Search results for: sustainable design
11641 Physical Education and Bodily Practices as an Alternative for Body Design and Acceptance in LGBTI Students
Authors: Aline Giardin, Maria Rosa Chitolina
Abstract:
In the last decades, there have been changes in the organization of society. It is not by chance that in our schools we have witnessed a growing interest in actions to address violence, prejudice, and discrimination against gays, lesbians, bisexuals, transvestites, and transsexuals. Considering that gender is a category that is present in the broad scope of relations that physical education covers, it seems that the theme has not aroused due attention. The body is not just a body. It is also their environment. Society forms not only personality and behavior, but also, how the body appears. In order to problematize gender in the field of physical education, it makes sense to put the body in focus because it is of bodily practices, that body's movement, which is spoken. The sports are part of the cultural manifestations of the most different social groups. Through workshops and interviews, we will investigate the role of Sports in the process of conception and acceptance of the body in LGBTTI students. From this work we intend to work towards a greater inclusion of these students in physical education classes, as well as a better understanding of their body and their sexuality. We hope that our work will enable greater acceptance and better body design of LGBTTI students.Keywords: body, conception, LGBTTI students, physical education
Procedia PDF Downloads 36711640 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability
Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks
Abstract:
Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.Keywords: open-cut, mining, erosion, rainfall simulator
Procedia PDF Downloads 10711639 Road Safety and Accident Prevention in Third World Countries: A Case Study of NH-7 in India
Authors: Siddegowda, Y. A. Sathish, G. Krishnegowda, T. M. Mohan Kumar
Abstract:
Road accidents are a human tragedy. They involve high human suffering and monetary costs in terms of untimely death, injuries and social problems. India had earned the dubious distinction of having more number of fatalities due to road accidents in the world. Road safety is emerging as a major social concern around the world especially in India because of infrastructure project works. A case study was taken on NH – 07 which connects to various major cities and industries. The study shows that major cases of fatalities are due to bus, trucks and high speed vehicles. The main causes of accidents are due to high density, non-restriction of speed, use of mobile phones, lack of board signs on road parking, visibility restriction, improper geometric design, road use characteristics, environmental aspects, social aspects etc. Data analysis and preventive measures are enlightened in this paper.Keywords: accidents, environmental aspects, fatalities, geometric design, road user characteristics
Procedia PDF Downloads 25611638 Design and Optimization of an Electromagnetic Vibration Energy Converter
Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun
Abstract:
Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil
Procedia PDF Downloads 30111637 The Response to Various Planting Conditions of Thein Corn Inbred Lines
Authors: K. Boonlertnirun, C. Rawdsiri, R. Suvannasara, S. Boonlertnirun
Abstract:
Thein corn variety well adapted to several planting conditions is usually accepted by most farmers. The objectives of this work were to evaluate yield potential of Thein corn inbred line grown in various nitrogen rates and plant conditions for selecting good inbred lines to be germ plasm for further breeding program. Split plot design with three replications was utilized as experimental design, three planting conditions: normal (control), low nitrogen, and high plant density condition, and sixteen inbred lines of Thein corn were used as main and subplot respectively. The results showed that no interaction between inbred line and planting condition in terms of yield. Correlation between planting conditions based on yield of inbred line was positive at medium level. Thein corn inbreds, namely L7, L5, L16, and L14 lines were tolerant to low nitrogen condition because they could produce high yield under all planting conditions and they were selected to be germ plasm for further breeding program.Keywords: inbred line, planting condition, Thein corn, planting conditions
Procedia PDF Downloads 37811636 Impact of Climate Change and Anthropogenic Effect on Hilsa Fishery Management in South-East Asia: Urgent Need for Trans-Boundary Policy
Authors: Dewan Ali Ahsan
Abstract:
Hilsa (Tenualosa ilisha) is one of the most important anadromous fish species of the trans-boundary ecosystem of Bangladesh, India and Myanmar. Hilsa is not only an economically important species specially for Bangladesh and India, but also for the integral part of the culture of the Bangladesh and India. This flag-ship species in Bangladesh contributed alone of 10.82% of the total fish production of the country and about 75% of world’s total catch of hilsa comes from Bangladesh alone. As hilsa is an anadromous fish, it migrates from the Bay of Bengal to rivers for spawning, nursing and growing and for all of these purposes hilsa needs freshwaters. Ripe broods prefer turbid, fast flowing freshwater for spawning but young prefer clear and slow flowing freshwater. Climate change (salinity intrusion, sea level rise, temperature rise, impact of fresh water flow), unplanned developmental activities and other anthropogenic activities all together are severely damaging the hilsa stock and its habitats. So, climate change and human interferences are predicted to have a range of direct and indirect impacts on marine and freshwater hilsa fishery, with implications for fisheries-dependent economies, coastal communities and fisherfolk. The present study identified that salinity intrusion, siltation in river bed, decrease water flow from upstream, fragmentation of river in dry season, over exploitation, use of small mesh nets are the major reasons to affect the upstream migration of hilsa and its sustainable management. It has been also noticed that Bangladesh government has taken some actions for hilsa management. Government is trying to increase hilsa production not only by conserving jatka (juvenile hilsa) but also protecting the brood hilsa during the breeding seasons by imposing seasonal ban on fishing, restricted mesh size etc. Unfortunately, no such management plans are available for Indian and Myanmar territory. As hilsa is a highly migratory trans-boundary fish in the Bay of Bengal (and all of these countries share the same stock), it is essential to adopt a joint management policy (by Bangladesh-India-Myanmar) for the sustainable management for the hilsa stock.Keywords: hilsa, climate change, south-east Asia, fishery management
Procedia PDF Downloads 51011635 Multiresolution Mesh Blending for Surface Detail Reconstruction
Authors: Honorio Salmeron Valdivieso, Andy Keane, David Toal
Abstract:
In the area of mechanical reverse engineering, processes often encounter difficulties capturing small, highly localized surface information. This could be the case if a physical turbine was 3D scanned for lifecycle management or robust design purposes, with interest on eroded areas or scratched coating. The limitation partly is due to insufficient automated frameworks for handling -localized - surface information during the reverse engineering pipeline. We have developed a tool for blending surface patches with arbitrary irregularities into a base body (e.g. a CAD solid). The approach aims to transfer small surface features while preserving their shape and relative placement by using a multi-resolution scheme and rigid deformations. Automating this process enables the inclusion of outsourced surface information in CAD models, including samples prepared in mesh handling software, or raw scan information discarded in the early stages of reverse engineering reconstruction.Keywords: application lifecycle management, multiresolution deformation, reverse engineering, robust design, surface blending
Procedia PDF Downloads 14511634 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy
Authors: Priya Patel, Paresh Patel, Mihir Raval
Abstract:
Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability
Procedia PDF Downloads 43211633 Theoretical Analysis and Design Consideration of Screened Heat Pipes for Low-Medium Concentration Solar Receivers
Authors: Davoud Jafari, Paolo Di Marco, Alessandro Franco, Sauro Filippeschi
Abstract:
This paper summarizes the results of an investigation into the heat pipe heat transfer for solar collector applications. The study aims to show the feasibility of a concentrating solar collector, which is coupled with a heat pipe. Particular emphasis is placed on the capillary and boiling limits in capillary porous structures, with different mesh numbers and wick thicknesses. A mathematical model of a cylindrical heat pipe is applied to study its behaviour when it is exposed to higher heat input at the evaporator. The steady state analytical model includes two-dimensional heat conduction in the HP’s wall, the liquid flow in the wick and vapor hydrodynamics. A sensitivity analysis was conducted by considering different design criteria and working conditions. Different wicks (mesh 50, 100, 150, 200, 250, and, 300), different porosities (0.5, 0.6, 0.7, 0.8, and 0.9) with different wick thicknesses (0.25, 0.5, 1, 1.5, and 2 mm) are analyzed with water as a working fluid. Results show that it is possible to improve heat transfer capability (HTC) of a HP by selecting the appropriate wick thickness, the effective pore radius, and lengths for a given HP configuration, and there exist optimal design criteria (optimal thick, evaporator adiabatic and condenser sections). It is shown that the boiling and wicking limits are connected and occurs in dependence on each other. As different parts of the HP external surface collect different fractions of the total incoming insolation, the analysis of non-uniform heat flux distribution indicates that peak heat flux is not affecting parameter. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature SC application.Keywords: screened heat pipes, analytical model, boiling and capillary limits, concentrating collector
Procedia PDF Downloads 56511632 Mathematical Models for GMAW and FCAW Welding Processes for Structural Steels Used in the Oil Industry
Authors: Carlos Alberto Carvalho Castro, Nancy Del Ducca Barbedo, Edmilsom Otoni Côrrea
Abstract:
With increase the production oil and lines transmission gases that are in ample expansion, the industries medium and great transport they had to adapt itself to supply the demand manufacture in this fabrication segment. In this context, two welding processes have been more extensively used: the GMAW (Gas Metal Arc Welding) and the FCAW (Flux Cored Arc Welding). In this work, welds using these processes were carried out in flat position on ASTM A-36 carbon steel plates in order to make a comparative evaluation between them concerning to mechanical and metallurgical properties. A statistical tool based on technical analysis and design of experiments, DOE, from the Minitab software was adopted. For these analyses, the voltage, current, and welding speed, in both processes, were varied. As a result, it was observed that the welds in both processes have different characteristics in relation to the metallurgical properties and performance, but they present good weldability, satisfactory mechanical strength e developed mathematical models.Keywords: Flux Cored Arc Welding (FCAW), Gas Metal Arc Welding (GMAW), Design of Experiments (DOE), mathematical models
Procedia PDF Downloads 56311631 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve
Authors: Roman Klas, František Pochylý, Pavel Rudolf
Abstract:
This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design.Keywords: CFD, radiaxial pump, spiral case, stability
Procedia PDF Downloads 39911630 A Methodological Approach to Development of Mental Script for Mental Practice of Micro Suturing
Authors: Vaikunthan Rajaratnam
Abstract:
Intro: Motor imagery (MI) and mental practice (MP) can be an alternative to acquire mastery of surgical skills. One component of using this technique is the use of a mental script. The aim of this study was to design and develop a mental script for basic micro suturing training for skill acquisition using a low-fidelity rubber glove model and to describe the detailed methodology for this process. Methods: This study was based on a design and development research framework. The mental script was developed with 5 expert surgeons performing a cognitive walkthrough of the repair of a vertical opening in a rubber glove model using 8/0 nylon. This was followed by a hierarchal task analysis. A draft script was created, and face and content validity assessed with a checking-back process. The final script was validated with the recruitment of 28 participants, assessed using the Mental Imagery Questionnaire (MIQ). Results: The creation of the mental script is detailed in the full text. After assessment by the expert panel, the mental script had good face and content validity. The average overall MIQ score was 5.2 ± 1.1, demonstrating the validity of generating mental imagery from the mental script developed in this study for micro suturing in the rubber glove model. Conclusion: The methodological approach described in this study is based on an instructional design framework to teach surgical skills. This MP model is inexpensive and easily accessible, addressing the challenge of reduced opportunities to practice surgical skills. However, while motor skills are important, other non-technical expertise required by the surgeon is not addressed with this model. Thus, this model should act a surgical training augment, but not replace it.Keywords: mental script, motor imagery, cognitive walkthrough, verbal protocol analysis, hierarchical task analysis
Procedia PDF Downloads 10711629 Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)
Authors: Ahmed Al-Saadi, Ali Hassanpour, Tariq Mahmud
Abstract:
The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient.Keywords: aerodynamics, RANS, sport utility vehicle, turbulent flow
Procedia PDF Downloads 31911628 New Types of Fitness Equipment for Seniors-Based on Beginning Movement Load Training
Authors: Chia-Chi Chen, Tai-Sheng Huang
Abstract:
Ageing society has been spread around the world. The global population is not only ageing but also declining. The structure of population has changed, which has a significant impact on both the economies and industries. Thus, how to be a healthy senior citizen to relieve the burden to the family and society will be a popular issue. Although fitness equipment manufacturing industry has been mature, the ageing population is still increasing. Therefore, this study aims to design an innovative style of fitness equipment for senior citizens, based on BMLT presented by Dr. Koyama Hirofumi. The analysis of current fitness equipment on the market and the future trend will be applied in the study. With the coming of information age, senior citizens in the future are the users of information product for sure, and the new style of fitness equipment will be combined with information technology as well. Through this study, it is believed to design an innovative style of fitness equipment for seniors and help them live heartier and happier lives.Keywords: aging society, BMLT (Beginning Movement Load Training), seniors, new style of fitness equipment
Procedia PDF Downloads 22011627 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance
Authors: Qian Zhang, Dongkai Shen, Yan Shi
Abstract:
A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design
Procedia PDF Downloads 61211626 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves
Authors: Satya Narayan
Abstract:
India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.Keywords: geothermal resources, geophysical methods, exploration, exploitation
Procedia PDF Downloads 9211625 Virtualizing Attendance and Reducing Impacts on the Environment with a Mobile Application
Authors: Paulo R. M. Andrade, Adriano B. Albuquerque, Otávio F. Frota, Robson V. Silveira, Fátima A. da Silva
Abstract:
Information technology has been gaining more and more space whether in industry, commerce or even for personal use, but the misuse of it brings harm to the environment and human health as a result. Contribute to the sustainability of the planet is to compensate the environment, all or part of what withdraws it. The green computing also came to propose practical for use in IT in an environmentally correct way in aid of strategic management and communication. This work focuses on showing how a mobile application can help businesses reduce costs and reduced environmental impacts caused by its processes, through a case study of a public company in Brazil.Keywords: green computing, information technology, e-government, sustainable development, mobile computing
Procedia PDF Downloads 42511624 Evolution of Rock-Cut Caves of Dhamnar at Dhamnar, MP
Authors: Abhishek Ranka
Abstract:
Rock-cut Architecture is a manifestation of human endurance in constructing magnificent structures by sculpting and cutting entire hills. Cave Architecture in India form an important part of rock-cut development and is among the most prolific examples of rock-cut architecture in the world. There are more than 1500 rock-cut caves in various regions of India. Among them mostly are located in western India, more particularly in the state of Maharashtra. Some of the rock-cut caves are located in the central region of India, which is presently known as Malawa (Madhya Pradesh). The region is dominated by the vidhyachal hill ranges toward the west, dotted with the coarse laterite rock. Dhamnar Caves have been excavated in the central region of Mandsaur Dist. With a combination of shared sacred faiths. The earliest rock-cut activity began in the north, in Bihar, where caves were excavated in the Barabar and the Nagarjuni hills during the Mauryan period (3rd century BCE). The rock-cut activity then shifts to the central part of India in Madhya Pradesh, where the caves at Dhamnar, Bagh, Udayagiri, Poldungar, etc. excavated between 3rdto 9ᵗʰ CE. The rock-cut excavation continued to flourish in Madhya Pradesh till 10ᵗʰ century CE, simultaneously with monolithic Hindu temples. Dhamnar caves fall into four architectural typologies: the Lena caves, Chaitya caves, Viharas & Lena-Chaityagriha caves. The Buddhist rock-cutting activity in central India is divisible into two phases. In the first phase (2ndBCE-3rd CE), the Buddha image is conspicuously absent. After a lapse of about three centuries, activity begins again, and the Buddha images this time are carved. The former group belongs to the Hinayana (Lesser Vehicle) phase and the latter to the Mahayana (Greater Vehicle). Dhamnar caves has an elaborate facades, pillar capitals, and many more creative sculptures in various postures. These caves were excavated against the background of invigorating trade activities and varied socio-religious or Socio Cultural contexts. These caves also highlights the wealthy and varied patronage provided by the dynasties of the past. This paper speaks about the appraisal of the rock cut mechanisms, design strategies, and approaches while promoting a scope for further research in conservation practices. Rock-cut sites, with their physical setting and various functional spaces as a sustainable habitat for centuries, has a heritage footprint with a researchquotient.Keywords: rock-cut architecture, buddhism, hinduism, Iconography, and architectural typologies, Jainism
Procedia PDF Downloads 15811623 Dual-Rail Logic Unit in Double Pass Transistor Logic
Authors: Hamdi Belgacem, Fradi Aymen
Abstract:
In this paper we present a low power, low cost differential logic unit (LU). The proposed LU receives dual-rail inputs and generates dual-rail outputs. The proposed circuit can be used in Arithmetic and Logic Units (ALU) of processor. It can be also dedicated for self-checking applications based on dual duplication code. Four logic functions as well as their inverses are implemented within a single Logic Unit. The hardware overhead for the implementation of the proposed LU is lower than the hardware overhead required for standard LU implemented with standard CMOS logic style. This new implementation is attractive as fewer transistors are required to implement important logic functions. The proposed differential logic unit can perform 8 Boolean logical operations by using only 16 transistors. Spice simulations using a 32 nm technology was utilized to evaluate the performance of the proposed circuit and to prove its acceptable electrical behaviour.Keywords: differential logic unit, double pass transistor logic, low power CMOS design, low cost CMOS design
Procedia PDF Downloads 45611622 Identification of Cocoa-Based Agroforestry Systems in Northern Madagascar: Pillar of Sustainable Management
Authors: Marizia Roberta Rasoanandrasana, Hery Lisy Tiana. Ranarijaona, Herintsitohaina Razakamanarivo, Eric Delaitre, Nandrianina Ramifehiarivo
Abstract:
Madagascar is one of the producer’s countries of world's fine cocoa. Cocoa-based agroforestry systems (CBAS) plays a very important economic role for over 75% of the population in the north of Madagascar, the island's main cocoa-producing area. It is also viewed as a key factor in the deforestation of local protected areas. It is therefore urgent to establish a compromise between cocoa production and forest conservation in this region which is difficult due to a lack of accurate cocoa agro-systems data. In order to fill these gaps and to response to these socio-economic and environmental concerns, this study aims to describe CBAS by providing precise data on their characteristics and to establish a typology. To achieve this, 150 farms were surveyed and observed to characterize CBAS based on 11 agronomic and 6 socio-economic data. Also, 30 representative plots of CBAS among the 150 farms were inventoried for providing accurate ecological data (6 variables) as an additional data for the typology determination. The results showed that Madagascar’s CBAS systems are generally extensive and practiced by smallholders. Four types of cocoa-based agroforestry system were identified, with significant differences between the following variables: yield, planting age, cocoa density, density of associated trees, preceding crop, associated crops, Shannon-Wiener indices and species richness in the upper stratum. Type 1 is characterized by old systems (>45 years) with low crop density (425 cocoa trees/ha), installed after conversion of crops other than coffee (> 50%) and giving low yields (427 kg/ha/year). Type 2 consists of simple agroforestry systems (no associated crop 0%), fairly young (20 years) with low density of associated trees (77 trees/ha) and low species diversity (H'=1.17). Type 3 is characterized by high crop density (778 trees/ha and 175 trees/ha for cocoa and associated trees respectively) and a medium level of species diversity (H'=1.74, 8 species). Type 4 is particularly characterized by orchard regeneration method involving replanting and tree lopping (100%). Analysis of the potential of these four types has identified Type 4 as a promising practice for sustainable agriculture.Keywords: conservation, practices, productivity, protect areas, smallholder, trade-off, typology
Procedia PDF Downloads 12111621 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions
Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar
Abstract:
One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation
Procedia PDF Downloads 43711620 Assessing the Social Impacts of a Circular Economy in the Global South
Authors: Dolores Sucozhañay, Gustavo Pacheco, Paul Vanegas
Abstract:
In the context of sustainable development and the transition towards a sustainable circular economy (CE), evaluating the social dimension remains a challenge. Therefore, developing a respective methodology is highly important. First, the change of the economic model may cause significant social effects, which today remain unaddressed. Second, following the current level of globalization, CE implementation requires targeting global material cycles and causes social impacts on potentially vulnerable social groups. A promising methodology is the Social Life Cycle Assessment (SLCA), which embraces the philosophy of life cycle thinking and provides complementary information to environmental and economic assessments. In this context, the present work uses the updated Social Life Cycle Assessment (SLCA) Guidelines 2020 to assess the social performance of the recycling system of Cuenca, Ecuador, to exemplify a social assessment method. Like many other developing countries, Ecuador heavily depends on the work of informal waste pickers (recyclers), who, even contributing to a CE, face harsh socio-economic circumstances, including inappropriate working conditions, social exclusion, exploitation, etc. Under a Reference Scale approach (Type 1), 12 impact subcategories were assessed through 73 site-specific inventory indicators, using an ascending reference scale ranging from -2 to +2. Findings reveal a social performance below compliance levels with local and international laws, basic societal expectations, and practices in the recycling sector; only eight and five indicators present a positive score. In addition, a social hotspot analysis depicts collection as the most time-consuming lifecycle stage and the one with the most hotspots, mainly related to working hours and health and safety aspects. This study provides an integrated view of the recyclers’ contributions, challenges, and opportunities within the recycling system while highlighting the relevance of assessing the social dimension of CE practices. It also fosters an understanding of the social impact of CE operations in developing countries, highlights the need for a close north-south relationship in CE, and enables the connection among the environmental, economic, and social dimensions.Keywords: SLCA, circular economy, recycling, social impact assessment
Procedia PDF Downloads 15711619 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course
Authors: Lucia Ceccherini Nelli, Alessandra Donato
Abstract:
The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.Keywords: expert in energy, energy auditing, public buildings, thermal analysis
Procedia PDF Downloads 19411618 Using a Mobile App to Foster Children Active Travel to School in Spain
Authors: P. Pérez-Martín, G. Pedrós, P. Martínez-Jiménez, M. Varo-Martínez
Abstract:
In recent decades, family habits related to children’s displacements to school have changed, increasing motorized travels against active modes. This entails a major negative impact on the urban environment, road safety in cities and the physical and psychological development of children. One of the more common actions used to reverse this trend is Walking School Bus (WSB), which consists of a predefined adult-scorted pedestrian route to school with several stops along the path where schoolchildren are collected. At Tirso de Molina School in Cordoba (Spain), a new ICT-based methodology to deploy WSB has been tested. A mobile app that allows the geoposition of the group, the notification of the arrival and real-time communication between the WSB participants have been presented to the families in order to organize and register the daily participation. After an initial survey to know the travel mode and the spatial distribution of the interested families, three WSB routes have been established and the families have been trained in the app usage. During nine weeks, 33 children have joined the WSB and their parents have accompanied the groups in turns. A high recurrence in the attendance has been registered. Through a final survey, participants have valued highly the tool and the methodology designed, emphasizing as most useful features of the mobile app: notifications system, chat and real-time monitoring. It has also been found that the tool has had a major impact on the degree of confidence of parents regarding the autonomous on foot displacement of their children to school. Moreover, 37,9% of the participant families have reported a total or partial modal shift from car to walking, and the benefits more reported are an increment of the parents available time and less problems in the travel to school daily organization. As a consequence, It has been proved the effectiveness of this user-centric innovative ICT-based methodology to reduce the levels of private car drop offs, minimize barriers of time constraints, volunteer recruitment, and parents’ safety concerns, while, at the same time, increase convenience and time savings for families. This pilot study can offer guidance for community coordinated actions and local authority interventions to support sustainable school travel outcomes.Keywords: active travel, mobile app, sustainable mobility, urban transportation planning, walking school bus
Procedia PDF Downloads 33911617 Determining a Suitable Time and Temperature Combination for Electricial Conductivity Test in Sorghum
Authors: Mehmet Demir Kaya, Onur İleri, Süleyman Avcı
Abstract:
This study was conducted to determine a suitable time and temperature combination for the electrical conductivity test to be used in sorghum seeds. Fifty seeds known initial seed moisture content and weight of fresh and dead seeds (105°C for 6h) of seven sorghum cultivars were used as material. The electrical conductivities of soak water were measured using EC meter at 20, 25 and 30°C for 4, 8, 12 and 24 h using 50 mL deionized water. The experimental design was three factors factorial (7 × 3 × 4) arranged in a completely randomized design; with four replications and 50 seeds per replicate. The results showed that increased time and temperature caused a remarkable increase in EC values of all of the cultivars. Temperature significantly affected the electrical conductivity values and the best results were obtained at 25°C. The cultivars having the lowest germination percentage gave the highest electrical conductivity value. Dead seeds always gave higher electrical conductivity at 25°C for all periods. It was concluded that the temperature of 25°C and higher period than 12 h was the optimum combination for the electrical conductivity test in sorghum.Keywords: Sorghum bicolor, seed vigor, cultivar, temperature
Procedia PDF Downloads 31711616 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications
Authors: Arpan Dwivedi, Yogesh Pahariya
Abstract:
In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.Keywords: SAPS, DG, PMWTG, rural area, off-grid, PV module
Procedia PDF Downloads 25411615 Design and Advancement of Hybrid Multilevel Inverter Interface with PhotoVoltaic
Authors: P.Kiruthika, K. Ramani
Abstract:
This paper presented the design and advancement of a single-phase 27-level Hybrid Multilevel DC-AC Converter interfacing with Photo Voltaic. In this context, the Multicarrier Pulse Width Modulation method can be implemented in 27-level Hybrid Multilevel Inverter for generating a switching pulse. Perturb & Observer algorithm can be used in the Maximum Power Point Tracking method for the Photo Voltaic system. By implementing Maximum Power Point Tracking with three separate solar panels as an input source to the 27-level Hybrid Multilevel Inverter. This proposed method can be simulated by using MATLAB/simulink. The result shown that the proposed method can achieve silky output wave forms, more flexibility in voltage range, and to reduce Total Harmonic Distortion in medium-voltage drives.Keywords: Multi Carrier Pulse Width Modulation Technique (MCPWM), Multi Level Inverter (MLI), Maximum Power Point Tracking (MPPT), Perturb and Observer (P&O)
Procedia PDF Downloads 58311614 Influence of Biological and Chemical Fertilizers on Quantitative Characteristics of Sweet Wormwood
Authors: Anahita Yarahmadi, Nazanin Mahboobi, Nahid Sadat Rahmatpour Nori, Mohammad Hossein Bijeh Keshavarzi, Mohammad Javad Shakori
Abstract:
This research aimed at considering biological fertilizer effect and chemical fertilizer on the quantitative characteristics of Sweet wormwood (Artemisia annua L.), an experiment was carried out in factorial design in completely randomized design with 4 replications in an experimental greenhouse which was located in Tehran. Experimental treatment involved chemical fertilizers (Nitrogen, Phosphorus) in4 levels and biological fertilizers in 4 levels (control, Nitroxin, Bio-phosphorus and Vemricompost). Results showed that using biological fertilizers and increasing different levels of chemical fertilizers (N, P) had significant effects on all the characteristics. Considering means comparison showed that biological fertilizers lead to significant enhancement on all the characteristics and among biological fertilizers, Vermicompost treatment has the most effect. Considering means comparison tables of different levels of chemical fertilizer have been found that (N80P80) had the most increase on characteristics.Keywords: Artemisia annua L, bio-fertilizer, chemical fertilizer, vermicompost
Procedia PDF Downloads 45911613 Design and Analysis of a Combined Cooling, Heating and Power Plant for Maximum Operational Flexibility
Authors: Salah Hosseini, Hadi Ramezani, Bagher Shahbazi, Hossein Rabiei, Jafar Hooshmand, Hiwa Khaldi
Abstract:
Diversity of energy portfolio and fluctuation of urban energy demand establish the need for more operational flexibility of combined Cooling, Heat, and Power Plants. Currently, the most common way to achieve these specifications is the use of heat storage devices or wet operation of gas turbines. The current work addresses using variable extraction steam turbine in conjugation with a gas turbine inlet cooling system as an alternative way for enhancement of a CCHP cycle operating range. A thermodynamic model is developed and typical apartments building in PARDIS Technology Park (located at Tehran Province) is chosen as a case study. Due to the variable Heat demand and using excess chiller capacity for turbine inlet cooling purpose, the mentioned steam turbine and TIAC system provided an opportunity for flexible operation of the cycle and boosted the independence of the power and heat generation in the CCHP plant. It was found that the ratio of power to the heat of CCHP cycle varies from 12.6 to 2.4 depending on the City heating and cooling demands and ambient condition, which means a good independence between power and heat generation. Furthermore, selection of the TIAC design temperature is done based on the amount of ratio of power gain to TIAC coil surface area, it was found that for current cycle arrangement the TIAC design temperature of 15 C is most economical. All analysis is done based on the real data, gathered from the local weather station of the PARDIS site.Keywords: CCHP plant, GTG, HRSG, STG, TIAC, operational flexibility, power to heat ratio
Procedia PDF Downloads 28611612 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design
Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi
Abstract:
Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect
Procedia PDF Downloads 113