Search results for: feature detection and description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5433

Search results for: feature detection and description

783 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate

Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur

Abstract:

Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.

Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration

Procedia PDF Downloads 126
782 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 62
781 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 84
780 Nigerian Media Coverage of the Chibok Girls Kidnap: A Qualitative News Framing Analysis of the Nation Newspaper

Authors: Samuel O. Oduyela

Abstract:

Over the last ten years, many studies have examined the media coverage of terrorism across the world. Nevertheless, most of these studies have been inclined to the western narrative, more so in relation to the international media. This study departs from that partiality to explore the Nigerian press and its coverage of the Boko Haram. The study intends to illustrate how the Nigerian press has reported its homegrown terrorism within its borders. On 14 April 2014, the Shekau-led Boko Haram kidnapped over 200 female students from Chibok in the Borno State. This study analyses a structured sample of news stories, feature articles, editorial comments, and opinions from the Nation newspaper. The study examined the representation of the Chibok girls kidnaps by concentrating on four main viewpoints. The news framing of the Chibok girls’ kidnap under Presidents Goodluck Jonathan (2014) and Mohammadu Buhari (2016-2018), the sourcing model present in the news reporting of the kidnap and the challenges Nation reporters face in reporting Boko Haram. The study adopted the use of qualitative news framing analysis to provide further insights into significant developments established from the examination of news contents. The study found that the news reportage mainly focused on the government response to Chibok girls kidnap, international press and Boko Haram. Boko Haram was also framed, as a political conspiracy, as prevailing, and as instilling fear. Political, and economic influence appeared to be a significant determinant of the reportage. The study found that the Nation newspaper's portrayal of the crisis under President Jonathan differed significantly from under President Buhari. While the newspaper framed the action of President Jonathan as lacklustre, dismissive, and confusing, it was less critical of President Buhari's government's handling of the crisis. The Nation newspaper failed to promote or explore non-violent approaches. News reports of the kidnap, thus, were presented mainly from a political and ethnoreligious perspective. The study also raised questions of what roles should journalists play in covering conflicts? Should they merely report comments on and interpret it, or should they be actors in the resolution or, more importantly, the prevention of conflicts? The study underlined the need for the independence of the media, more training for journalists to advance a more nuanced and conflict-sensitive news coverage in the Nigerian context.

Keywords: boko haram, chibok girls kidnap, conflict in nigeria, media framing

Procedia PDF Downloads 138
779 TARF: Web Toolkit for Annotating RNA-Related Genomic Features

Authors: Jialin Ma, Jia Meng

Abstract:

Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.

Keywords: RNA-related genomic features, annotation, visualization, web server

Procedia PDF Downloads 199
778 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 181
777 Synergistic Effect of Curcumin and Insulin on GLUT4 Translocation in C2C12 Cell

Authors: Javad Mohiti-Ardekani, Shabodin Asadii, Ali Moradi

Abstract:

Introduction: Curcumin, the yellow pigment in turmeric, has been shown as an anti-diabetic agent for centuries but only in recent few years, its mechanism of action has been under investigation. Some studies showed that curcumin might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in cells. To investigate this possibility, we investigate the effects of extract and commercial curcumin with and without insulin on GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). Methods and Material: C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 40 µmolar Extract and Commercial curcumin, with or without insulin as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two independent samples t-test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM groups curcumin and curcumin with insulin in comparison to 1 % DMSO-treated myotubes control group. Results: As our results have shown extract and commercial curcumin induces GLUT4 translocation from intra-cell into cell surface. The results have also shown synergic effect of curcumin on translocation of GLUT4 from intra-cell into cell surface in the presence of 100 nm insulin. Discussion: We conclude that curcumin may be a choice of type-2 diabetes mellitus treatment because its extract and commercial enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However, it is necessary to trace the signaling pathways which are activated by curcumin.

Keywords: Curcumin, insulin, Diabetes type-2, GLUT4

Procedia PDF Downloads 233
776 Electrospun Membrane doped with Gold Nanorods for Surface-Enhanced Raman Sepctroscopy

Authors: Ziwei Wang, Andrea Lucotti, Luigi Brambilla, Matteo Tommasini, Chiara Bertarelli

Abstract:

Surface-enhanced Raman Spectroscopy (SERS) is a highly sensitive detection that provides abundant information on low concentration analytes from various researching areas. Based on localized surface plasmon resonance, metal nanostructures including gold, silver and copper have been investigated as SERS substrate during recent decades. There has been increasing more attention of exploring good performance, homogenous, repeatable SERS substrates. Here, we show that electrospinning, which is an inexpensive technique to fabricate large-scale, self-standing and repeatable membranes, can be effectively used for producing SERS substrates. Nanoparticles and nanorods are added to the feed electrospinning solution to collect functionalized polymer fibrous mats. We report stable electrospun membranes as SERS substrate using gold nanorods (AuNRs) and poly(vinyl alcohol). Particularly, a post-processing crosslinking step using glutaraldehyde under acetone environment was carried out to the electrospun membrane. It allows for using the membrane in any liquid environment, including water, which is of interest both for sensing of contaminant in wastewater, as well as for biosensing. This crosslinked AuNRs/PVA membrane has demonstrated excellent performance as SERS substrate for low concentration 10-6 M Rhodamine 6G (Rh6G) aqueous solution. This post-processing for fabricating SERS substrate is the first time reported and proved through Raman imaging of excellent stability and outstanding performance. Finally, SERS tests have been applied to several analytes, and the application of AuNRs/PVA membrane is broadened by removing the detected analyte by rinsing. Therefore, this crosslinked AuNRs/PVA membrane is re-usable.

Keywords: SERS spectroscopy, electrospinning, crosslinking, composite materials

Procedia PDF Downloads 132
775 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 482
774 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models

Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi

Abstract:

Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.

Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel

Procedia PDF Downloads 167
773 Synaesthetic Metaphors in Persian: a Cognitive Corpus Based and Comparative Perspective

Authors: A. Afrashi

Abstract:

Introduction: Synaesthesia is a term denoting the perception or description of the perception of one sense modality in terms of another. In literature, synaesthesia refers to a technique adopted by writers to present ideas, characters or places in such a manner that they appeal to more than one sense like hearing, seeing, smell etc. at a given time. In everyday language too we find many examples of synaesthesia. We commonly hear phrases like ‘loud colors’, ‘frozen silence’ and ‘warm colors’, ‘bitter cold’ etc. Empirical cognitive studies have proved that synaesthetic representations both in literature and everyday languages are constrained ie. they do not map randomly among sensory domains. From the beginning of the 20th century Synaesthesia has been a research domain both in literature and structural linguistics. However the exploration of cognitive mechanisms motivating synaesthesia, have made it an important topic in 21st century cognitive linguistics and literary studies. Synaesthetic metaphors are linguistic representations of those mental mechanisms, the study of which reveals invaluable facts about perception, cognition and conceptualization. According to the main tenets of cognitive approach to language and literature, unified and similar cognitive mechanisms are active both in everyday language and literature, and synaesthesia is one of those cognitive mechanisms. Main objective of the present research is to answer the following questions: What types of sense transfers are accessible in Persian synaesthetic metaphors. How are these types of sense transfers cognitively explained. What are the results of cross-linguistic comparative study of synaestetic metaphors based on the existing observations? Methodology: The present research employs a cognitive - corpus based method, and the theoretical framework adopted to analyze linguistic synaesthesia is the contemporary theory of metaphor, where conceptual metaphor is the result of systemic mappings across cognitive domains. Persian Language Data- base (PLDB) in the Institute for Humanities and Cultural Studies which consists mainly of Persian modern prose, is searched for synaesthetic metaphors. Then for each metaphorical structure, the source and target domains are determined. Then sense transfers are identified and the types of synaesthetic metaphors recognized. Findings: Persian synaesthetic metaphors conform to the hierarchical distribution principle, according to which transfers tend to go from touch to taste to smell to sound and to sight, not vice versa. In other words mapping from more accessible or basic concepts onto less accessible or less basic ones seems more natural. Furthermore the most frequent target domain in Persian synaesthetic metaphors is sound. Certain characteristics of Persian synaesthetic metaphors are comparable with existing related researches carried on English, French, Hungarian and Chinese synaesthetic metaphors. Conclusion: Cognitive corpus based approaches to linguistic synaesthesia, are applicable to stylistics and literary criticism and this recent research domain is an efficient approach to study cross linguistic variations to find out which of the five senses is dominant cross linguistically and cross culturally as the target domain in metaphorical mappings , and so forth receiving dominance in conceptualizations.

Keywords: cognitive semantics, conceptual metaphor, synaesthesia, corpus based approach

Procedia PDF Downloads 554
772 Quantitative Detection of the Conformational Transitions between Open and Closed Forms of Cytochrome P450 Oxidoreductase (CYPOR) at the Membrane Surface in Different Functional States

Authors: Sara Arafeh, Kovriguine Evguine

Abstract:

Cytochromes P450 are enzymes that require a supply of electrons to catalyze the synthesis of steroid hormones, fatty acids, and prostaglandin hormone. Cytochrome P450 Oxidoreductase (CYPOR), a membrane bound enzyme, provides these electrons in its open conformation. CYPOR has two cytosolic domains (FAD domain and FMN domain) and an N-terminal in the membrane. In its open conformation, electrons flow from NADPH, FAD, and finally to FMN where cytochrome P450 picks up these electrons. In the closed conformation, cytochrome P450 does not bind to the FMN domain to take the electrons. It was found that when the cytosolic domains are isolated, CYPOR could not bind to cytochrome P450. This suggested that the membrane environment is important for CYPOR function. This project takes the initiative to better understand the dynamics of CYPOR in its full length. Here, we determine the distance between specific sites in the FAD and FMN binding domains in CYPOR by Forster Resonance Energy Transfer (FRET) and Ultrafast TA spectroscopy with and without NADPH. The approach to determine these distances will rely on labeling these sites with red and infrared fluorophores. Mimic membrane attachment is done by inserting CYPOR in lipid nanodiscs. By determining the distances between the donor-acceptor sites in these domains, we can observe the open/closed conformations upon reducing CYPOR in the presence and absence of cytochrome P450. Such study is important to better understand CYPOR mechanism of action in various endosomal membranes including hepatic CYPOR which is vital in plasma cholesterol homeostasis. By investigating the conformational cycles of CYPOR, we can synthesize drugs that would be more efficient in affecting the steroid hormonal levels and metabolism of toxins catalyzed by Cytochrome P450.

Keywords: conformational cycle of CYPOR, cytochrome P450, cytochrome P450 oxidoreductase, FAD domain, FMN domain, FRET, Ultrafast TA Spectroscopy

Procedia PDF Downloads 265
771 Assessment of Hepatosteatosis Among Diabetic and Nondiabetic Patients Using Biochemical Parameters and Noninvasive Imaging Techniques

Authors: Tugba Sevinc Gamsiz, Emine Koroglu, Ozcan Keskin

Abstract:

Aim: Nonalcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease in the general population. The higher mortality and morbidity among NAFLD patients and lack of symptoms makes early detection and management important. In our study, we aimed to evaluate the relationship between noninvasive imaging and biochemical markers in diabetic and nondiabetic patients diagnosed with NAFLD. Materials and Methods: The study was conducted from (September 2017) to (December 2017) on adults admitted to Internal Medicine and Gastroenterology outpatient clinics with hepatic steatosis reported on ultrasound or transient elastography within the last six months that exclude patients with other liver diseases or alcohol abuse. The data were collected and analyzed retrospectively. Number cruncher statistical system (NCSS) 2007 program was used for statistical analysis. Results: 116 patients were included in this study. Diabetic patients compared to nondiabetics had significantly higher Controlled Attenuation Parameter (CAP), Liver Stiffness Measurement (LSM) and fibrosis values. Also, hypertension, hepatomegaly, high BMI, hypertriglyceridemia, hyperglycemia, high A1c, and hyperuricemia were found to be risk factors for NAFLD progression to fibrosis. Advanced fibrosis (F3, F4) was present in 18,6 % of all our patients; 35,8 % of diabetic and 5,7 % of nondiabetic patients diagnosed with hepatic steatosis. Conclusion: Transient elastography is now used in daily clinical practice as an accurate noninvasive tool during follow-up of patients with fatty liver. Early diagnosis of the stage of liver fibrosis improves the monitoring and management of patients, especially in those with metabolic syndrome criteria.

Keywords: diabetes, elastography, fatty liver, fibrosis, metabolic syndrome

Procedia PDF Downloads 136
770 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm

Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar

Abstract:

The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations

Procedia PDF Downloads 408
769 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection

Authors: Fatemeh Babaeian, Nemai Chandra Karmakar

Abstract:

Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.

Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS

Procedia PDF Downloads 181
768 The Predictive Value of Micro Rna 451 on the Outcome of Imatinib Treatment in Chronic Myeloid Leukemia Patients

Authors: Nehal Adel Khalil, Amel Foad Ketat, Fairouz Elsayed Mohamed Ali, Nahla Abdelmoneim Hamid, Hazem Farag Manaa

Abstract:

Background: Chronic myeloid leukemia (CML) represents 15% of adult leukemias. Imatinib Mesylate (IM) is the gold standard treatment for new cases of CML. Treatment with IM results in improvement of the majority of cases. However, about 25% of cases may develop resistance. Sensitive and specific early predictors of IM resistance in CML patients have not been established to date. Aim: To investigate the value of miR-451 in CML as an early predictor for IM resistance in Egyptian CML patients. Methods: The study employed Real time Polymerase Reaction (qPCR) technique to investigate the leucocytic expression of miR-451 in fifteen newly diagnosed CML patients (group I), fifteen IM responder CML patients (group II), fifteen IM resistant CML patients (group III) and fifteen healthy subjects of matched age and sex as a control group (group IV). The response to IM was defined as < 10% BCR-ABL transcript level after 3 months of therapy. The following parameters were assessed in subjects of all the studied groups: 1- Complete blood count (CBC). 2- Measurement of plasma level of miRNA 451 using real-time Polymerase Chain Reaction (qPCR). 3- Detection of BCR-ABL gene mutation in CML using qPCR. Results: The present study revealed that miR-451 was significantly down-regulated in leucocytes of newly diagnosed CML patients as compared to healthy subjects. IM responder CML patients showed an up-regulation of miR- 451 compared with IM resistant CML patients. Conclusion: According to the data from the present study, it can be concluded that leucocytic miR- 451 expression is a useful additional follow-up marker for the response to IM and a promising prognostic biomarker for CML.

Keywords: chronic myeloid leukemia, imatinib resistance, microRNA 451, Polymerase Chain Reaction

Procedia PDF Downloads 285
767 A Compact Extended Laser Diode Cavity Centered at 780 nm for Use in High-Resolution Laser Spectroscopy

Authors: J. Alvarez, J. Pimienta, R. Sarmiento

Abstract:

Diode lasers working in free mode present different shifting and broadening determined by external factors such as temperature, current or mechanical vibrations, and they are not more useful in applications such as spectroscopy, metrology, and cooling of atoms, among others. Different configurations can reduce the spectral width of a laser; one of the most effective is to extend the optical resonator of the laser diode and use optical feedback either with the help of a partially reflective mirror or with a diffraction grating; this latter configuration is not only allowed to reduce the spectral width of the laser line but also to coarsely adjust its working wavelength, within a wide range typically ~ 10nm by slightly varying the angle of the diffraction grating. Two settings are commonly used for this purpose, the Littrow configuration and the Littmann Metcalf. In this paper, we present the design, construction, and characterization of a compact extended laser cavity in Littrow configuration. The designed cavity is compact and was machined on an aluminum block using computer numerical control (CNC); it has a mass of only 380 g. The design was tested on laser diodes with different wavelengths, 650nm, 780nm, and 795 nm, but can be equally efficient at other wavelengths. This report details the results obtained from the extended cavity working at a wavelength of 780 nm, with an output power of around 35mW and a line width of less than 1Mhz. The cavity was used to observe the spectrum of the corresponding Rubidium D2 line. By modulating the current and with the help of phase detection techniques, a dispersion signal with an excellent signal-to-noise ratio was generated that allowed the stabilization of the laser to a transition of the hyperfine structure of Rubidium with an integral proportional controller (PI) circuit made with precision operational amplifiers.

Keywords: Littrow, Littman-Metcalf, line width, laser stabilization, hyperfine structure

Procedia PDF Downloads 216
766 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 111
765 The Possible Application of Artificial Intelligence in Hungarian Court Practice

Authors: László Schmidt

Abstract:

In the context of artificial intelligence, we need to pay primary and particular attention to ethical principles not only in the design process but also during the application process. According to the European Commission's Ethical Guidelines, AI must have three main characteristics: it must be legal, ethical and stabil. We must never lose sight of the ethical principles because we risk that this new technology will not help democratic decision-making under the rule of law, but will, on the contrary, destroy it. The rapid spread and use of artificial intelligence poses an enormous challenge to both lawmaking and law enforcement. On legislation because AI permeates many areas of our daily lives that the legislator must regulate. We can see how challenging it is to regulate e.g., selfdriving cars/taxis/vans etc. Not to mention, more recently, cryptocurrencies and Chat GPT, the use of which also requires legislative intervention, from copyright to scientific use and even law of succession. Artificial intelligence also poses an extraordinary challenge to law enforcement. In criminal cases, police and prosecutors can make great use of AI in investigations, e.g. in forensics, DNA samples, reconstruction, identification, etc. But it can also be of great help in the detection of crimes committed in cyberspace. In criminal or civil court proceedings, AI can also play a major role in the evaluation of evidence and proof. For example, a photo or video or audio recording could be immediately revealed as genuine or fake. Likewise, the authenticity or falsification of a document could be determined much more quickly and cheaply than with current procedure (expert witnesses). Neither the current Hungarian Civil Procedure Act nor the Criminal Procedure Act allows the use of artificial intelligence in the evidentiary process. However, this should be changed. To use this technology in court proceedings would be very useful. The procedures would be faster, simpler, and therefore cheaper. Artificial intelligence could also replace much of the work of expert witnesses. Its introduction into judicial procedures would certainly be justified, but with due respect for human rights, the right to a fair trial and other democratic and rule of law guarantees.

Keywords: artificial intelligence, judiciary, Hungarian, court practice

Procedia PDF Downloads 65
764 Lightweight and Seamless Distributed Scheme for the Smart Home

Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro

Abstract:

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Keywords: authentication, key-session, security, wireless sensors

Procedia PDF Downloads 311
763 Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships

Authors: Devi Eka Septiyani Arifin, Jrjeng Ruan

Abstract:

As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form.

Keywords: epitaxy, crystallization, crystalline platelet, thin film and mixing ratio

Procedia PDF Downloads 210
762 Analyzing the Efficiency of Initiatives Taken against Disinformation during Election Campaigns: Case Study of Young Voters

Authors: Fatima-Zohra Ghedir

Abstract:

Social media platforms have been actively working on solutions and combined their efforts with media, policy makers, educators and researchers to protect citizens and prevent interferences in information, political discourses and elections. Facebook, for instance, deleted fake accounts, implemented fake accounts and fake content detection algorithms, partnered with news agencies to manually fact check content and changed its newsfeeds display. Twitter and Instagram regularly communicate on their efforts and notify their users of improvements and safety guidelines. More funds have been allocated to media literacy programs to empower citizens in prevision of the coming elections. This paper investigates the efficiency of these initiatives and analyzes the metrics to measure their success or failure. The objective is also to determine the segments of population more prone to fall in disinformation traps during the elections despite the measures taken over the last four years. This study will also examine the groups who were positively impacted by these measures. This paper relies on both desk and field methodologies. For this study, a survey was administered to French students aged between 17 and 29 years old. Semi-guided interviews were conducted on a similar audience. The analysis of the survey and of the interviews show that respondents were exposed to the initiatives described above and are aware of the existence of disinformation issues. However, they do not understand what disinformation really entails or means. For instance, for most of them, disinformation is synonymous of the opposite point of view without taking into account the truthfulness of the content. Besides, they still consume and believe the information shared by their friends and family, with little questioning about the ways their closed ones get informed.

Keywords: democratic elections, disinformation, foreign interference, social media, success metrics

Procedia PDF Downloads 99
761 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis

Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik

Abstract:

Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.

Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy

Procedia PDF Downloads 213
760 PCR Detection, Histopathological Characterization, and Autogenous Immunization of Bovine Papillomatosis (Wart) in Cattle, in Mekelle, Northern Ethiopia

Authors: Kidane Workelul, Yohans Tekle, Guesh Negash, Haftay Abraha, Nigus Abebe Shumuye, Yisehak Tsegaye Redda

Abstract:

Bovine papillomatosis (wart) is one of the economically important bovine skin diseases worldwide, caused by a group of viruses named papillomaviruses (PVs). However, it has often been misdiagnosed as other skin diseases and remained untreated. In order to determine the status of the diseases, twenty-two farms were visited, and fourteen infected cattle with cutaneous papillomatosis were identified from a total of 235. Papilloma biopsies were taken for molecular and histopathological characterization, the therapeutic trial of an autogenous vaccine was evaluated on infected animals. The overall status of bovine papillomatosis in this study was calculated as 5.96% (14/235). The disease was found to be statistically significant in the age groups less than two years (X² = 26.69, P = 0.0001). The more prominent histologically characterized lesions in the sampled tissue were identified as squamous papilloma and fibro-papilloma. The Polymerase Chain Reaction (PCR) based identification revealed that all the clinically and histo-pathologically characterized papillomatosis cases were found to be infected with Bovine Papilloma Virus1(BPV1), indicating that BPV1 was the most common and sole causative agent of the diseases in the study area. In immunizing active bovine papillomatosis, an autogenous vaccine therapeutic trial demonstrated excellent results, with practically full recovery and no recurrence of the infection. Hence, it is concluded that bovine papillomatosis is an economically important disease of young age group cattle as well as a treatable disease. So, the production of marketable autogenous vaccines against bovine papillomatosis should be started and given at an early stage.

Keywords: autogenous vaccine, bovine papillomatosis, bovine papilloma virus1 clinical-pathology, polymerase chine reaction, wart

Procedia PDF Downloads 69
759 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract:

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave

Procedia PDF Downloads 342
758 Glycosaminoglycan, a Cartilage Erosion Marker in Synovial Fluid of Osteoarthritis Patients Strongly Correlates with WOMAC Function Subscale

Authors: Priya Kulkarni, Soumya Koppikar, Narendrakumar Wagh, Dhanshri Ingle, Onkar Lande, Abhay Harsulkar

Abstract:

Cartilage is an extracellular matrix composed of aggrecan, which imparts it with a great tensile strength, stiffness and resilience. Disruption in cartilage metabolism leading to progressive degeneration is a characteristic feature of Osteoarthritis (OA). The process involves enzymatic depolymerisation of cartilage specific proteoglycan, releasing free glycosaminoglycan (GAG). This released GAG in synovial fluid (SF) of knee joint serves as a direct measure of cartilage loss, however, limited due to its invasive nature. Western Ontario and McMaster Universities Arthritis Index (WOMAC) is widely used for assessing pain, stiffness and physical-functions in OA patients. The scale is comprised of three subscales namely, pain, stiffness and physical-function, intends to measure patient’s perspective of disease severity as well as efficacy of prescribed treatment. Twenty SF samples obtained from OA patients were analysed for their GAG values in SF using DMMB based assay. LK 1.0 vernacular version was used to attain WOMAC scale. The results were evaluated using SAS University software (Edition 1.0) for statistical significance. All OA patients revealed higher GAG values compared to the control value of 78.4±30.1µg/ml (obtained from our non-OA patients). Average WOMAC calculated was 51.3 while pain, stiffness and function estimated were 9.7, 3.9 and 37.7, respectively. Interestingly, a strong statistical correlation was established between WOMAC function subscale and GAG (p = 0.0102). This subscale is based on day-to-day activities like stair-use, bending, walking, getting in/out of car, rising from bed. However, pain and stiffness subscale did not show correlation with any of the studied markers and endorsed the atypical inflammation in OA pathology. On one side, where knee pain showed poor correlation with GAG, it is often noted that radiography is insensitive to cartilage degenerative changes; thus OA remains undiagnosed for long. Moreover, active cartilage degradation phase remains elusive to both, patient and clinician. Through analysis of large number of OA patients we have established a close association of Kellgren-Lawrence grades and increased cartilage loss. A direct attempt to correlate WOMAC and radiographic progression of OA with various biomarkers has not been attempted so far. We found a good correlation in GAG levels in SF and the function subscale.

Keywords: cartilage, Glycosaminoglycan, synovial fluid, western ontario and McMaster Universities Arthritis Index

Procedia PDF Downloads 435
757 The Effect of Colloidal Metals Nanoparticles on Quarantine Bacterium - Clavibacter michiganensis Ssp. sepedonicus

Authors: Włodzimierz Przewodowski, Agnieszka Przewodowska

Abstract:

Colloidal metal nanoparticles have drawn increasing attention in the field of phytopathology because of their unique properties and possibilities of applications. Their antibacterial activity, no induction of the development of pathogen resistance and the ability to penetrate most of biological barriers make them potentially useful in the fighting against dangerous pathogens. These properties are very important in the case of protection of strategic crops in the world, like potato - fourth crop in the world - which is host to numerous pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. One of the most important and difficult to reduce pathogen of potato plant is quarantine bacterium Clavibacter michiganensis ssp. sepedonicus (Cms) responsible for ring rot disease. Control and detection of these pathogens is very complicated. Application of healthy, certified seed material as well as hygiene in potato production and storage are the most efficient ways of preventing of ring rot disease. Currently used disinfectants and pesticides, have many disadvantages, such as toxicity, low efficiency, selectivity, corrosiveness, and the inability to eliminate the pathogens in potato tissue. In this situation, it becomes important to search for new formulations based on components harmful to health, yet efficient, stable during prolonged period of time and a with wide range of biocide activity. Such capabilities are offered by the latest generation of biocidal nanoparticles such as colloidal metals. Therefore the aim of the presented research was to develop newly antibacterial preparation based on colloidal metal nanoparticles and checking their influence on the Cms bacteria. Our preliminary results confirmed high efficacy of the nano-colloids in controlling the this selected pathogen.

Keywords: clavibacter michiganensis ssp. sepedonicus, colloidal metal nanoparticles, phytopathology, bacteria

Procedia PDF Downloads 264
756 Evaluation of Pesticide Residues in Honey from Cocoa and Forest Ecosystems in Ghana

Authors: Richard G. Boakye, Dara A Stanley, Mathavan Vickneswaran, Blanaid White

Abstract:

The cultivation of cocoa (Theobroma cocoa), an important cash crop that contributes immensely towards the economic growth of several Western African countries, depends almost entirely on pesticide application owing to the plant’s vulnerability to pest and disease attacks. However, the extent to which pesticides inputted for cocoa cultivation impact bees and bee products has rarely received attention in research. Through this study, the effects of pesticides applied for cocoa cultivation on honey in Ghana were examined by evaluating honey samples from cocoa and forest ecosystems in Ghana. An analysis of five honey samples from each land use type confirmed pesticide contaminants from these land use types at measured concentrations for acetamiprid (0.051mg/kg); imidacloprid (0.004-0.02 mg/kg), thiamethoxam (0.013-0.017 mg/kg); indoxacarb (0.004-0.045 mg/kg) and sulfoxaflor (0.004-0.026 mg/kg). None of the observed pesticide concentrations exceeded EU maximum residue levels, indicating no compromise of the honey quality for human consumption. However, from the results, it could be inferred that toxic effects on bees may not be ruled out because observed concentrations largely exceeded the threshold of 0.001 mg/kg at which sublethal effects on bees have previously been reported. One of the most remarkable results to emerge from this study is the detection of imidacloprid in all honey samples analyzed, with sulfoxaflor and thiamethoxam also being detected in 93% and 73% of the honey samples, respectively. This suggests the probable prevalence of pesticide use in the landscape. However, the conclusions reached in this study should be interpreted within the scope of pesticide applications within Bia West District and not necessarily extended to other cocoa-producing districts in Ghana. Future studies should therefore include multiple cocoa-growing districts and other non-cocoa farming landscapes. Such an approach can give a broader outlook on pesticide residues in honey produced in Ghana.

Keywords: honey, cocoa, pesticides, bees, land use, landscape, residues, Ghana

Procedia PDF Downloads 68
755 Structural Health Assessment of a Masonry Bridge Using Wireless

Authors: Nalluri Lakshmi Ramu, C. Venkat Nihit, Narayana Kumar, Dillep

Abstract:

Masonry bridges are the iconic heritage transportation infrastructure throughout the world. Continuous increase in traffic loads and speed have kept engineers in dilemma about their structural performance and capacity. Henceforth, research community has an urgent need to propose an effective methodology and validate on real-time bridges. The presented research aims to assess the structural health of an Eighty-year-old masonry railway bridge in India using wireless accelerometer sensors. The bridge consists of 44 spans with length of 24.2 m each and individual pier is 13 m tall laid on well foundation. To calculate the dynamic characteristic properties of the bridge, ambient vibrations were recorded from the moving traffic at various speeds and the same are compared with the developed three-dimensional numerical model using finite element-based software. The conclusions about the weaker or deteriorated piers are drawn from the comparison of frequencies obtained from the experimental tests conducted on alternative spans. Masonry is a heterogeneous anisotropic material made up of incoherent materials (such as bricks, stones, and blocks). It is most likely the earliest largely used construction material. Masonry bridges, which were typically constructed of brick and stone, are still a key feature of the world's highway and railway networks. There are 1,47,523 railway bridges across India and about 15% of these bridges are built by masonry, which are around 80 to 100 year old. The cultural significance of masonry bridges cannot be overstated. These bridges are considered to be complicated due to the presence of arches, spandrel walls, piers, foundations, and soils. Due to traffic loads and vibrations, wind, rain, frost attack, high/low temperature cycles, moisture, earthquakes, river overflows, floods, scour, and soil under their foundations may cause material deterioration, opening of joints and ring separation in arch barrels, cracks in piers, loss of brick-stones and mortar joints, distortion of the arch profile. Few NDT tests like Flat jack Tests are being employed to access the homogeneity, durability of masonry structure, however there are many drawbacks because of the test. A modern approach of structural health assessment of masonry structures by vibration analysis, frequencies and stiffness properties is being explored in this paper.

Keywords: masonry bridges, condition assessment, wireless sensors, numerical analysis modal frequencies

Procedia PDF Downloads 162
754 Target-Triggered DNA Motors and their Applications to Biosensing

Authors: Hongquan Zhang

Abstract:

Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.

Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification

Procedia PDF Downloads 77