Search results for: Integral differential equations
3250 Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller
Authors: Sanjay Kumar, Lillie Dewan
Abstract:
The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully.Keywords: nonlinear system, quadcopter model, simscape modelling, proportional-integral-derivative controller
Procedia PDF Downloads 1963249 Lyapunov Functions for Extended Ross Model
Authors: Rahele Mosleh
Abstract:
This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.Keywords: global stability, invariant solutions, Lyapunov function, stationary points
Procedia PDF Downloads 1653248 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory
Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian
Abstract:
In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation
Procedia PDF Downloads 1383247 Seismic Performance of Micropiles in Sand with Predrilled Oversized Holes
Authors: Cui Fu, Yi-Zhou Zhuang, Sheng-Zhi Wang
Abstract:
Full scale tests of six micropiles with different predrilled-hole parameters under low frequency cyclic lateral loading in-sand were carried out using the MTS hydraulic loading system to analyze the seismic performance of micropiles. Hysteresis curves, skeleton curves, energy dissipation capacity and ductility of micropiles were investigated. The experimental results show the hysteresis curves appear like plump bows in the elastic–plastic stage and failure stage which exhibit good hysteretic characteristics without pinching phenomena and good energy dissipating capacities. The ductility coefficient varies from 2.51 to 3.54 and the depth and loose backfill of oversized holes can improve ductility, but the diameter of predrilled-hole has a limited effect on enhancing its ductility. These findings and conclusions could make contribution to the practical application of the semi-integral abutment bridges and provide a reference for the predrilled oversized hole technology in integral abutment bridges.Keywords: ductility, energy dissipation capacity, micropile with predrilled oversized hole, seismic performance, semi-integral abutment bridge
Procedia PDF Downloads 4333246 A Graph SEIR Cellular Automata Based Model to Study the Spreading of a Transmittable Disease
Authors: Natasha Sharma, Kulbhushan Agnihotri
Abstract:
Cellular Automata are discrete dynamical systems which are based on local character and spatial disparateness of the spreading process. These factors are generally neglected by traditional models based on differential equations for epidemic spread. The aim of this work is to introduce an SEIR model based on cellular automata on graphs to imitate epidemic spreading. Distinctively, it is an SEIR-type model where the population is divided into susceptible, exposed, infected and recovered individuals. The results obtained from simulations are in accordance with the spreading behavior of a real time epidemics.Keywords: cellular automata, epidemic spread, graph, susceptible
Procedia PDF Downloads 4593245 Differential Antibrucella Activity of Bovine and Murine Macrophages
Authors: Raheela Akhtar, Zafar Iqbal Chaudhary, Yongqun Oliver He, Muhammad Younus, Aftab Ahmad Anjum
Abstract:
Brucella abortus is an intracellular pathogen affecting macrophages. Macrophages release some components such as lysozymes (LZ), reactive oxygen species (ROS) and reactive nitrite intermediates (RNI) which are important tools against intracellular survival of Brucella. The antibrucella activity of bovine and murine macrophages was compared following stimulation with Brucella abortus lipopolysaccharides. Our results revealed that murine macrophages were ten times more potent to produce antibrucella components than bovine macrophages. The differential production of these components explained the differential Brucella killing ability of these species that was measured in terms of intramacrophagic survival of Brucella in murine and bovine macrophages.Keywords: bovine macrophages, Brucella abortus, cell stimulation, cytokines, Murine macrophages
Procedia PDF Downloads 5603244 A Mathematical Model for Hepatitis B Virus Infection and the Impact of Vaccination on Its Dynamics
Authors: T. G. Kassem, A. K. Adunchezor, J. P. Chollom
Abstract:
This paper describes a mathematical model developed to predict the dynamics of Hepatitis B virus (HBV) infection and to evaluate the potential impact of vaccination and treatment on its dynamics. We used a compartmental model expressed by a set of differential equations based on the characteristic of HBV transmission. With these, we find the threshold quantity R0, then find the local asymptotic stability of disease free equilibrium and endemic equilibrium. Furthermore, we find the global stability of the disease free and endemic equilibrium.Keywords: hepatitis B virus, epidemiology, vaccination, mathematical model
Procedia PDF Downloads 3243243 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method
Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy
Abstract:
With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.Keywords: heat transfer, pde, taguchi optimization, SI/Ge
Procedia PDF Downloads 3383242 Study on the Central Differencing Scheme with the Staggered Version (STG) for Solving the Hyperbolic Partial Differential Equations
Authors: Narumol Chintaganun
Abstract:
In this paper we present the second-order central differencing scheme with the staggered version (STG) for solving the advection equation and Burger's equation. This scheme based on staggered evolution of the re-constructed cell averages. This scheme results in the second-order central differencing scheme, an extension along the lines of the first-order central scheme of Lax-Friedrichs (LxF) scheme. All numerical simulations presented in this paper are obtained by finite difference method (FDM) and STG. Numerical results are shown that the STG gives very good results and higher accuracy.Keywords: central differencing scheme, STG, advection equation, burgers equation
Procedia PDF Downloads 5573241 The Fluid Limit of the Critical Processor Sharing Tandem Queue
Authors: Amal Ezzidani, Abdelghani Ben Tahar, Mohamed Hanini
Abstract:
A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations.Keywords: fluid limit, fluid model, measure valued process, processor sharing, tandem queue
Procedia PDF Downloads 3233240 Symbolic Computation for the Multi-Soliton Solutions of a Class of Fifth-Order Evolution Equations
Authors: Rafat Alshorman, Fadi Awawdeh
Abstract:
By employing a simplified bilinear method, a class of generalized fifth-order KdV (gfKdV) equations which arise in nonlinear lattice, plasma physics and ocean dynamics are investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of nonlinear solitary waves in many physical models in shallow water. Parametric analysis is carried out in order to illustrate that the soliton amplitude, width and velocity are affected by the coefficient parameters in the equation.Keywords: multiple soliton solutions, fifth-order evolution equations, Cole-Hopf transformation, Hirota bilinear method
Procedia PDF Downloads 3203239 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes
Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo
Abstract:
Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic
Procedia PDF Downloads 1623238 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams
Authors: H. Ozbasaran
Abstract:
Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.Keywords: buckling mode, cantilever, lateral-torsional buckling, I-beam
Procedia PDF Downloads 3683237 Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.Keywords: casson nanofluid, boundary layer flow, internal heat generation/absorption, exponentially stretching cylinder, heat transfer, brownian motion, thermophoresis
Procedia PDF Downloads 3893236 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar
Authors: Chulsang Yoo, Gildo Kim
Abstract:
Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm
Procedia PDF Downloads 2133235 Soret and Dufour's Effects on Mixed Convection Unsteady MHD Boundary Layer Flow over a Stretching Sheet Embedded in a Porous Medium with Chemically Reactive Spices
Authors: Deva Kanta Phukan
Abstract:
An investigation is made to carry out to study the thermal-diffusion and diffusion thermo-effects in hydro-magnetic unsteady flow by a mixed convection boundary layer past an impermeable vertical stretching sheet embedded in a conducting fluid-saturated porous medium in the presence of a chemical reaction effect. The velocity of stretching surface, the surface temperature and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed in to self similar unsteady equations using similarity transformations and solved numerically by the Runge kutta fourth order scheme in association with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, temperature, the concentration, the skin friction , and the Nusselt and Sherwood numbers are shown graphically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.Keywords: heat and mass transfer, boundary layer flow, porous media, magnetic field, Soret number, Dufour’s number
Procedia PDF Downloads 4453234 Thermal Radiation and Chemical Reaction Effects on MHD Casson Fluid Past a Permeable Stretching Sheet in a Porous Medium
Authors: Y. Sunita Rani, Y. Hari Krishna, M. V. Ramana Murthy, K. Sudhaker Reddy
Abstract:
This article studied effects of radiation and chemical reaction on MHD casson fluoid flow past a Permeable Stretching Sheet in a Porous Medium. Suitable transformations are considered to transform the governing partial differential equations as ordinary ones and then solved by the numerical procedures like Runge- Kutta – Fehlberg shooting technique method. The effects of various governing parameters, on the velocity, temperature and concentration are displayed through graphs and discussed numerically.Keywords: MHD, Casson fluid, porous medium, permeable stretching sheet
Procedia PDF Downloads 1273233 Modeling of a Small Unmanned Aerial Vehicle
Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader
Abstract:
Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.Keywords: UAV, equations of motion, modeling, linearization
Procedia PDF Downloads 7433232 Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations
Authors: Mohammad Vahedi Torshizi
Abstract:
In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets.Keywords: bending stress, contact stress, plantary, mathematical equations
Procedia PDF Downloads 2893231 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 1873230 Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration
Authors: Jitendra Singh, Vivek Kumar
Abstract:
In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.Keywords: SIS (Susceptible Infective Susceptible) model, migration function, susceptible, stability
Procedia PDF Downloads 2613229 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours
Authors: Fikret Yalcinkaya, Hamza Unsal
Abstract:
To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models
Procedia PDF Downloads 1803228 Gender and Political Participation in Africa
Authors: Ibrahim Baba
Abstract:
The work examines the nature and causes of differential politics in Africa with particular reference to the sub-Saharan region of the continent. It also among other objectives provides alternative panacea to gender discrimination in African politics and offers solutions on how to promote political inclusion of all citizens in respect of gender differences in Africa. The work is conducted using library base documentation analysis.Keywords: gender, political, participation, differential politics, sub-Saharan Africa
Procedia PDF Downloads 4263227 Two-Photon-Exchange Effects in the Electromagnetic Production of Pions
Authors: Hui-Yun Cao, Hai-Qing Zhou
Abstract:
The high precision measurements and experiments play more and more important roles in particle physics and atomic physics. To analyse the precise experimental data sets, the corresponding precise and reliable theoretical calculations are necessary. Until now, the form factors of elemental constituents such as pion and proton are still attractive issues in current Quantum Chromodynamics (QCD). In this work, the two-photon-exchange (TPE) effects in ep→enπ⁺ at small -t are discussed within a hadronic model. Under the pion dominance approximation and the limit mₑ→0, the TPE contribution to the amplitude can be described by a scalar function. We calculate TPE contributions to the amplitude, and the unpolarized differential cross section with the only elastic intermediate state is considered. The results show that the TPE corrections to the unpolarized differential cross section are about from -4% to -20% at Q²=1-1.6 GeV². After considering the TPE corrections to the experimental data sets of unpolarized differential cross section, we analyze the TPE corrections to the separated cross sections σ(L,T,LT,TT). We find that the TPE corrections (at Q²=1-1.6 GeV²) to σL are about from -10% to -30%, to σT are about 20%, and to σ(LT,TT) are much larger. By these analyses, we conclude that the TPE contributions in ep→enπ⁺ at small -t are important to extract the separated cross sections σ(L,T,LT,TT) and the electromagnetic form factor of π⁺ in the experimental analysis.Keywords: differential cross section, form factor, hadronic, two-photon
Procedia PDF Downloads 1333226 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: smart material, on-line differential artificial neural network, active control, finite element method
Procedia PDF Downloads 2103225 Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation
Authors: Jatupon Em-Udom, Nirand Pisutha-Arnond
Abstract:
The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure.Keywords: driving forces and flux, evolution equation, non equilibrium thermodynamics, Onsager’s reciprocal relation, phase field crystal model, thermodynamics of single-component solid
Procedia PDF Downloads 3053224 On the Fractional Integration of Generalized Mittag-Leffler Type Functions
Authors: Christian Lavault
Abstract:
In this paper, the generalized fractional integral operators of two generalized Mittag-Leffler type functions are investigated. The special cases of interest involve the generalized M-series and K-function, both introduced by Sharma. The two pairs of theorems established herein generalize recent results about left- and right-sided generalized fractional integration operators applied here to the M-series and the K-function. The note also results in important applications in physics and mathematical engineering.Keywords: Fox–Wright Psi function, generalized hypergeometric function, generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators, Saigo's generalized fractional calculus, Sharma's M-series and K-function
Procedia PDF Downloads 4403223 3D Microbubble Dynamics in a Weakly Viscous Fluid Near a Rigid Boundary Subject to Ultrasound
Authors: K. Manmi, Q. X. Wang
Abstract:
This paper investigates microbubble dynamics subject to ultrasound in a weakly viscous fluid near a rigid boundary. The phenomenon is simulated using a boundary integral method. The weak viscous effects are incorporated into the model through the normal stress balance across the bubble surface. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble for several cycles. The effects of the fluid viscosity in the bubble dynamics are analyzed, including jet development, centroid movement and bubble volume.Keywords: microbubble dynamics, bubble jetting, viscous effect, boundary integral method
Procedia PDF Downloads 4833222 Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis
Authors: Mateusz Paszko, Ksenia Siadkowska
Abstract:
Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines.Keywords: aviation, CFD analysis, ejective-cooler, helicopter techniques
Procedia PDF Downloads 3323221 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls
Authors: M. A. Anwar, K. Iqbal, M. Razzaq
Abstract:
Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.Keywords: bifurcation, elastic walls, finite element, wall shear stress,
Procedia PDF Downloads 179