Search results for: carbon fiber reinforced composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6272

Search results for: carbon fiber reinforced composite

1592 Prevention of Cellulose and Hemicellulose Degradation on Fungal Pretreatment of Water Hyacinth Using Phanerochaete Chrysosporium

Authors: Eka Sari

Abstract:

Potential degradation of cellulose and hemicellulose during the fungal pretreatment of lignocellulose has led to fermentable sugar yield will be low. This potential is even greater if the pretreatment of lignocellulosic that have low lignin such as water hyacinth. In order to prepare lignocellulose that have low lignin content, especially water hyacinth efforts are needed to prevent the degradation of cellulose and cellulose. One attempt to prevent the degradation of cellulose and hemicellulose is to replace the substrate needed by the addition of a simple carbon compounds such as glucose. Glucose sources used in this study is molasses. The purpose of this research to get the right of concentration of molasses to reduce the degradation of cellulose and hemicellulose during the pretreatment process and obtain fermentable sugar yields on high. The results showed that the addition of molasses with a concentration of 2% is able to reduce the degradation of cellulose from 25.53% to 10% and hemicellulose degradation of 20.12% to 10.89%. Fermentable sugar yields produced only reached 43.91%. To improve the yield of glucose is then performed additional combonation of molasses of 2% molasses and co-factor Mn2+ 0.5%. Fermentable sugar yield increased to 67.66% and the degradation of cellulose and hemicellulose decreased to 2.44% and 2.71%, respectively.

Keywords: water hyacinth, cellulose, hemicelulose, degradation, pretreatment, fungus

Procedia PDF Downloads 559
1591 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation

Authors: Azeem Ur Rehman, Asma Tayyaba

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell

Procedia PDF Downloads 493
1590 Enhancing Industrial Wastewater Treatment through Fe3o4 Nanoparticles-loaded Activated Charcoal: Design and Optimization for Sustainable Development

Authors: Komal Verma, V. S. Moholkar

Abstract:

This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result is essentially a consequence of synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Microconvection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe₃O₄@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater The Fe₃O₄@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: Fe₃O₄@AC nanocomposite, RSM, COD;, LC-MS, Toxicity

Procedia PDF Downloads 116
1589 Vulnerability Assessment of Vertically Irregular Structures during Earthquake

Authors: Pranab Kumar Das

Abstract:

Vulnerability assessment of buildings with irregularity in the vertical direction has been carried out in this study. The constructions of vertically irregular buildings are increasing in the context of fast urbanization in the developing countries including India. During two reconnaissance based survey performed after Nepal earthquake 2015 and Imphal (India) earthquake 2016, it has been observed that so many structures are damaged due to the vertically irregular configuration. These irregular buildings are necessary to perform safely during seismic excitation. Therefore, it is very urgent demand to point out the actual vulnerability of the irregular structure. So that remedial measures can be taken for protecting those structures during natural hazard as like earthquake. This assessment will be very helpful for India and as well as for the other developing countries. A sufficient number of research has been contributed to the vulnerability of plan asymmetric buildings. In the field of vertically irregular buildings, the effort has not been forwarded much to find out their vulnerability during an earthquake. Irregularity in vertical direction may be caused due to irregular distribution of mass, stiffness and geometrically irregular configuration. Detailed analysis of such structures, particularly non-linear/ push over analysis for performance based design seems to be challenging one. The present paper considered a number of models of irregular structures. Building models made of both reinforced concrete and brick masonry are considered for the sake of generality. The analyses are performed with both help of finite element method and computational method.The study, as a whole, may help to arrive at a reasonably good estimate, insight for fundamental and other natural periods of such vertically irregular structures. The ductility demand, storey drift, and seismic response study help to identify the location of critical stress concentration. Summarily, this paper is a humble step for understanding the vulnerability and framing up the guidelines for vertically irregular structures.

Keywords: ductility, stress concentration, vertically irregular structure, vulnerability

Procedia PDF Downloads 229
1588 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 617
1587 Sociological Portrait of the Korean Diaspora in Kazakhstan

Authors: Yefrem Yefremov

Abstract:

In Kazakhstan, there are approximately 100,000 ethnic Koreans with the ethnonym "Koryo Saram". They are part of the global Korean diaspora around the world, deported to Kazakhstan by Stalin’s decree in 1937. Koryo Saram's diasporic identity is a composite of numerous identities based on a shared cultural heritage of the USSR and independent Kazakhstan and has mosaic character. The author has conducted a sociological survey to find out the main features of the identity of the Koryo Saram diaspora. The purpose of this paper is to depict the degree of ethnic, cultural, and diasporic identity of Koryo Saram and which effect on the preserving Korean diaspora in Kazakhstna do they have. The following elements impacting the above-mentioned identities were investigated in the survey: criteria by which Koryo Saram perceive themselves to be Korean, attitude of Koryo Saram to their ethnicity, degree of feeling of ethnocultural similarity between Koreans of Kazakhstan and Koreans of the Republic of Korea, degree of association of Koreans of Kazakhstan with other Koreans living in other CIS countries, degree of practicing Korean traditions Koryo Saram's attitudes towards interethnic marriages. The primary factor in defining the identity among the respondents is the factor of ethnic origin. Nationality is the second most significant component in establishing Koryo Saram’s identity. The maintenance of "Koreanness" of Koryo Sarams in the context of a multiethnic community, particularly in Kazakhstan, is based on genetic elements as well as the preservation of the culture. In conclusion, the high level of preserving Korean identity is being observed in the Korean Diaspora of Kazakhstan.

Keywords: diasporic identity, diaspora, ethnic identity, identity markers, korean diaspora, koreans of kazakhstan, koryo saram, multiethnicity

Procedia PDF Downloads 136
1586 Recent Advancements and Future Trends in the Development of Antimicrobial Edible Films for Food Preservation

Authors: Raana Babadi Fathipour

Abstract:

Food packaging plays a crucial role in protecting food from unwanted external factors. Antibacterial edible films are a promising option for food packaging due to their biodegradability, environmental friendliness, and safety. This paper reviews recent research progress on antimicrobial edible films, focusing on those made from polysaccharides, proteins, and lipids. Polysaccharides and proteins are the primary components of antimicrobial edible films, while lipids primarily serve as plasticizers and carriers for active substances in composite films. For instance, second-generation liposomes have shown great potential as carriers for antimicrobial substances and other bioactive compounds due to their exceptional stability. Furthermore, this paper analyzes recent advancements and future trends in antimicrobial edible films. One promising direction is the integration of antimicrobial edible film materials with delivery systems, such as nanoemulsion and microencapsulation technologies, to ensure stable loading of bioactive substances. Another emerging area of interest is the development of smart and active packaging that allows consumers to assess the freshness of food products without opening the package. pH-sensitive films and smart fluorescent "on-off" sensors for humidity are currently being explored as materials for smart and active packaging to monitor food product freshness, with further exploration anticipated in the future.

Keywords: antimicrobial edible film, biopolymer, antimicrobial agent, encapsulation, antimicrobial assay

Procedia PDF Downloads 59
1585 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition

Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang

Abstract:

The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.

Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate

Procedia PDF Downloads 440
1584 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 237
1583 Eli-Twist Spun Yarn: An Alternative to Conventional Sewing Thread

Authors: Sujit Kumar Sinha, Madan Lal Regar

Abstract:

Sewing thread plays an important role in the transformation of a two-dimensional fabric into a three-dimensional garment. The interaction of the sewing thread with the fabric at the seam not only influences the appearance of a garment but also its performance. Careful selection of sewing thread and associated parameters can only help in improvement. Over the years, ring spinning has been dominating the yarn market. In the pursuit of improvement to challenge its dominance alternative technology has also been developed. But no real challenge has been posed by the any of the developed spinning systems. Eli-Twist spinning system can be a new method of yarn manufacture to provide a product with improved mechanical and physical properties with respect to the conventional ring spun yarn. The system, patented by Suessen has gained considerable attention in the recent times. The process of produces a two-ply compact yarn with improved fiber utilization. It produces a novel structure combining all advantages of condensing and doubling. In the present study, sewing threads of three different counts each from cotton, polyester and polyester/cotton (50/50) blend were produced on a ring and Eli-Twist systems. A twist multiplier of 4.2 was used to produce all the yarns. A comparison of hairiness, tensile strength and coefficient of friction with conventional ring yarn was made. Eli-Twist yarn has shown better frictional characteristics, better tensile strength and less hairiness. The performance of the Eli-Twist sewing thread has also been found to be better than the conventional 2-ply sewing thread. The performance was estimated through seam strength, seam elongation and seam efficiency of sewn fabric. Eli-Twist sewing thread has shown less friction, less hairiness, and higher tensile strength. Eli-Twist sewing thread resulted in better seam characteristics in comparison to conventional 2-ply sewing thread.

Keywords: ring spun yarn, Eli-Twist yarn, sewing thread, seam strength, seam elongation, seam efficiency

Procedia PDF Downloads 198
1582 Texture Characteristics and Depositional Environment of the Lower Mahi River Sediment, Mainland Gujarat, India

Authors: Shazi Farooqui, Anupam Sharma

Abstract:

The Mahi River (~600km long) is an important west flowing the river of Central India. It originates in Madhya Pradesh and starts flowing in NW direction and enters into the state of Rajasthan. It flows across southern Rajasthan and then enters into Gujarat and finally debouches in the Gulf of Cambay. In Gujarat state, it flows through all four geomorphic zones i.e. eastern upland zone, shallow buried piedmont zone, alluvial zone and coastal zone. In lower reaches and particularly when it is flowing under the coastal regime, it provides an opportunity to study – 1. Land–Sea interaction and role of relative sea level changes, 2. Coastal/estuarine geological process, 3. Landscape evolution in marginal areas and so on. The Late Quaternary deposits of Mainland Gujarat is appreciably studied by Chamyal and his group of MS University of Baroda, and they have established that the 30-35m thick sediment package of the Mainland Gujarat is comprised of marine, fluvial and aeolian sediments. It is also established that in the estuarine zone, the upper few meter thick sediments package is of marine nature. However, its thickness, characters and the depositional environment including the role of climate and tectonics is still not clearly defined. To understand few aspects of the above mentioned, in the present study, a 17m subsurface sediment core has been retrieved from the estuarine zone of Mahi river basin. The Multiproxy studies which include the textural analysis (grain size), Loss on ignition (LOI), Bulk and clay mineralogy and geochemical studies have been carried out. In the entire sedimentary sequence, the grain size largely varies from coarse sand to clay; however, a solitary gravel bed is also noticed. The lower part (depth 9-17m), is mainly comprised of sub equal proportion of sand and silt. The sediments mainly have bimodal and leptokurtic distribution and deposited in alternate sand-silt package, probably indicating flood deposits. Relatively low moisture (1.8%) and organic carbon (2.4%) with increased carbonate values (12%) indicate that conditions must have to remain oxidizing. The middle part (depth 9–6m) has a 1m thick gravel bed at the bottom and overlain by coarse sand to very fine sand showing fining upward sequence. The presence of gravel bed suggests some kind of tectonic activity resulting into change in base level or enhanced precipitation in the catchment region. The upper part (depth 6–0m; top part of sequence) mainly comprised of fine sand to silt size grains (with appreciable clay content). The sediment of this part is Unimodal and very leptokurtic in nature suggesting wave and winnowing process and deposited in low energy suspension environment. This part has relatively high moisture (2.1%) and organic carbon (2.7%) with decreased carbonate content (4.2%) indicating change in the depositional environment probably under estuarine conditions. The presence of chlorite along with smectite clay mineral further supports the significant marine contribution in the formation of upper part of the sequence.

Keywords: grain size, statistical analysis, clay minerals, late quaternary, LOI

Procedia PDF Downloads 181
1581 CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics

Authors: Maria Alekxandra B. Sison, Reginald C. Mallare, Joseph Albert M. Mendoza

Abstract:

Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction.

Keywords: combustion efficiency, turbulence, dual-stage combustor, NOx emission

Procedia PDF Downloads 105
1580 Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia

Authors: Ali A. A. Alqarni, Gamal A. Mohamed, Hossam M. Abdallah, Sabrin R. M. Ibrahim

Abstract:

Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines.

Keywords: Asteraceae, cytotoxicity, metabolites, Tagetes minuta

Procedia PDF Downloads 164
1579 Unravelling Domestic Electricity Demand by Domestic Renewable Energy Supply: A Case Study in Yogyakarta and Central Java, Indonesia

Authors: Diyono Harun

Abstract:

Indonesia aims to reduce carbon emissions from energy generation by reaching 23% and 31% of the national energy supply from renewable energy sources (RES) in 2025 and 2030. The potential for RES in Indonesia is enormous, but not all province has the same potential for RES. Yogyakarta, one of the most travel-destinated provinces in Indonesia, has less potential than its neighbour, Central Java. Consequently, Yogyakarta must meet its electricity demand by importing electricity from Central Java if this province only wants to use electricity from RES. Thus, achieving the objective is balancing the electricity supply between an importer (Yogyakarta) and an exporter province (Central Java). This research aims to explore the RES potential and the current capacity of RES for electricity generation in both provinces. The results show that the present capacity of RES meets the annual domestic electricity demand in both provinces only with an extension of the RES potential. The renewable energy mixes in this research also can lower CO2 emissions compared to gas-fired power plants. This research eventually provides insights into exploring and using the domestic RES potentials between two areas with different RES capacities.

Keywords: energy mix, renewable energy sources, domestic electricity, electricity generation

Procedia PDF Downloads 88
1578 Influential Health Care System Rankings Can Conceal Maximal Inequities: A Simulation Study

Authors: Samuel Reisman

Abstract:

Background: Comparative rankings are increasingly used to evaluate health care systems. These rankings combine discrete attribute rankings into a composite overall ranking. Health care equity is a component of overall rankings, but excelling in other categories can counterbalance low inequity grades. Highly ranked inequitable health care would commend systems that disregard human rights. We simulated the ranking of a maximally inequitable health care system using a published, influential ranking methodology. Methods: We used The Commonwealth Fund’s ranking of eleven health care systems to simulate the rank of a maximally inequitable system. Eighty performance indicators were simulated, assuming maximal ineptitude in equity benchmarks. Maximal rankings in all non-equity subcategories were assumed. Subsequent stepwise simulations lowered all non-equity rank positions by one. Results: The maximally non-equitable health care system ranked first overall. Three subsequent stepwise simulations, lowering non-equity rankings by one, each resulted in an overall ranking within the top three. Discussion: Our results demonstrate that grossly inequitable health care systems can rank highly in comparative health care system rankings. These findings challenge the validity of ranking methodologies that subsume equity under broader benchmarks. We advocate limiting maximum overall rankings of health care systems to their individual equity rankings. Such limits are logical given the insignificance of health care system improvements to those lacking adequate health care.

Keywords: global health, health equity, healthcare systems, international health

Procedia PDF Downloads 402
1577 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance

Procedia PDF Downloads 256
1576 Optimisation of Intermodal Transport Chain of Supermarkets on Isle of Wight, UK

Authors: Jingya Liu, Yue Wu, Jiabin Luo

Abstract:

This work investigates an intermodal transportation system for delivering goods from a Regional Distribution Centre to supermarkets on the Isle of Wight (IOW) via the port of Southampton or Portsmouth in the UK. We consider this integrated logistics chain as a 3-echelon transportation system. In such a system, there are two types of transport methods used to deliver goods across the Solent Channel: one is accompanied transport, which is used by most supermarkets on the IOW, such as Spar, Lidl and Co-operative food; the other is unaccompanied transport, which is used by Aldi. Five transport scenarios are studied based on different transport modes and ferry routes. The aim is to determine an optimal delivery plan for supermarkets of different business scales on IOW, in order to minimise the total running cost, fuel consumptions and carbon emissions. The problem is modelled as a vehicle routing problem with time windows and solved by genetic algorithm. The computing results suggested that accompanied transport is more cost efficient for small and medium business-scale supermarket chains on IOW, while unaccompanied transport has the potential to improve the efficiency and effectiveness of large business scale supermarket chains.

Keywords: genetic algorithm, intermodal transport system, Isle of Wight, optimization, supermarket

Procedia PDF Downloads 370
1575 Rheological Properties of Dough and Sensory Quality of Crackers with Dietary Fibers

Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Zita Šereš, Biljana Pajin, Nils Juul, Nikola Maravić

Abstract:

The possibility of application the dietary fibers in production of crackers was observed in this work, as well as their influence on rheological and textural properties on the dough for crackers and influence on sensory properties of obtained crackers. Three different dietary fibers, oat, potato and pea fibers, replaced 10% of wheat flour. Long fermentation process and baking test method were used for crackers production. The changes of dough for crackers were observed by rheological methods of determination the viscoelastic dough properties and by textural measurements. Sensory quality of obtained crackers was described using quantity descriptive method (QDA) by trained members of descriptive panel. Additional analysis of crackers surface was performed by videometer. Based on rheological determination, viscoelastic properties of dough for crackers were reduced by application of dietary fibers. Manipulation of dough with 10% of potato fiber was disabled, thus the recipe modification included increase in water content at 35%. Dough compliance to constant stress for samples with dietary fibers decreased, due to more rigid and stiffer dough consistency compared to control sample. Also, hardness of dough for these samples increased and dough extensibility decreased. Sensory properties of final products, crackers, were reduced compared to control sample. Application of dietary fibers affected mostly hardness, structure and crispness of the crackers. Observed crackers were low marked for flavor and taste, due to influence of fibers specific aroma. The sample with 10% of potato fibers and increased water content was the most adaptable to applied stresses and to production process. Also this sample was close to control sample without dietary fibers by evaluation of sensory properties and by results of videometer method.

Keywords: crackers, dietary fibers, rheology, sensory properties

Procedia PDF Downloads 323
1574 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications

Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang

Abstract:

Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.

Keywords: immobilization, enzyme, nanocarrier, nanofibers

Procedia PDF Downloads 295
1573 Suitability of Quarry Dust as Replacement of Sand in Medium Grade Concrete

Authors: Popoola M. Oyenola

Abstract:

Concrete plays the important role and a huge percentage of concrete is being utilized in every construction practices. Natural river sand is one of the major ingredients of concrete, is becoming expensive due to excessive cost of accessibility from sources. Also large scale depletion of sources creates environmental problems. Therefore, there is a need of economic alternative materials. Quarry dust is a waste obtained during quarrying process. It has been rampantly used in different construction practices and could be used as an effective fine aggregate instead of river sand. Partial and total replacement of fine aggregate in conventional concrete with quarry dust has been empirically conducted with the view to examining primarily the compressive strength of the resulting composite and possible total utilization of quarry dust as fine aggregate in the production of medium grade concrete. The results of the study showed that its specific gravity, porosity and water absorption showed satisfactory performance. The percentage replacement of natural river sand with quarry dust for a designed strength of 25N/mm2 varied at intervals of 10% up to a maximum value of 100%. A total of 132 cubes of 150 x 150 x 150mm were cast and tested at 7, 14 and 28 days of hydration. Compressive strength increases with curing age in all the mixes. Compressive strength decreases with increase in percentage of quarry dust. Generally the compressive strength of concrete incorporating quarry dust attained strength of 22.47 N/mm2 after 28 days which makes it a suitable aggregate for the production medium grade concrete.

Keywords: quarry dust, concrete, aggregates, compressive strength

Procedia PDF Downloads 245
1572 Energy Related Carbon Dioxide Emissions in Pakistan: A Decomposition Analysis Using LMDI

Authors: Arsalan Khan, Faisal Jamil

Abstract:

The unprecedented increase in anthropogenic gases in recent decades has led to climatic changes worldwide. CO2 emissions are the most important factors responsible for greenhouse gases concentrations. This study decomposes the changes in overall CO2 emissions in Pakistan for the period 1990-2012 using Log Mean Divisia Index (LMDI). LMDI enables to decompose the changes in CO2 emissions into five factors namely; activity effect, structural effect, intensity effect, fuel-mix effect, and emissions factor effect. This paper confirms an upward trend of overall emissions level of the country during the period. The study finds that activity effect, structural effect and intensity effect are the three major factors responsible for the changes in overall CO2 emissions in Pakistan with activity effect as the largest contributor to overall changes in the emissions level. The structural effect is also adding to CO2 emissions, which indicates that the economic activity is shifting towards more energy-intensive sectors. However, intensity effect has negative sign representing energy efficiency gains, which indicate a good relationship between the economy and environment. The findings suggest that policy makers should encourage the diversification of the output level towards more energy efficient sub-sectors of the economy.

Keywords: energy consumption, CO2 emissions, decomposition analysis, LMDI, intensity effect

Procedia PDF Downloads 400
1571 Bounds on the Laplacian Vertex PI Energy

Authors: Ezgi Kaya, A. Dilek Maden

Abstract:

A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.

Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index

Procedia PDF Downloads 246
1570 Empowering Children through Co-creation: Writing a Book with and for Children about Their First Steps Towards Urban Independence

Authors: Beata Patuszynska

Abstract:

Children are largely absent from Polish social discourse, a fact which is mirrored in urban planning processes. Their absence creates a vicious circle – an unfriendly urban space discourages children from going outside on their own, meaning adults do not see a need to make spaces more friendly for a group, not present. The pandemic and lockdown, with their closed schools and temporary ban on unaccompanied minors on the streets, have only reinforced this. The project – co-writing with children a book concerning their first steps into urban independence - aims at empowering children, enabling them to find their voice when it comes to urban space. The foundation for the book was data collected during research and workshops with children from Warsaw primary schools, aged 7-10 - the age they begin independent travel in the city. The project was carried out with the participation and involvement of children at each creative step. Children were (1) models: the narrator is an 7-year-old boy getting ready for urban independence. He shares his experience as well as the experience of his school friends and his 10-year-old sister, who already travels on her own. Children were (2) teachers: the book is based on authentic children’s stories and experience, along with the author’s findings from research undertaken with children. The material was extended by observations and conclusions made during the pandemic. Children were (3) reviewers: a series of draft chapters from the book underwent review by children during workshops performed in a school. The process demonstrated that all children experience similar pleasures and worries when it comes to interaction with urban space. Furthermore, they also have similar needs that need satisfying. In my article, I will discuss; (1) the advantages of creating together with children; (2) my conclusions on how to work with children in participatory processes; (3) research results: perceptions of urban space by children age 7-10, when they begin their independent travel in the city; the barriers to and pleasures derived from independent urban travel; the influence of the pandemic on children’s feelings and their behaviour in urban spaces.

Keywords: children, urban space, co-creation, participation, human rights

Procedia PDF Downloads 104
1569 Analysis and Evaluation of Both AC and DC Standalone Photovoltaic Supply to Ethio-Telecom Access Layer Devices: The Case of Multi-Service Access Gateway in Adama

Authors: Frie Ayalew, Seada Hussen

Abstract:

Ethio-telecom holds a variety of telecom devices that needs a consistent power source to be operational. The company got this power mainly from the national grid and used this power source alone or with a generator and/or batteries as a backup. In addition, for off-grid or remote areas, the company commonly uses generators and batteries. But unstable diesel prices, huge expenses of fuel and transportation, and high carbon emissions are the main problems associated with fuel energy. So, the design of solar power with battery backup is a highly recommended and advantageous source for the next coming years. This project designs the AC and DC standalone photovoltaic supply to Ethio-telecom access layer devices for the case of multi-service access gateway in Adama. The design is done by using Homer software for both AC and DC loads. The project shows that the design of a solar based microgrid is the best option for the designed area.

Keywords: solar power, battery, inverter, Ethio-telecom, solar radiation

Procedia PDF Downloads 83
1568 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber

Procedia PDF Downloads 111
1567 Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture

Authors: D. Makuteniene

Abstract:

Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission.

Keywords: agriculture, determinants of intensity, greenhouse gas emission, intensity

Procedia PDF Downloads 185
1566 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel

Authors: Ouahiba Taamallah, Tarek Litim

Abstract:

The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.

Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue

Procedia PDF Downloads 188
1565 Structural Changes and Formation of Calcium Complexes in Corn Starch Processed by Nixtamalization

Authors: Arámbula-Villa Gerónimo, García-Lara Kenia Y., Figueroa-Cárdenas J. D., Pérez-Robles J. F., Jiménez-Sandoval S., Salazar-López R., Herrera-Corredor J. A.

Abstract:

The nixtamalization process (thermal-alkaline method) improves the nutritional part of the corn grain. In this process, the using of Ca(OH)₂ is basic, although the chemical mechanisms between this alkali and the carbohydrates (starch), proteins, lipids, and fiber have not been fully identified. In this study, the native corn starch was taken as a model, and it was subjected to cooking with different concentrations of lime (nixtamalization process) and specific studies of FTIR and XRD were carried out to identify the formation of chemical compounds, and the physical, physicochemical, rheological (paste) and structural properties of material obtained were determined. The FTIR spectra showed the formation of calcium-starch complexes. The treatments with Ca(OH)₂ showed a band shift towards 1675 cm⁻¹ and a band in 1436 cm⁻¹ (COO⁻), indicating the oxidation of starch. Three bands were identified (1575, 1550, and 1540 cm⁻¹) characteristics of carboxylic acid salts for three types of coordinated structures: monodentate, pseudo-bridged, and bidentate. The XRD spectra of starch treated with Ca(OH)₂ showed a peak corresponding to CaCO₃ (29.40°). The oxidation of starch was favored with low concentrations of Ca(OH)₂, producing carboxyl and carbonyl groups and increasing the residual CaCO₃. The increased concentration of Ca(OH)₂ showed the formation of calcium carboxylates, with a decrease in relative crystallinity and residual CaCO₃. Samples with low concentrations of Ca(OH)₂ slowed the onset of gelatinization and increased the swelling of the granules and the peak viscosity. The higher concentrations of Ca(OH)₂ difficulted the water absorption and decreased the viscosity rate and peak viscosity. These results can be used to improve the quality characteristics of the dough and tortillas and to get better acceptance by consumers.

Keywords: maize starch, nixtamalization, gelatinization, calcium carboxylates

Procedia PDF Downloads 96
1564 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 289
1563 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger

Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du

Abstract:

Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.

Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis

Procedia PDF Downloads 557