex driving skill mastery. Seventy-two learner drivers with ASD aged 16 to 35 were randomized using a blinded group allocation procedure into either the intervention or control group. The intervention group received 10 driving lessons with the instructors trained in the use of an autism-specific driving training protocol, whereas the control group received 10 driving lessons as usual. Learner drivers completed a pre- and post-observation drive using a standardized driving route to measure driving performance using the Driving Performance Checklist (DPC). They also completed anxiety, executive function, and social responsiveness measures. The findings showed that there were significant improvements in driving performance for both the intervention (d = 1.02) and the control group (d = 1.15). However, the differences were not significant between groups (p = 0.614) or study sites (p = 0.842). None of the potential moderator variables (anxiety, cognition, social responsiveness, and driving instructor experience) influenced driving performance. This study is an important step toward improving community mobility for individuals with ASD showing that an autism-specific driving training intervention can improve the driving performance of leaner drivers with ASD. It also highlighted the complexity of conducting a multi-site design even when sites were matched according to geography and traffic conditions. Driving instructors also need more and clearer information on how to communicate with learner drivers with restricted verbal expression.

Keywords: autism spectrum disorder, community mobility, driving training, transportation

Procedia PDF Downloads 129
2083 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading

Authors: Jerome Joshi

Abstract:

The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.

Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus

Procedia PDF Downloads 76
2082 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA

Authors: Marek Dosbaba

Abstract:

Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.

Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data

Procedia PDF Downloads 105
2081 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring

Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove

Abstract:

Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.

Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor

Procedia PDF Downloads 72
2080 Bacteriocin-Antibiotic Synergetic Consortia: Augmenting Antimicrobial Activity and Expanding the Inhibition Spectrum of Vancomycin Resistant and Methicillin Resistant Staphylococcus aureus

Authors: Asma Bashir, Neha Farid, Kashif Ali, Kiran Fatima

Abstract:

Background: Bacteriocins are a subclass of antimicrobial peptides that are becoming extremely important in treatments. It is possible to utilise bacteriocins in place of or in addition to traditional antibiotics. It is possible to treat a variety of infections, including Vancomycin-Resistant Staphylococcus aureus (VRSA) and Methicillin-Resistant Staphylococcus aureus (MRSA), using the targeted spectrum of activity of these microorganisms. Method: This study aimed to examine the efficiency of antibiotics and bacteriocin against VRSA and MRSA. The effects of bacteriocins, such as enterocin KAE01, enterocin KAE03, enterocin KAE05, and enterocin KAE06 isolated from Enterococcus faecium strains, alone and in combination with vancomycin and methicillin antibiotics were examined. The selection technique utilized the minimum inhibitory concentrations (MICs) against Gram-positive indicator strain ATCC 6538 Methicillin-Resistant Staphylococcus aureus (MRSA) and indicator strain KSA 02 Vancomycin-Resistant Staphylococcus aureus (VRSA). Results: We report the isolation and identification of enterocins KAE01, KAE03, KAE05, and KAE06 from food isolates of Enterococcus faecium (KAE01, KAE03, KAE05, and KAE06). After isolating the protein, it was partially purified with ammonium sulphate precipitation and purified with fast protein liquid chromatography (FPLC) procedures. Combinations of enterocin KAE01, 1 citric acid, 1 lactic acid, and microcin J25, 1 reuterin, 1 citric acid, and microcin J25, 1 reuterin, 1 lactic acid shown synergistic benefits (FIC index = 0.5) against Vancomycin-Resistant Staphylococcus aureus (VRSA). In addition, a moderately synergistic (FIC index = 0.75) interaction was seen between pediocin PA-1, 1 citric acid, 1 lactic acid, and reuterin 1 citric acid, 1 lactic acid against L. ivanovii HPB28. In the presence of acids, nisin Z exhibited a modestly synergistic effect (FIC index = 0.625-0.75); however, it exhibited additive effects (FIC index = 1) when combined with reuterin or pediocin PA-1 against L. ivanovii HPB28. The efficacy of synergistic consortiums against Gram-positive bacteria was examined. Conclusion: Combining antimicrobials with various modes of action boosted efficacy and expanded the spectrum of inhibition, particularly against multidrug-resistant pathogens, according to our research.

Keywords: Enterococcus faecium, bacteriocin, antimicrobial resistance, antagonistic activity, vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus aureus

Procedia PDF Downloads 144
2079 Radiation Protection Assessment of the Emission of a d-t Neutron Generator: Simulations with MCNP Code and Experimental Measurements in Different Operating Conditions

Authors: G. M. Contessa, L. Lepore, G. Gandolfo, C. Poggi, N. Cherubini, R. Remetti, S. Sandri

Abstract:

Practical guidelines are provided in this work for the safe use of a portable d-t Thermo Scientific MP-320 neutron generator producing pulsed 14.1 MeV neutron beams. The neutron generator’s emission was tested experimentally and reproduced by MCNPX Monte Carlo code. Simulations were particularly accurate, even generator’s internal components were reproduced on the basis of ad-hoc collected X-ray radiographic images. Measurement campaigns were conducted under different standard experimental conditions using an LB 6411 neutron detector properly calibrated at three different energies, and comparing simulated and experimental data. In order to estimate the dose to the operator vs. the operating conditions and the energy spectrum, the most appropriate value of the conversion factor between neutron fluence and ambient dose equivalent has been identified, taking into account both direct and scattered components. The results of the simulations show that, in real situations, when there is no information about the neutron spectrum at the point where the dose has to be evaluated, it is possible - and in any case conservative - to convert the measured value of the count rate by means of the conversion factor corresponding to 14 MeV energy. This outcome has a general value when using this type of generator, enabling a more accurate design of experimental activities in different setups. The increasingly widespread use of this type of device for industrial and medical applications makes the results of this work of interest in different situations, especially as a support for the definition of appropriate radiation protection procedures and, in general, for risk analysis.

Keywords: instrumentation and monitoring, management of radiological safety, measurement of individual dose, radiation protection of workers

Procedia PDF Downloads 129
2078 Carbapenem Usage in Medical Wards: An Antibiotic Stewardship Feedback Project

Authors: Choon Seong Ng, P. Petrick, C. L. Lau

Abstract:

Background: Carbapenem-resistant isolates have been increasingly reported recently. Carbapenem stewardship is designed to optimize its usage particularly among medical wards with high prevalence of carbapenem prescriptions to combat such emerging resistance. Carbapenem stewardship programmes (CSP) can reduce antibiotic use but clinical outcome of such measures needs further evaluation. We examined this in a prospective manner using feedback mechanism. Methods: Our single-center prospective cohort study involved all carbapenem prescriptions across the medical wards (including medical patients admitted to intensive care unit) in a tertiary university hospital setting. The impact of such stewardship was analysed according to the accepted and the rejected groups. The primary endpoint was safety. Safety measure applied in this study was the death at 1 month. Secondary endpoints included length of hospitalisation and readmission. Results: Over the 19 months’ period, input from 144 carbapenem prescriptions was analysed on the basis of acceptance of our CSP recommendations on the use of carbapenems. Recommendations made were as follows : de-escalation of carbapenem; stopping the carbapenem; use for a short duration of 5-7 days; required prolonged duration in the case of carbapenem-sensitive Extended Spectrum Beta-Lactamases bacteremia; dose adjustment; and surgical intervention for removal of septic foci. De-escalation, shorten duration of carbapenem and carbapenem cessation comprised 79% of the recommendations. Acceptance rate was 57%. Those who accepted CSP recommendations had no increase in mortality (p = 0.92), had a shorter length of hospital stay (LOS) and had cost-saving. Infection-related deaths were found to be higher among those in the rejected group. Moreover, three rejected cases (6%) among all non-indicated cases (n = 50) were found to have developed carbapenem-resistant isolates. Lastly, Pitt’s bacteremia score appeared to be a key element affecting the carbapenem prescription’s behaviour in this trial. Conclusions: Carbapenem stewardship program in the medical wards not only saves money, but most importantly it is safe and does not harm the patients with added benefits of reducing the length of hospital stay. However, more time is needed to engage the primary clinical teams by formal clinical presentation and immediate personal feedback by senior Infectious Disease (ID) personnel to increase its acceptance.

Keywords: audit and feedback, carbapenem stewardship, medical wards, university hospital

Procedia PDF Downloads 201
2077 Molecular Dynamics Study of Ferrocene in Low and Room Temperatures

Authors: Feng Wang, Vladislav Vasilyev

Abstract:

Ferrocene (Fe(C5H5)2, i.e., di-cyclopentadienyle iron (FeCp2) or Fc) is a unique example of ‘wrong but seminal’ in chemistry history. It has significant applications in a number of areas such as homogeneous catalysis, polymer chemistry, molecular sensing, and nonlinear optical materials. However, the ‘molecular carousel’ has been a ‘notoriously difficult example’ and subject to long debate for its conformation and properties. Ferrocene is a dynamic molecule. As a result, understanding of the dynamical properties of ferrocene is very important to understand the conformational properties of Fc. In the present study, molecular dynamic (MD) simulations are performed. In the simulation, we use 5 geometrical parameters to define the overall conformation of Fc and all the rest is a thermal noise. The five parameters are defined as: three parameters d---the distance between two Cp planes, α and δ to define the relative positions of the Cp planes, in which α is the angle of the Cp tilt and δ the angle the two Cp plane rotation like a carousel. Two parameters to position the Fe atom between two Cps, i.e., d1 for Fe-Cp1 and d2 for Fe-Cp2 distances. Our preliminary MD simulation discovered the five parameters behave differently. Distances of Fe to the Cp planes show that they are independent, practically identical without correlation. The relative position of two Cp rings, α, indicates that the two Cp planes are most likely not in a parallel position, rather, they tilt in a small angle α≠ 0°. The mean plane dihedral angle δ ≠ 0°. Moreover, δ is neither 0° nor 36°, indicating under those conditions, Fc is neither in a perfect eclipsed structure nor a perfect staggered structure. The simulations show that when the temperature is above 80K, the conformers are virtually in free rotations, A very interesting result from the MD simulation is the five C-Fe bond distances from the same Cp ring. They are surprisingly not identical but in three groups of 2, 2 and 1. We describe the pentagon formed by five carbon atoms as ‘turtle swimming’ for the motion of the Cp rings of Fc as shown in their dynamical animation video. The Fe- C(1) and Fe-C(2) which are identical as ‘the turtle back legs’, Fe-C(3) and Fe-C(4) which are also identical as turtle front paws’, and Fe-C(5) ---’the turtle head’. Such as ‘turtle swimming’ analog may be able to explain the single substituted derivatives of Fc. Again, the mean Fe-C distance obtained from MD simulation is larger than the quantum mechanically calculated Fe-C distances for eclipsed and staggered Fc, with larger deviation with respect to the eclipsed Fc than the staggered Fc. The same trend is obtained for the five Fe-C-H angles from same Cp ring of Fc. The simulated mean IR spectrum at 7K shows split spectral peaks at approximately 470 cm-1 and 488 cm-1, in excellent agreement with quantum mechanically calculated gas phase IR spectrum for eclipsed Fc. As the temperature increases over 80K, the clearly splitting IR spectrum become a very board single peak. Preliminary MD results will be presented.

Keywords: ferrocene conformation, molecular dynamics simulation, conformer orientation, eclipsed and staggered ferrocene

Procedia PDF Downloads 214
2076 Modeling Factors Influencing Online Shopping Intention among Consumers in Nigeria: A Proposed Framework

Authors: Abubakar Mukhtar Yakasai, Muhammad Tahir Jan

Abstract:

Purpose: This paper is aimed at exploring factors influencing online shopping intention among the young consumers in Nigeria. Design/Methodology/approach: The paper adopted and extended Technology Acceptance Model (TAM) as the basis for literature review. Additionally, the paper proposed a framework with the inclusion of culture as a moderating factor of consumer online shopping intention among consumers in Nigeria. Findings: Despite high rate of internet penetration in Nigerian, as well as the rapid advancement of online shopping in the world, little attention was paid to this important revolution specifically among Nigeria’s consumers. Based on the review of extant literature, the TAM extended to include perceived risk and enjoyment (PR and PE) was discovered to be a better alternative framework for predicting Nigeria’s young consumers’ online shopping intention. The moderating effect of culture in the proposed model is shown to help immensely in ascertaining differences, if any, between various cultural groups among online shoppers in Nigeria. Originality/ value: The critical analysis of different factors will assist practitioners (like online retailers, e-marketing managers, website developers, etc.) by signifying which combinations of factors can best predict consumer online shopping behaviour in particular instances, thereby resulting in effective value delivery. Online shopping is a newly adopted technology in Nigeria, hence the paper will give a clear focus for effective e-marketing strategy. In addition, the proposed framework in this paper will guide future researchers by providing a tool for systematic evaluation and testing of real empirical situation of online shopping in Nigeria.

Keywords: online shopping, perceived ease of use, perceived usefulness, perceived enjoyment, technology acceptance model, Nigeria

Procedia PDF Downloads 274
2075 Prevalence and Occupational Factors Associated with Low Back Pain among the Female Garment Workers: A Cross-Sectional Study in Bangladesh

Authors: Fazle Rabbi, Mashuda Khanom Tithi, Tasnim Mirza, Sanjida Rowshan Anannya, Ahmed Hossain

Abstract:

Background: Low Back Pain (LBP) is one of the common health problems among the garment workers that causes workers absenteeism from the work. The purpose of the study is to identify the association between occupational factors and LBP among the female garment workers in Bangladesh. Materials and Methods: A cross-sectional study was conducted with 487 female garment workers from three compliant garment factories of Bangladesh. Face-to-face interview on four different LBP measures along with questions on socio-demographic, occupational, and physical factors were used to collect the data. Result: The prevalence rates for LBP lasts for at least one day during the last six months, chronic pain, intense pain, and seeking medical care for LBP were found 63.04%, 38.60%, 13.76%, and 18.89%, respectively among the female garments workers. The multivariate logistic regression analysis indicates that duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) are positively associated with LBP. Besides, age, BMI, family income, marital status and number of children are also found positively associated with the LBP measures. Conclusion: The prevalence of LBP among female garment workers in Bangladesh is found high. The duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) play a significant role in developing LBP among the female workers. Factories need to consider training programs on the appropriate technique of weight bearing. It is also important to conduct regular screening programs to identify LBP, especially with married, overweight/obese and older age group to reduce the occurrence of LBP.

Keywords: Bangladesh, garment workers, low back pain, occupational health

Procedia PDF Downloads 196
2074 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens

Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader

Abstract:

In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.

Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles

Procedia PDF Downloads 489
2073 Effect of Oral Clonidine Premedication on Subarachnoid Block Characteristics of 0.5 % Hyperbaric Bupivacaine for Laparoscopic Gynecological Procedures – A Randomized Control Study

Authors: Buchh Aqsa, Inayat Umar

Abstract:

Background- Clonidine, α 2 agonist, possesses several properties to make it valuable adjuvant for spinal anesthesia. The study was aimed to evaluate the clinical effects of oral clonidine premedication for laparoscopic gynecological procedures under subarachnoid block. Patients and method- Sixtyfour adult female patients of ASA physical status I and II, aged 25 to 45 years and scheduled for laparoscopic gynecological procedures under the subarachnoid block, were randomized into two comparable equal groups of 32 patients each to received either oral clonidine, 100 µg (Group I) or placebo (Group II), 90 minutes before the procedure. Subarachnoid block was established with of 3.5 ml of 0.5% hyperbaric bupivacaine in all patients. Onset and duration of sensory and motor block, maximum cephalad level, and the regression time to reach S1 sensory level were assessed as primary end points. Sedation, hemodynamic variability, and respiratory depression or any other side effects were evaluated as secondary outcomes. Results- The demographic profile was comparable. The intraoperative hemodynamic parameters showed significant differences between groups. Oral clonidine was accelerated the onset time of sensory and motor blockade and extended the duration of sensory block (216.4 ± 23.3 min versus 165 ± 37.2 min, P <0.05). The duration of motor block showed no significant difference. The sedation score was more than 2 in the clonidine group as compared to the control group. Conclusion- Oral clonidine premedication has extended the duration of sensory analgesia with arousable sedation. It also prevented the post spinal shivering of the subarachnoid block.

Keywords: oral clonidine, subarachnoid block, sensory analgesia, laparoscopic gynaecological

Procedia PDF Downloads 76
2072 Real-Time Radar Tracking Based on Nonlinear Kalman Filter

Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed

Abstract:

To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.

Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment

Procedia PDF Downloads 139
2071 Functional Aspects of Carbonic Anhydrase

Authors: Bashistha Kumar Kanth, Seung Pil Pack

Abstract:

Carbonic anhydrase is ubiquitously distributed in organisms, and is fundamental to many eukaryotic biological processes such as photosynthesis, respiration, CO2 and ion transport, calcification and acid–base balance. However, CA occurs across the spectrum of prokaryotic metabolism in both the archaea and bacteria domains and many individual species contain more than one class. In this review, various roles of CA involved in cellular mechanism are presented to find out the CA functions applicable for industrial use.

Keywords: carbonic anhydrase, mechanism, CO2 sequestration, respiration

Procedia PDF Downloads 487