Search results for: Carlos Eduardo Ramos Cardoso
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 547

Search results for: Carlos Eduardo Ramos Cardoso

97 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic

Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez

Abstract:

The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.

Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis

Procedia PDF Downloads 308
96 Q Slope Rock Mass Classification and Slope Stability Assessment Methodology Application in Steep Interbedded Sedimentary Rock Slopes for a Motorway Constructed North of Auckland, New Zealand

Authors: Azariah Sosa, Carlos Renedo Sanchez

Abstract:

The development of a new motorway north of Auckland (New Zealand) includes steep rock cuts, from 63 up to 85 degrees, in an interbedded sandstone and siltstone rock mass of the geological unit Waitemata Group (Pakiri Formation), which shows sub-horizontal bedding planes, various sub-vertical joint sets, and a diverse weathering profile. In this kind of rock mass -that can be classified as a weak rock- the definition of the stable maximum geometry is not only governed by discontinuities and defects evident in the rock but is important to also consider the global stability of the rock slope, including (in the analysis) the rock mass characterisation, influence of the groundwater, the geological evolution, and the weathering processes. Depending on the weakness of the rock and the processes suffered, the global stability could, in fact, be a more restricting element than the potential instability of individual blocks through discontinuities. This paper discusses those elements that govern the stability of the rock slopes constructed in a rock formation with favourable bedding and distribution of discontinuities (horizontal and vertical) but with a weak behaviour in terms of global rock mass characterisation. In this context, classifications as Q-Slope and slope stability assessment methodology (SSAM) have been demonstrated as important tools which complement the assessment of the global stability together with the analytical tools related to the wedge-type failures and limit equilibrium methods. The paper focuses on the applicability of these two new empirical classifications to evaluate the slope stability in 18 already excavated rock slopes in the Pakiri formation through comparison between the predicted and observed stability issues and by reviewing the outcome of analytical methods (Rocscience slope stability software suite) compared against the expected stability determined from these rock classifications. This exercise will help validate such findings and correlations arising from the two empirical methods in order to adjust the methods to the nature of this specific kind of rock mass and provide a better understanding of the long-term stability of the slopes studied.

Keywords: Pakiri formation, Q-slope, rock slope stability, SSAM, weak rock

Procedia PDF Downloads 179
95 Negative Environmental Impacts on Marine Seismic Survey Activities

Authors: Katherine Del Carmen Camacho Zorogastua, Victor Hugo Gallo Ramos, Jhon Walter Gomez Lora

Abstract:

Marine hydrocarbon exploration (oil and natural gas) activities are developed using 2D, 3D and 4D seismic prospecting techniques where sound waves are directed from a seismic vessel emitted every few seconds depending on the variety of air compressors, which cross the layers of rock at the bottom of the sea and are reflected to the surface of the water. Hydrophones receive and record the reflected energy signals for cross-sectional mapping of the lithological profile in order to identify possible areas where hydrocarbon deposits can be formed. However, they produce several significant negative environmental impacts on the marine ecosystem and in the social and economic sectors. Therefore, the objective of the research is to publicize the negative impacts and environmental measures that must be carried out during the development of these activities to prevent and mitigate water quality, the population involved (fishermen) and the marine biota (e.g., Cetaceans, fish) that are the most vulnerable. The research contains technical environmental aspects based on bibliographic sources of environmental studies approved by the Peruvian authority, research articles, undergraduate and postgraduate theses, books, guides, and manuals from Spain, Australia, Canada, Brazil, and Mexico. It describes the negative impacts on the environment and population (fishing sector), environmental prevention, mitigation, recovery and compensation measures that must be properly implemented and the cases of global sea species stranding, for which international experiences from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru were referenced. Negative impacts on marine fauna, seawater quality, and the socioeconomic sector (fishermen) were identified. Omission or inadequate biological monitoring in mammals could alter their ability to communicate, feed, and displacement resulting in their stranding and death. In fish, they cause deadly damage to physical-physiological type and in their behavior. Inadequate wastewater treatment and waste management could increase the organic load and oily waste on seawater quality in violation of marine flora and fauna. The possible estrangement of marine resources (fish) affects the economic sector as they carry out their fishing activity for consumption or sale. Finally, it is concluded from the experiences gathered from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru that there is a cause and effect relationship between the inadequate development of seismic exploration activities (cause) and marine species strandings (effect) since over the years, stranded or dead marine mammals have been detected on the shores of the sea in areas of seismic acquisition of hydrocarbons. In this regard, it is recommended to establish technical procedures, guidelines, and protocols for the monitoring of marine species in order to contribute to the conservation of hydrobiological resources.

Keywords: 3D seismic prospecting, cetaceans, significant environmental impacts, prevention, mitigation, recovery, environmental compensation

Procedia PDF Downloads 155
94 Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area

Authors: Sandra Rafael, Bruno Vicente, Vera Rodrigues, Carlos Borrego, Myriam Lopes

Abstract:

Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments.

Keywords: air pollutants dispersion, wind conditions, urban morphologies, road traffic emissions

Procedia PDF Downloads 319
93 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 355
92 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro

Abstract:

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Keywords: breathability, sportswear and casual clothing, sustainable design, superhydrophobicity

Procedia PDF Downloads 115
91 Microplastic Concentrations in Cultured Oyster in Two Bays of Baja California, Mexico

Authors: Eduardo Antonio Lozano Hernandez, Nancy Ramirez Alvarez, Lorena Margarita Rios Mendoza, Jose Vinicio Macias Zamora, Felix Augusto Hernandez Guzman, Jose Luis Sanchez Osorio

Abstract:

Microplastics (MPs) are one of the most numerous reported wastes found in the marine ecosystem, representing one of the greatest risks for organisms that inhabit that environment due to their bioavailability. Such is the case of bivalve mollusks, since they are capable of filtering large volumes of water, which increases the risk of contamination by microplastics through the continuous exposure to these materials. This study aims to determine, quantify and characterize microplastics found in the cultured oyster Crassostrea gigas. We also analyzed if there are spatio-temporal differences in the microplastic concentration of organisms grown in two bays having quite different human population. In addition, we wanted to have an idea of the possible impact on humans via consumption of these organisms. Commercial size organisms (>6cm length; n = 15) were collected by triplicate from eight oyster farming sites in Baja California, Mexico during winter and summer. Two sites are located in Todos Santos Bay (TSB), while the other six are located in San Quintin Bay (SQB). Site selection was based on commercial concessions for oyster farming in each bay. The organisms were chemically digested with 30% KOH (w/v) and 30% H₂O₂ (v/v) to remove the organic matter and subsequently filtered using a GF/D filter. All particles considered as possible MPs were quantified according to their physical characteristics using a stereoscopic microscope. The type of synthetic polymer was determined using a FTIR-ATR microscope and using a user as well as a commercial reference library (Nicolet iN10 Thermo Scientific, Inc.) of IR spectra of plastic polymers (with a certainty ≥70% for polymers pure; ≥50% for composite polymers). Plastic microfibers were found in all the samples analyzed. However, a low incidence of MP fragments was observed in our study (approximately 9%). The synthetic polymers identified were mainly polyester and polyacrylonitrile. In addition, polyethylene, polypropylene, polystyrene, nylon, and T. elastomer. On average, the content of microplastics in organisms were higher in TSB (0.05 ± 0.01 plastic particles (pp)/g of wet weight) than found in SQB (0.02 ± 0.004 pp/g of wet weight) in the winter period. The highest concentration of MPs found in TSB coincides with the rainy season in the region, which increases the runoff from streams and wastewater discharges to the bay, as well as the larger population pressure (> 500,000 inhabitants). Otherwise, SQB is a mainly rural location, where surface runoff from streams is minimal and in addition, does not have a wastewater discharge into the bay. During the summer, no significant differences (Manne-Whitney U test; P=0.484) were observed in the concentration of MPs found in the cultured oysters of TSB and SQB, (average: 0.01 ± 0.003 pp/g and 0.01 ± 0.002 pp/g, respectively). Finally, we concluded that the consumption of oyster does not represent a risk for humans due to the low concentrations of MPs found. The concentration of MPs is influenced by the variables such as temporality, circulations dynamics of the bay and existing demographic pressure.

Keywords: FTIR-ATR, Human risk, Microplastic, Oyster

Procedia PDF Downloads 150
90 Anecic and Epigeic Earthworms as Potential Biocontrol Agents of Fusarium graminearum, Causal Agent of Fusarium Head Blight on Wheat

Authors: Gabriella Jorge, Carlos A. Pérez, Hanna Friberg, Sara Söderlund, Jan Lagerlöf

Abstract:

Fusarium Head Blight (FHB) is one of the most important Fusarium-caused diseases, which affects cereals with serious detrimental effects on yield and grain quality worldwide. Earthworms have been suggested as an alternative to control this disease, which requires a combination of preventive methods to reduce level of damage, although it has been proven that their effect is species dependent. Our objective was to evaluate the effect of the earthworms Aporrectodea longa and Lumbricus rubellus, on the inoculum of Fusarium graminearum on wheat straw. To test this we kept earthworms in vessels with soil, and F. graminearum-inoculated straw covering the surface, under controlled conditions for 6 weeks. Two factors were evaluated with a complete factorial design: earthworms (three levels: without earthworms, A. longa, and L. rubellus), and straw (two levels: inoculated with the pathogen, and sterile). The presence of L. rubellus significantly (P<0.05) reduced the amount of inoculated straw at the soil surface 31% after 6 weeks, while the presence of A. longa, most found in quiescence, did not have any significant effect on the amount of straw when compared to the control. After incubation, F. graminearum was detected by qPCR, only in the surface straw in those treatments inoculated with the pathogen but without earthworms. None of the treatments showed presence of Fusarium in the buried straw, soil or earthworm casts. Both earthworm species decreased in body weight during incubation, most likely due to the decrease in soil water content during the experiment, from 25% to 20%, and/or inadequate food supply, since no other source of food was added. However, this reduction in weight occurred indistinctly of the presence or not of Fusarium (P<0.05). This indicates that both species, of different ecological groups, anecic and epigeic, can reduce F. graminearum inoculum present in wheat straw, while their growth is not negatively affected by this pathogen. These promising results place A. longa, and L. rubellus as potential biocontrol agents of this fungal plant pathogen responsible for Fusarium Head Blight disease in wheat, although further ongoing experiments are needed to confirm the repeatability of these results.

Keywords: Aporrectodea longa, biological control, fungal plant pathogen, Lumbricus rubellus, qPCR, wheat straw

Procedia PDF Downloads 251
89 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports

Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel

Abstract:

The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.

Keywords: biomechanics, inertial sensors, motion capture, rehabilitation

Procedia PDF Downloads 118
88 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 343
87 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda

Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva

Abstract:

Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.

Keywords: construction and demolition wastes, waste classification, waste composition, waste screening

Procedia PDF Downloads 327
86 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement

Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura

Abstract:

The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.

Keywords: big data, dashboards, floating population, smart city, urban management solutions

Procedia PDF Downloads 265
85 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 116
84 Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System

Authors: Carlos A. Garcia-Mogollon, Juan C. Quintero-Diaz, Claudio Avignone-Rossa

Abstract:

Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments.

Keywords: clostridium saccharoperbutylacetonicum 1-4N, bioelectrosynthesis, carbon dioxide fixation, cyclic voltammetry

Procedia PDF Downloads 111
83 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System

Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew

Abstract:

This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.

Keywords: arch, discrete element model, seismic assessment, shake-table testing

Procedia PDF Downloads 189
82 Innovations in the Implementation of Preventive Strategies and Measuring Their Effectiveness Towards the Prevention of Harmful Incidents to People with Mental Disabilities who Receive Home and Community Based Services

Authors: Carlos V. Gonzalez

Abstract:

Background: Providers of in-home and community based services strive for the elimination of preventable harm to the people under their care as well as to the employees who support them. Traditional models of safety and protection from harm have assumed that the absence of incidents of harm is a good indicator of safe practices. However, this model creates an illusion of safety that is easily shaken by sudden and inadvertent harmful events. As an alternative, we have developed and implemented an evidence-based resilient model of safety known as C.O.P.E. (Caring, Observing, Predicting and Evaluating). Within this model, safety is not defined by the absence of harmful incidents, but by the presence of continuous monitoring, anticipation, learning, and rapid response to events that may lead to harm. Objective: The objective was to evaluate the effectiveness of the C.O.P.E. model for the reduction of harm to individuals with mental disabilities who receive home and community based services. Methods: Over the course of 2 years we counted the number of incidents of harm and near misses. We trained employees on strategies to eliminate incidents before they fully escalated. We trained employees to track different levels of patient status within a scale from 0 to 10. Additionally, we provided direct support professionals and supervisors with customized smart phone applications to track and notify the team of changes in that status every 30 minutes. Finally, the information that we collected was saved in a private computer network that analyzes and graphs the outcome of each incident. Result and conclusions: The use of the COPE model resulted in: A reduction in incidents of harm. A reduction the use of restraints and other physical interventions. An increase in Direct Support Professional’s ability to detect and respond to health problems. Improvement in employee alertness by decreasing sleeping on duty. Improvement in caring and positive interaction between Direct Support Professionals and the person who is supported. Developing a method to globally measure and assess the effectiveness of prevention from harm plans. Future applications of the COPE model for the reduction of harm to people who receive home and community based services are discussed.

Keywords: harm, patients, resilience, safety, mental illness, disability

Procedia PDF Downloads 426
81 Welfare and Sustainability in Beef Cattle Production on Tropical Pasture

Authors: Andre Pastori D'Aurea, Lauriston Bertelli Feranades, Luis Eduardo Ferreira, Leandro Dias Pinto, Fabiana Ayumi Shiozaki

Abstract:

The aim of this study was to improve the production of beef cattle on tropical pasture without harming this environment. On tropical pastures, cattle's live weight gain is lower than feedlot, and forage production is seasonable, changing from season to season. Thus, concerned with sustainable livestock production, the Premix Company has developed strategies to improve the production of beef cattle on tropical pasture to ensure sustainability of welfare and production. There are two important principles in this productivity system: 1) increase individual gains with use of better supplementation and 2) increase the productivity units with better forage quality like corn silage or other forms of forage conservations, actually used only in winter, and adding natural additives in the diet. This production system was applied from June 2017 to May 2018 in the Research Center of Premix Company, Patrocínio Paulista, São Paulo State, Brazil. The area used had 9 hectares of pasture of Brachiaria brizantha. 36 steers Nellore were evaluated for one year. The initial weight was 253 kg. The parameters used were daily average gain and gain per area. This indicated the corrections to be made and helped design future fertilization. In this case, we fertilized the pasture with 30 kg of nitrogen per animal divided into two parts. The diet was pasture and protein-energy supplements (0.4% of live weight). The supplement used was added with natural additive Fator P® – Premix Company). Fator P® is an additive composed by amino acids (lysine, methionine and tyrosine, 16400, 2980 and 3000 mg.kg-1 respectively), minerals, probiotics (Saccharomyces cerevisiae, 7 x 10E8 CFU.kg-1) and essential fatty acids (linoleic and oleic acids, 108.9 and 99g.kg-1 respectively). Due to seasonal changes, in the winter we supplemented the diet by increasing the offer of forage, supplementing with maize silage. It was offered 1% of live weight in silage corn and 0.4% of the live weight in protein-energetic supplements with additive Fator P ®. At the end of the period, the productivity was calculated by summing the individual gains for the area used. The average daily gain of the animals were 693 grams per day and was produced 1.005 kg /hectare/year. This production is about 8 times higher than the average of Brazilian meat national production. To succeed in this project, it is necessary to increase the gains per area, so it is necessary to increase the capacity per area. Pasture management is very important to the project's success because the dietary decisions were taken from the quantity and quality of the forage. We, therefore, recommend the use of animals in the growth phase because the response to supplementation is greater in that phase and we can allocate more animals per area. This system's carbon footprint reduces emissions by 61.2 percent compared to the Brazilian average. This beef cattle production system can be efficient and environmentally friendly to the natural. Another point is that bovines will benefit from their natural environment without competing or having an impact on human food production.

Keywords: cattle production, environment, pasture, sustainability

Procedia PDF Downloads 118
80 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics

Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García

Abstract:

Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.

Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics

Procedia PDF Downloads 268
79 Using Hemicellulosic Liquor from Sugarcane Bagasse to Produce Second Generation Lactic Acid

Authors: Regiane A. Oliveira, Carlos E. Vaz Rossell, Rubens Maciel Filho

Abstract:

Lactic acid, besides a valuable chemical may be considered a platform for other chemicals. In fact, the feasibility of hemicellulosic sugars as feedstock for lactic acid production process, may represent the drop of some of the barriers for the second generation bioproducts, especially bearing in mind the 5-carbon sugars from the pre-treatment of sugarcane bagasse. Bearing this in mind, the purpose of this study was to use the hemicellulosic liquor from sugarcane bagasse as a substrate to produce lactic acid by fermentation. To release of sugars from hemicellulose it was made a pre-treatment with a diluted sulfuric acid in order to obtain a xylose's rich liquor with low concentration of inhibiting compounds for fermentation (≈ 67% of xylose, ≈ 21% of glucose, ≈ 10% of cellobiose and arabinose, and around 1% of inhibiting compounds as furfural, hydroxymethilfurfural and acetic acid). The hemicellulosic sugars associated with 20 g/L of yeast extract were used in a fermentation process with Lactobacillus plantarum to produce lactic acid. The fermentation process pH was controlled with automatic injection of Ca(OH)2 to keep pH at 6.00. The lactic acid concentration remained stable from the time when the glucose was depleted (48 hours of fermentation), with no further production. While lactic acid is produced occurs the concomitant consumption of xylose and glucose. The yield of fermentation was 0.933 g lactic acid /g sugars. Besides, it was not detected the presence of by-products, what allows considering that the microorganism uses a homolactic fermentation to produce its own energy using pentose-phosphate pathway. Through facultative heterofermentative metabolism the bacteria consume pentose, as is the case of L. plantarum, but the energy efficiency for the cell is lower than during the hexose consumption. This implies both in a slower cell growth, as in a reduction in lactic acid productivity compared with the use of hexose. Also, L. plantarum had shown to have a capacity for lactic acid production from hemicellulosic hydrolysate without detoxification, which is very attractive in terms of robustness for an industrial process. Xylose from hydrolyzed bagasse and without detoxification is consumed, although the hydrolyzed bagasse inhibitors (especially aromatic inhibitors) affect productivity and yield of lactic acid. The use of sugars and the lack of need for detoxification of the C5 liquor from sugarcane bagasse hydrolyzed is a crucial factor for the economic viability of second generation processes. Taking this information into account, the production of second generation lactic acid using sugars from hemicellulose appears to be a good alternative to the complete utilization of sugarcane plant, directing molasses and cellulosic carbohydrates to produce 2G-ethanol, and hemicellulosic carbohydrates to produce 2G-lactic acid.

Keywords: fermentation, lactic acid, hemicellulosic sugars, sugarcane

Procedia PDF Downloads 350
78 Wastewater Treatment in the Abrasives Industry via Fenton and Photo-Fenton Oxidation Processes: A Case Study from Peru

Authors: Hernan Arturo Blas López, Gustavo Henndel Lopes, Antonio Carlos Silva Costa Teixeira, Carmen Elena Flores Barreda, Patricia Araujo Pantoja

Abstract:

Phenols are toxic for life and the environment and may come from many sources. Uncured phenolic monomers present in phenolic resins used as binders in grinding wheels and emery paper can contaminate industrial wastewaters in abrasives manufacture plants. Furthermore, vestiges of resol and novolacs resins generated by wear and tear of abrasives are also possible sources of water contamination by phenolics in these facilities. Fortunately, advanced oxidation by dark Fenton and photo-Fenton techniques are capable of oxidizing phenols and their degradation products up to their mineralization into H₂O and CO₂. The maximal allowable concentrations for phenols in Peruvian waterbodies is very low, such that insufficiently treated effluents from the abrasives industry are a potential environmental noncompliance. The current case study highlights findings obtained during the lab-scale application of Fenton’s and photo-assisted Fenton’s chemistries to real industrial wastewater samples from an abrasives manufacture plant in Peru. The goal was to reduce the phenolic content and sample toxicity. For this purpose, two independent variables-reaction time and effect of ultraviolet radiation–were studied as for their impacts on the concentration of total phenols, total organic carbon (TOC), biological oxygen demand (BOD) and chemical oxygen demand (COD). In this study, diluted samples (1 L) of the industrial effluent were treated with Fenton’s reagent (H₂O₂ and Fe²⁺ from FeSO₄.H₂O) during 10 min in a photochemical batch reactor (Alphatec RFS-500, Brazil) at pH 2.92. In the case of photo-Fenton tests with ultraviolet lamps of 9 W, UV-A, UV-B and UV-C lamps were evaluated. All process conditions achieved 100% of phenols degraded within 5 minutes. TOC, BOD and COD decreased by 49%, 52% and 86% respectively (all processes together). However, Fenton treatment was not capable of reducing BOD, COD and TOC below a certain value even after 10 minutes, contrarily to photo-Fenton. It was also possible to conclude that the processes here studied degrade other compounds in addition to phenols, what is an advantage. In all cases, elevated effluent dilution factors and high amounts of oxidant agent impact negatively the overall economy of the processes here investigated.

Keywords: fenton oxidation, wastewater treatment, phenols, abrasives industry

Procedia PDF Downloads 289
77 Development of an Integrated Reaction Design for the Enzymatic Production of Lactulose

Authors: Natan C. G. Silva, Carlos A. C. Girao Neto, Marcele M. S. Vasconcelos, Luciana R. B. Goncalves, Maria Valderez P. Rocha

Abstract:

Galactooligosaccharides (GOS) are sugars with prebiotic function that can be synthesized chemically or enzymatically, and this last one can be promoted by the action of β-galactosidases. In addition to favoring the transgalactosylation reaction to form GOS, these enzymes can also catalyze the hydrolysis of lactose. A highly studied type of GOS is lactulose because it presents therapeutic properties and is a health promoter. Among the different raw materials that can be used to produce lactulose, whey stands out as the main by-product of cheese manufacturing, and its discarded is harmful to the environment due to the residual lactose present. Therefore, its use is a promising alternative to solve this environmental problem. Thus, lactose from whey is hydrolyzed into glucose and galactose by β-galactosidases. However, in order to favor the transgalactosylation reaction, the medium must contain fructose, due this sugar reacts with galactose to produce lactulose. Then, the glucose-isomerase enzyme can be used for this purpose, since it promotes the isomerization of glucose into fructose. In this scenario, the aim of the present work was first to develop β-galactosidase biocatalysts of Kluyveromyces lactis and to apply it in the integrated reactions of hydrolysis, isomerization (with the glucose-isomerase from Streptomyces murinus) and transgalactosylation reaction, using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% glutaraldehyde was evaluated using different enzymatic loads (2, 5, 7, 10, and 12 mg/g). Subsequently, the hydrolysis and transgalactosylation reactions were studied and conducted at 50°C, 120 RPM for 20 minutes. In parallel, the isomerization of glucose into fructose was evaluated under conditions of 70°C, 750 RPM for 90 min. After, the integration of the three processes for the production of lactulose was investigated. Among the evaluated loads, 7 mg/g was chosen because the best activity of the derivative (44.3 U/g) was obtained, being this parameter determinant for the reaction stages. The other parameters of immobilization yield (87.58%) and recovered activity (46.47%) were also satisfactory compared to the other conditions. Regarding the integrated process, 94.96% of lactose was converted, achieving 37.56 g/L and 37.97 g/L of glucose and galactose, respectively. In the isomerization step, conversion of 38.40% of glucose was observed, obtaining a concentration of 12.47 g/L fructose. In the transgalactosylation reaction was produced 13.15 g/L lactulose after 5 min. However, in the integrated process, there was no formation of lactulose, but it was produced other GOS at the same time. The high galactose concentration in the medium probably favored the reaction of synthesis of these other GOS. Therefore, the integrated process proved feasible for possible production of prebiotics. In addition, this process can be economically viable due to the use of an industrial residue as a substrate, but it is necessary a more detailed investigation of the transgalactosilation reaction.

Keywords: beta-galactosidase, glucose-isomerase, galactooligosaccharides, lactulose, whey

Procedia PDF Downloads 115
76 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 79
75 Jurisdictional Federalism and Formal Federalism: Levels of Political Centralization on American and Brazilian Models

Authors: Henrique Rangel, Alexandre Fadel, Igor De Lazari, Bianca Neri, Carlos Bolonha

Abstract:

This paper promotes a comparative analysis of American and Brazilian models of federalism assuming their levels of political centralization as main criterion. The central problem faced herein is the Brazilian approach of Unitarian regime. Although the hegemony of federative form after 1989, Brazil had a historical frame of political centralization that remains under the 1988 constitutional regime. Meanwhile, United States framed a federalism in which States absorb significant authorities. The hypothesis holds that the amount of alternative criteria of federalization – which can generate political centralization –, and the way they are upheld on judicial review, are crucial to understand the levels of political centralization achieved in each model. To test this hypothesis, the research is conducted by a methodology temporally delimited to 1994-2014 period. Three paradigmatic precedents of U.S. Supreme Court were selected: United States vs. Morrison (2000), on gender-motivated violence, Gonzales vs. Raich (2005), on medical use of marijuana, and United States vs. Lopez (1995), on firearm possession on scholar zones. These most relevant cases over federalism in the recent activity of Supreme Court indicates a determinant parameter of deliberation: the commerce clause. After observe the criterion used to permit or prohibit the political centralization in America, the Brazilian normative context is presented. In this sense, it is possible to identify the eventual legal treatment these controversies could receive in this Country. The decision-making reveals some deliberative parameters, which characterizes each federative model. At the end of research, the precedents of Rehnquist Court promote a broad revival of federalism debate, establishing the commerce clause as a secure criterion to uphold or not the necessity of centralization – even with decisions considered conservative. Otherwise, the Brazilian federalism solves them controversies upon in a formalist fashion, within numerous and comprehensive – sometimes casuistic too – normative devices, oriented to make an intense centralization. The aim of this work is indicate how jurisdictional federalism found in United States can preserve a consistent model with States robustly autonomous, while Brazil gives preference to normative mechanisms designed to starts from centralization.

Keywords: constitutional design, federalism, U.S. Supreme Court, legislative authority

Procedia PDF Downloads 494
74 Antibacterial and Anti-Biofilm Activity of Vaccinium meridionale S. Pomace Extract Against Staphylococcus aureus, Escherichia coli and Salmonella Enterica

Authors: Carlos Y. Soto, Camila A. Lota, G. Astrid Garzón

Abstract:

Bacterial biofilms cause an ongoing problem for food safety. They are formed when microorganisms aggregate to form a community that attaches to solid surfaces. Biofilms increase the resistance of pathogens to cleaning, disinfection and antibacterial products. This resistance gives rise to problems for human health, industry, and agriculture. At present, plant extracts rich in polyphenolics are being investigated as natural alternatives to degrade bacterial biofilms. The pomace of the tropical Berry Vaccinium meridionale S. contains high amounts of phenolic compounds. Therefore, in the current study, the antimicrobial and antibiofilm effects of extracts from the pomace of Vaccinium meridionale S. were tested on three foodborne pathogens: Enterohaemorrhagic Escherichia coli O157:H7 (ATCC®700728TM), Staphylococcus aureus subsp. aureus (ATCC® 6538TM), and Salmonella enterica serovar Enteritidis (ATCC® 13076TM). Microwave-assisted extraction was used to extract polyphenols with aqueous methanol (80% v/v) at a solid to solvent ratio of 1:10 (w/v) for 20 min. The magnetic stirring was set at 400 rpm, and the microwave power was adjusted to 400 W. The antimicrobial effect of the extract was assessed by determining the half maximal inhibitory concentration (IC50) against the three food poisoning pathogens at concentrations ranging from 50 to 2,850 μg gallic acid equivalents (GAE)/mL of the extract. Biofilm inhibition was assessed using a crystal violet assay applying the same range of concentration. Three replications of the experiments were carried out, and all analyses were run in triplicate. IC50 values were determined using the GraphPad Prism8® program. Significant differences (P<0.05) among means were identified using one-factor analysis of variance (ANOVA) and the post-hoc least significant difference (LSD) test using the Statgraphics plus program, version 2.1.There was significant difference among the mean IC50 values for the tested bacteria. The IC50 for S. aureus was 48 ± 9 μg GAE/mL, followed by 123 ± 49 μg GAE/mL for Salmonella and 376 ± 32 μg GAE/mL for E. coli. The percent inhibition of the extract on biofilm formation was significantly higher for S. aureus (85.8  0.3), followed by E. coli (74.5  1.0) and Salmonella (53.6  9.7). These findings suggest that polyphenolic extracts obtained from the pomace of V. meridionale S. might be used as natural antimicrobial and anti-biofilm natural agents, effective against S. aureus, E. coli and Salmonella enterica.

Keywords: antibiofilm, antimicrobial, E. coli, S. aureus, salmonella, IC50, pomace, V. meridionale

Procedia PDF Downloads 41
73 Degradation of Diclofenac in Water Using FeO-Based Catalytic Ozonation in a Modified Flotation Cell

Authors: Miguel A. Figueroa, José A. Lara-Ramos, Miguel A. Mueses

Abstract:

Pharmaceutical residues are a section of emerging contaminants of anthropogenic origin that are present in a myriad of waters with which human beings interact daily and are starting to affect the ecosystem directly. Conventional waste-water treatment systems are not capable of degrading these pharmaceutical effluents because their designs cannot handle the intermediate products and biological effects occurring during its treatment. That is why it is necessary to hybridize conventional waste-water systems with non-conventional processes. In the specific case of an ozonation process, its efficiency highly depends on a perfect dispersion of ozone, long times of interaction of the gas-liquid phases and the size of the ozone bubbles formed through-out the reaction system. In order to increase the efficiency of these parameters, the use of a modified flotation cell has been proposed recently as a reactive system, which is used at an industrial level to facilitate the suspension of particles and spreading gas bubbles through the reactor volume at a high rate. The objective of the present work is the development of a mathematical model that can closely predict the kinetic rates of reactions taking place in the flotation cell at an experimental scale by means of identifying proper reaction mechanisms that take into account the modified chemical and hydrodynamic factors in the FeO-catalyzed Ozonation of Diclofenac aqueous solutions in a flotation cell. The methodology is comprised of three steps: an experimental phase where a modified flotation cell reactor is used to analyze the effects of ozone concentration and loading catalyst over the degradation of Diclofenac aqueous solutions. The performance is evaluated through an index of utilized ozone, which relates the amount of ozone supplied to the system per milligram of degraded pollutant. Next, a theoretical phase where the reaction mechanisms taking place during the experiments must be identified and proposed that details the multiple direct and indirect reactions the system goes through. Finally, a kinetic model is obtained that can mathematically represent the reaction mechanisms with adjustable parameters that can be fitted to the experimental results and give the model a proper physical meaning. The expected results are a robust reaction rate law that can simulate the improved results of Diclofenac mineralization on water using the modified flotation cell reactor. By means of this methodology, the following results were obtained: A robust reaction pathways mechanism showcasing the intermediates, free-radicals and products of the reaction, Optimal values of reaction rate constants that simulated Hatta numbers lower than 3 for the system modeled, degradation percentages of 100%, TOC (Total organic carbon) removal percentage of 69.9 only requiring an optimal value of FeO catalyst of 0.3 g/L. These results showed that a flotation cell could be used as a reactor in ozonation, catalytic ozonation and photocatalytic ozonation processes, since it produces high reaction rate constants and reduces mass transfer limitations (Ha > 3) by producing microbubbles and maintaining a good catalyst distribution.

Keywords: advanced oxidation technologies, iron oxide, emergent contaminants, AOTS intensification

Procedia PDF Downloads 89
72 Antibacterial Effect of Silver Diamine Fluoride Incorporated in Fissure Sealants

Authors: Nélio Veiga, Paula Ferreira, Tiago Correia, Maria J. Correia, Carlos Pereira, Odete Amaral, Ilídio J. Correia

Abstract:

Introduction: The application of fissure sealants is considered to be an important primary prevention method used in dental medicine. However, the formation of microleakage gaps between tooth enamel and the fissure sealant applied is one of the most common reasons of dental caries development in teeth with fissure sealants. The association between various dental biomaterials may limit the major disadvantages and limitations of biomaterials functioning in a complementary manner. The present study consists in the incorporation of a cariostatic agent – silver diamine fluoride (SDF) – in a resin-based fissure sealant followed by the study of release kinetics by spectrophotometry analysis of the association between both biomaterials and assessment of the inhibitory effect on the growth of the reference bacterial strain Streptococcus mutans (S. mutans) in an in vitro study. Materials and Methods: An experimental in vitro study was designed consisting in the entrapment of SDF (Cariestop® 12% and 30%) into a commercially available fissure sealant (Fissurit®), by photopolymerization and photocrosslinking. The same sealant, without SDF was used as a negative control. The effect of the sealants on the growth of S. mutans was determined by the presence of bacterial inhibitory halos in the cultures at the end of the incubation period. In order to confirm the absence of bacteria in the surface of the materials, Scanning Electron Microscopy (SEM) characterization was performed. Also, to analyze the release profile of SDF along time, spectrophotometry technique was applied. Results: The obtained results indicate that the association of SDF to a resin-based fissure sealant may be able to increase the inhibition of S. mutans growth. However, no SDF release was noticed during the in vitro release studies and no statistical significant difference was verified when comparing the inhibitory halo sizes obtained for test and control group.  Conclusions: In this study, the entrapment of SDF in the resin-based fissure sealant did not potentiate the antibacterial effect of the fissure sealant or avoid the immediate development of dental caries. The development of more laboratorial research and, afterwards, long-term clinical data are necessary in order to verify if this association between these biomaterials is effective and can be considered for being used in oral health management. Also, other methodologies for associating cariostatic agents and sealant should be addressed.

Keywords: biomaterial, fissure sealant, primary prevention, silver diamine fluoride

Procedia PDF Downloads 236
71 Effect of Cognitive Rehabilitation in Pediatric Population with Acquired Brain Injury: A Pilot Study

Authors: Carolina Beltran, Carlos De Los Reyes

Abstract:

Acquired brain injury (ABI) is any physical and functional injury secondary to events that affect the brain tissue. It is one of the biggest causes of disability in the world and it has a high annual incidence in the pediatric population. There are several causes of ABI such as traumatic brain injury, central nervous system infection, stroke, hypoxia, tumors and others. The consequences can be cognitive, behavioral, emotional and functional. The cognitive rehabilitation is necessary to achieve the best outcomes for pediatric people with ABI. Cognitive orientation to daily occupational performance (CO-OP) is an individualized client-centered, performance-based, problem-solving approach that focuses on the strategy used to support the acquisition of three client-chosen goals. It has demonstrated improvements in the pediatric population with other neurological disorder but not in Spanish speakers with ABI. Aim: The main objective of this study was to determine the efficacy of cognitive orientation to daily occupational performances (CO-OP) adapted to Spanish speakers, in the level of independence and behavior in a pediatric population with ABI. Methods: Case studies with measure pre/post-treatment were used in three children with ABI, sustained at least before 6 months assessment, in school, aged 8 to 16 years, age ABI after 6 years old and above average intellectual ability. Twelve sessions of CO-OP adapted to Spanish speakers were used and videotaped. The outcomes were based on cognitive, behavior and functional independence measurements such as Child Behavior Checklist (CBCL), Behavior Rating Inventory of Executive Function (BRIEF), The Vineland Adaptive Behavior Scales (VINELAND, Social Support Scale (MOS-SSS) and others neuropsychological measures. This study was approved by the ethics committee of Universidad del Norte in Colombia. Informed parental written consent was obtained for all participants. Results: children were able to identify three goals and use the global strategy ‘goal-plan-do-check’ during each session. Verbal self-instruction was used by all children. CO-OP showed a clinically significant improvement in goals regarding with independence level and behavior according to parents and teachers. Conclusion: The results indicated that CO-OP and the use of a global strategy such as ‘goal-plan-do-check’ can be used in children with ABI in order to improve their specific goals. This is a preliminary version of a big study carrying in Colombia as part of the experimental design.

Keywords: cognitive rehabilitation, acquired brain injury, pediatric population, cognitive orientation to daily occupational performance

Procedia PDF Downloads 82
70 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 99
69 Dogs Chest Homogeneous Phantom for Image Optimization

Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano

Abstract:

In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.

Keywords: radiation protection, phantom, veterinary radiology, computed radiography

Procedia PDF Downloads 396
68 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns

Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido

Abstract:

The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.

Keywords: leaching, organic amendments, phytostabilization, polluted soils

Procedia PDF Downloads 86