Search results for: binary images
2550 Diversity Indices as a Tool for Evaluating Quality of Water Ways
Authors: Khadra Ahmed, Khaled Kheireldin
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: planktons, diversity indices, water quality index, water ways
Procedia PDF Downloads 5192549 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method
Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri
Abstract:
Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.Keywords: unsharp masking, blur image, sub-region gradient, image enhancement
Procedia PDF Downloads 2152548 Towards Update a Road Map Solution: Use of Information Obtained by the Extraction of Road Network and Its Nodes from a Satellite Image
Authors: Z. Nougrara, J. Meunier
Abstract:
In this paper, we present a new approach for extracting roads, there road network and its nodes from satellite image representing regions in Algeria. Our approach is related to our previous research work. It is founded on the information theory and the mathematical morphology. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. The main interest of this study is to solve the problem of the automatic mapping from satellite images. This study is thus applied for that the geographical representation of the images is as near as possible to the reality.Keywords: nodes, road network, satellite image, updating a road map
Procedia PDF Downloads 4262547 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images
Authors: Barun Raychaudhuri
Abstract:
A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.Keywords: hyperion, hyperspectral, Kolkata, water depth
Procedia PDF Downloads 2472546 Visibility of the Borders of the Mandibular Canal: A Comparative in Vitro Study Using Digital Panoramic Radiography, Reformatted Panoramic Radiography and Cross Sectional Cone Beam Computed Tomography
Authors: Keerthilatha Pai, Sakshi Kamra
Abstract:
Objectives: Determining the position of the mandibular canal prior to implant placement and surgeries of the posterior mandible are important to avoid the nerve injury. The visibility of the mandibular canal varies according to the imaging modality. Although panoramic radiography is the most common, slowly cone beam computed tomography is replacing it. This study was conducted with an aim to determine and compare the visibility of superior and inferior borders of the mandibular canal in digital panoramic radiograph, reformatted panoramic radiograph and cross-sectional images of cone beam computed tomography. Study design: digital panoramic, reformatted panoramic radiograph and cross sectional CBCT images of 25 human mandibles were evaluated for the visibility of the superior and inferior borders of the mandibular canal according to a 5 point scoring criteria. Also, the canal was evaluated as completely visible, partially visible and not visible. The mean scores and visibility percentage of all the imaging modalities were determined and compared. The interobserver and intraobserver agreement in the visualization of the superior and inferior borders of the mandibular canal were determined. Results: The superior and inferior borders of the mandibular canal were completely visible in 47% of the samples in digital panoramic, 63% in reformatted panoramic and 75.6% in CBCT cross-sectional images. The mandibular canal was invisible in 24% of samples in digital panoramic, 19% in reformatted panoramic and 2% in cross-sectional CBCT images. Maximum visibility was seen in Zone 5 and least visibility in Zone 1. On comparison of all the imaging modalities, CBCT cross-sectional images showed better visibility of superior border in Zones 2,3,4,6 and inferior border in Zones 2,3,4,6. The difference was statistically significant. Conclusion: CBCT cross-sectional images were much superior in the visualization of the mandibular canal in comparison to reformatted and digital panoramic radiographs. The inferior border was better visualized in comparison to the superior border in digital panoramic imaging. The mandibular canal was maximumly visible in posterior one-third region of the mandible and the visibility decreased towards the mental foramen.Keywords: cone beam computed tomography, mandibular canal, reformatted panoramic radiograph, visualization
Procedia PDF Downloads 1282545 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform
Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal
Abstract:
This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.Keywords: improvement, brain, matlab, markers, boundaries
Procedia PDF Downloads 5162544 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures
Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua
Abstract:
This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.Keywords: acquisition, signal processing, ultrasound, SAFT, HMI
Procedia PDF Downloads 1072543 Parallel Processing in near Absence of Attention: A Study Using Dual-Task Paradigm
Authors: Aarushi Agarwal, Tara Singh, I.L Singh, Anju Lata Singh, Trayambak Tiwari
Abstract:
Simple discrimination in near absence of attention has been widely observed. Dual-task studies with natural scenes studies have been claimed as being preattentive in nature that facilitated categorization simultaneously with the attentional demanding task. So in this study, multiple images at the periphery are presented, initiating parallel processing in near absence of attention. For the central demanding task rotated letters were presented in both conditions, while in periphery natural and animal images were presented. To understand the breakpoint of ability to perform in near absence of attention one, two and three peripheral images were presented simultaneously with central task and subjects had to respond when all belong to the same category. Individual participant performance did not show a significant difference in both conditions central and peripheral task when the single peripheral image was shown. In case of two images high-level parallel processing could take place with little attentional resources. The eye tracking results supports the evidence as no major saccade was made in a large number of trials. Three image presentations proved to be a breaking point of the capacities to perform outside attentional assistance as participants showed a confused eye gaze pattern which failed to make the natural and animal image discriminations. Thus, we can conclude attention and awareness being independent mechanisms having limited capacities.Keywords: attention, dual task pardigm, parallel processing, break point, saccade
Procedia PDF Downloads 2192542 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 1532541 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 2152540 Igbo Art: A Reflection of the Igbo’s Visual Culture
Authors: David Osa-Egonwa
Abstract:
Visual culture is the expression of the norms and social behavior of a society in visual images. A reflection simply shows you how you look when you stand before a mirror, a clear water or stream. The mirror does not alter, improve or distort your original appearance, neither does it show you a caricature of what stands before it, this is the case with visual images created by a tribe or society. The ‘uli’ is hand drawn body design done on Igbo women and speaks of a culture of body adornment which is a practice that is appreciated by that tribe. The use of pattern of the gliding python snake ‘ije eke’ or ‘ijeagwo’ for wall painting speaks of the Igbo culture as one that appreciates wall paintings based on these patterns. Modern life came and brought a lot of change to the Igbo-speaking people of Nigeria. Change cloaked in the garment of Westernization has influenced the culture of the Igbos. This has resulted in a problem which is a break in the cultural practice that has also affected art produced by the Igbos. Before the colonial masters arrived and changed the established culture practiced by the Igbos, visual images were created that retained the culture of this people. To bring this point to limelight, this paper has adopted a historical method. A large number of works produced during pre and post-colonial era which range from sculptural pieces, paintings and other artifacts, just to mention a few, were studied carefully and it was discovered that the visual images hold the culture or aspects of the culture of the Igbos in their renditions and can rightly serve as a mirror of the Igbo visual culture.Keywords: artistic renditions, historical method, Igbo visual culture, changes
Procedia PDF Downloads 1912539 Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor
Authors: B. L. Gadiga
Abstract:
This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.Keywords: vegetation, NDVI, SPOT-vegetation, ecology, degradation
Procedia PDF Downloads 2232538 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures
Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov
Abstract:
Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.Keywords: multiscale modeling, permeability, texture, micro-tomography images
Procedia PDF Downloads 1832537 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach
Authors: B. Ramesh Naik, T. Venugopal
Abstract:
This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms
Procedia PDF Downloads 1832536 Using Digitally Reconstructed Radiographs from Magnetic Resonance Images to Localize Pelvic Lymph Nodes on 2D X-Ray Simulator-Based Brachytherapy Treatment Planning
Authors: Mohammad Ali Oghabian, Reza Reiazi, Esmaeel Parsai, Mehdi Aghili, Ramin Jaberi
Abstract:
In this project a new procedure has been introduced for utilizing digitally reconstructed radiograph from MRI images in Brachytherapy treatment planning. This procedure enables us to localize the tumor volume and delineate the extent of critical structures in vicinity of tumor volume. The aim of this project was to improve the accuracy of dose delivered to targets of interest in 2D treatment planning system.Keywords: brachytherapy, cervix, digitally reconstructed radiographs, lymph node
Procedia PDF Downloads 5322535 Fusion of MOLA-based DEMs and HiRISE Images for Large-Scale Mars Mapping
Authors: Ahmed F. Elaksher, Islam Omar
Abstract:
In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were then digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. Different transformation models, including the affine and projective transformation models, were used with different sets and distributions of tie points. Additionally, we evaluated the use of the MOLA elevations in co-registering the MOLA and HiRISE datasets. The planimetric RMSEs achieved for each model are reported. Results suggested the use of 3D-2D transformation models.Keywords: photogrammetry, Mars, MOLA, HiRISE
Procedia PDF Downloads 782534 Characterization of Kopff Crater Using Remote Sensing Data
Authors: Shreekumari Patel, Prabhjot Kaur, Paras Solanki
Abstract:
Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail.Keywords: crater, mineralogy, moon, radar observations
Procedia PDF Downloads 1622533 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values
Authors: Burçin Saltık, Levent Genç
Abstract:
In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice
Procedia PDF Downloads 2282532 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images
Authors: Amit Kumar Happy
Abstract:
This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform
Procedia PDF Downloads 1152531 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy
Authors: Huang Bai-Cheng
Abstract:
When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.Keywords: feature extraction, real-time, ORB, FPGA implementation
Procedia PDF Downloads 1222530 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 3352529 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI
Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal
Abstract:
Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.Keywords: fMRI, functional connectivity, task-based, beta series correlation
Procedia PDF Downloads 2732528 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 1372527 Improvement of Cross Range Resolution in Through Wall Radar Imaging Using Bilateral Backprojection
Authors: Rashmi Yadawad, Disha Narayanan, Ravi Gautam
Abstract:
Through Wall Radar Imaging is gaining increasing importance now a days in the field of Defense and one of the most important criteria that forms the basis for the image quality obtained is the Cross-Range resolution of the image. In this research paper, the Bilateral Back projection algorithm has been implemented for Through Wall Radar Imaging. The sole purpose is to enhance the resolution in the cross range direction of the obtained Back projection image. Synthetic Data is generated for two targets which are placed at various locations in a room of dimensions 8 m by 6m. Two algorithms namely, simple back projection and Bilateral Back projection have been implemented, images are obtained and the obtained images are compared. Numerical simulations have been coded in MATLAB and experimental results of the two algorithms have been shown. Based on the comparison between the two images, it can be clearly seen that the ringing effect and chess board effect have been heavily reduced in the bilaterally back projected image and hence promising results are obtained giving a relatively sharper image with relatively well defined edges.Keywords: through wall radar imaging, bilateral back projection, cross range resolution, synthetic data
Procedia PDF Downloads 3492526 Effect of the Binary and Ternary Exchanges on Crystallinity and Textural Properties of X Zeolites
Authors: H. Hammoudi, S. Bendenia, K. Marouf-Khelifa, R. Marouf, J. Schott, A. Khelifa
Abstract:
The ionic exchange of the NaX zeolite by Cu2+ and/or Zn2+ cations is progressively driven while following the development of some of its characteristic: crystallinity by XR diffraction, profile of isotherms, RI criterion, isosteric adsorption heat and microporous volume using both the Dubinin–Radushkevich (DR) equation and the t-plot through the Lippens–de Boer method which also makes it possible to determine the external surface area. Results show that the cationic exchange process, in the case of Cu2+ introduced at higher degree, is accompanied by crystalline degradation for Cu(x)X, in contrast to Zn2+-exchanged zeolite X. This degradation occurs without significant presence of mesopores, because the RI criterion values were found to be much lower than 2.2. A comparison between the binary and ternary exchanges shows that the curves of CuZn(x)X are clearly below those of Zn(x)X and Cu(x)X, whatever the examined parameter. On the other hand, the curves relating to CuZn(x)X tend towards those of Cu(x)X. This would again confirm the sensitivity of the crystalline structure of CuZn(x)X with respect to the introduction of Cu2+ cations. An original result is the distortion of the zeolitic framework of X zeolites at middle exchange degree, when Cu2+ competes with another divalent cation, such as Zn2+, for the occupancy of sites distributed within zeolitic cavities. In other words, the ternary exchange accentuates the crystalline degradation of X zeolites. An unexpected result also is the no correlation between crystal damage and the external surface area.Keywords: adsorption, crystallinity, ion exchange, zeolite
Procedia PDF Downloads 2602525 Error Analysis of Wavelet-Based Image Steganograhy Scheme
Authors: Geeta Kasana, Kulbir Singh, Satvinder Singh
Abstract:
In this paper, a steganographic scheme for digital images using Integer Wavelet Transform (IWT) is proposed. The cover image is decomposed into wavelet sub bands using IWT. Each of the subband is divided into blocks of equal size and secret data is embedded into the largest and smallest pixel values of each block of the subband. Visual quality of stego images is acceptable as PSNR between cover image and stego is above 40 dB, imperceptibility is maintained. Experimental results show better tradeoff between capacity and visual perceptivity compared to the existing algorithms. Maximum possible error analysis is evaluated for each of the wavelet subbands of an image. Procedia PDF Downloads 5052524 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 3542523 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method
Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption
Procedia PDF Downloads 5202522 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5042521 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor
Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun
Abstract:
An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor
Procedia PDF Downloads 381