Search results for: process integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17228

Search results for: process integration

12668 Biological Activity of Mesenchymal Stem Cells in the Surface of Implants

Authors: Saimir Heta, Ilma Robo, Dhimiter Papakozma, Eduart Kapaj, Vera Ostreni

Abstract:

Introduction: The biocompatible materials applied to the implant surfaces are the target of recent literature studies. Methodologies: Modification of implant surfaces in different ways such as application of additional ions, surface microstructure change, surface or laser ultrasound alteration, or application of various substances such as recombinant proteins are among the most affected by articles published in the literature. The study is of review type with the main aim of finding the different ways that the mesenchymal cell reaction to these materials is, according to the literature, in the same percentage positive to the osteointegration process. Results: It is emphasized in the literature that implant success as a key evaluation key has more to implement implant treatment protocol ranging from dental health amenity and subsequent of the choice of implant type depending on the alveolar shape of the ridge level. Conclusions: Osteointegration is a procedure that should initially be physiologically independent of the type of implant pile material. With this physiological process, it can not "boast" for implant success or implantation depending on the brand of the selected implant, as the breadth of synthetic or natural materials that promote osteointegration is relatively large.

Keywords: mesenchymal cells, implants, review, biocompatible materials

Procedia PDF Downloads 90
12667 Characterization and Predictors of Paranoid Ideation in Youths

Authors: Marina Sousa, Célia Barreto Carvalho, Carolina da Motta, Joana Cabral, Vera Pereira, Suzana Nunes Caldeira, Ermelindo Peixoto

Abstract:

Paranoid ideation is a common thought process that constitutes a defense against perceived social threats. The current study aimed at the characterization of paranoid ideation in youths and to explore the possible predictors involved in the development of paranoid ideations. Paranoid ideation, shame, submission, early childhood memories and current depressive, anxious and stress symptomatology was assessed in a sample of 1516 Portuguese youths. Higher frequencies of paranoid ideation were observed, particularly in females and youths from lower socio-economic status. The main predictors identified relates to submissive behaviors and adverse childhood experiences, and especially to shame feelings. The current study emphasizes that the these predictors are similar to findings in adults and clinical populations, and future implications to research and clinical practice aiming at paranoid ideations are discussed, as well as the pertinence of the study of mediating factors that allow a wider understanding of this thought process in younger populations and the prevention of psychopathology in adulthood.

Keywords: adolescence, early memories, paranoid ideation, parenting styles, shame, submissiveness

Procedia PDF Downloads 503
12666 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 181
12665 Immigrants in the Polish Labour Market

Authors: Jagoda Przybysz

Abstract:

The main objective of this paper is to provide a comprehensive description of the immigrants in Poland, especially situation at the labour market. The paper will provide descriptive information on the composition of immigrants in Poland, and how this has changed over time, their socio-economic characteristics, their industry allocation and their labour market outcomes. Then we will investigate various labour market performance indicators (labour force participation, employment, wages and self-employment) for immigrants of different origins based on reached statistics. Individual interviews with immigrants will indicate areas of problems of living in Poland, mostly on labour market. The article shows that immigrants from some ethnic minority groups are more active in selected sectors of labour market. The empirical basis for the work related to the situation on the labor market of foreigners who came to the Poland and live in Lodz. The studies assumed that foreigners work in Poland and operate in different ways being integrated / excluded in varying degrees. Theoretical framework for analysis are: concepts of inclusion and exclusion, the concept of a dual labour market and the concept of social anchors. Completed in the 2014-2016, a pilot study (The forms of individual interviews) with 32 foreigners arrived in the last decade to Lodz. Preliminary studies have enabled the formulation of research issues and have set the future direction of research revealing to the personal experiences of respondents, a group of factors hindering integration and exclusion areas.

Keywords: foreigners, immigrants, labour market, migration, Poland

Procedia PDF Downloads 183
12664 Optimal MRO Process Scheduling with Rotable Inventory to Minimize Total Earliness

Authors: Murat Erkoc, Kadir Ertogral

Abstract:

Maintenance, repair and overhauling (MRO) of high cost equipment used in many industries such as transportation, military and construction are typically subject to regulations set by local governments or international agencies. Aircrafts are prime examples for this kind of equipment. Such equipment must be overhauled at certain intervals for continuing permission of use. As such, the overhaul must be completed by strict deadlines, which often times cannot be exceeded. Due to the fact that the overhaul is typically a long process, MRO companies carry so called rotable inventory for exchange of expensive modules in the overhaul process of the equipment so that the equipment continue its services with minimal interruption. The extracted module is overhauled and returned back to the inventory for future exchange, hence the name rotable inventory. However, since the rotable inventory and overhaul capacity are limited, it may be necessary to carry out some of the exchanges earlier than their deadlines in order to produce a feasible overhaul schedule. An early exchange results with a decrease in the equipment’s cycle time in between overhauls and as such, is not desired by the equipment operators. This study introduces an integer programming model for the optimal overhaul and exchange scheduling. We assume that there is certain number of rotables at hand at the beginning of the planning horizon for a single type module and there are multiple demands with known deadlines for the exchange of the modules. We consider an MRO system with identical parallel processing lines. The model minimizes total earliness by generating optimal overhaul start times for rotables on parallel processing lines and exchange timetables for orders. We develop a fast exact solution algorithm for the model. The algorithm employs full-delay scheduling approach with backward allocation and can easily be used for overhaul scheduling problems in various MRO settings with modular rotable items. The proposed procedure is demonstrated by a case study from the aerospace industry.

Keywords: rotable inventory, full-delay scheduling, maintenance, overhaul, total earliness

Procedia PDF Downloads 548
12663 3D Reconstruction of Human Body Based on Gender Classification

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo

Abstract:

SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.

Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction

Procedia PDF Downloads 72
12662 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence

Authors: Rajeev Kumar, Harishankar Kumar

Abstract:

Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights, enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.

Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence

Procedia PDF Downloads 14
12661 Photo Catalytic Treatment of Wastewater from Processing Poultry by-Products

Authors: J. Franco Macías, E. Montes Alba, A. López Vásquez

Abstract:

The growing development in the poultry industry has generated a strong and adverse impact on quality and availability of water resources. Inside this industry, is finding out the treatment of by-products such as feathers, viscera and blood demanding highly water consumption, generating contaminant discharges as well. As one of current of treatment of by-products is the effluent of cooking condensate steam that has contaminant organic load; therefore, it is necessary to implement removal treatments before discharging it toward water sources. The photo catalysis appears as a promising alternative of treatment due to the different advantages it has, among others, includes low cost, easily operation, high efficiency and elimination of a wide variety of contaminants in a watery environment. This study has evaluated a heterogeneous photo catalytic treatment for removal contaminant organic load. This process was developed in oxidation and reduction conditions. It was analyzed the effect of factors such as pH, catalyst and sacrifice agent concentration. Finally, good conditions to removal contaminant organic load were achieved to determine percentage of contaminant organic load by means of response surface methodology.

Keywords: poultry industry, advanced oxidation process, photocatalysis, photodegradation, TiO2

Procedia PDF Downloads 407
12660 A Framework for Teaching Distributed Requirements Engineering in Latin American Universities

Authors: G. Sevilla, S. Zapata, F. Giraldo, E. Torres, C. Collazos

Abstract:

This work describes a framework for teaching of global software engineering (GSE) in university undergraduate programs. This framework proposes a method of teaching that incorporates adequate techniques of software requirements elicitation and validated tools of communication, critical aspects to global software development scenarios. The use of proposed framework allows teachers to simulate small software development companies formed by Latin American students, which build information systems. Students from three Latin American universities played the roles of engineers by applying an iterative development of a requirements specification in a global software project. The proposed framework involves the use of a specific purpose Wiki for asynchronous communication between the participants of the process. It is also a practice to improve the quality of software requirements that are formulated by the students. The additional motivation of students to participate in these practices, in conjunction with peers from other countries, is a significant additional factor that positively contributes to the learning process. The framework promotes skills for communication, negotiation, and other complementary competencies that are useful for working on GSE scenarios.

Keywords: requirements analysis, distributed requirements engineering, practical experiences, collaborative support

Procedia PDF Downloads 207
12659 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 79
12658 Real-Time Finger Tracking: Evaluating YOLOv8 and MediaPipe for Enhanced HCI

Authors: Zahra Alipour, Amirreza Moheb Afzali

Abstract:

In the field of human-computer interaction (HCI), hand gestures play a crucial role in facilitating communication by expressing emotions and intentions. The precise tracking of the index finger and the estimation of joint positions are essential for developing effective gesture recognition systems. However, various challenges, such as anatomical variations, occlusions, and environmental influences, hinder optimal functionality. This study investigates the performance of the YOLOv8m model for hand detection using the EgoHands dataset, which comprises diverse hand gesture images captured in various environments. Over three training processes, the model demonstrated significant improvements in precision (from 88.8% to 96.1%) and recall (from 83.5% to 93.5%), achieving a mean average precision (mAP) of 97.3% at an IoU threshold of 0.7. We also compared YOLOv8m with MediaPipe and an integrated YOLOv8 + MediaPipe approach. The combined method outperformed the individual models, achieving an accuracy of 99% and a recall of 99%. These findings underscore the benefits of model integration in enhancing gesture recognition accuracy and localization for real-time applications. The results suggest promising avenues for future research in HCI, particularly in augmented reality and assistive technologies, where improved gesture recognition can significantly enhance user experience.

Keywords: YOLOv8, mediapipe, finger tracking, joint estimation, human-computer interaction (HCI)

Procedia PDF Downloads 15
12657 Norm Evolution through Contestation: Role of Legality from Humanitarian Intervention to Responsibility to Protect

Authors: Nazlı Üstünes Demirhan

Abstract:

International norms are subject to pressures of change through contestation during the course of their lifetimes. The nature of the contestation is one of the factors that are likely to have a determinative role in the direction of this change towards a stronger or weaker norm. This paper aims to understand the relation between the legality of contestation and the direction of change in norm strength. Based on a multidimensional norm strength conceptualization, it is hypothesized that use of legal logic and rhetoric of argumentation would have a positive influence for norm strength, whereas non-legal nature of contestation would lack this and weaken the norm. In order to show this, the evolution of the human protection norm between 1999 and 2018 will be examined with reference to two major contestation periods; Kosovo intervention of 1999, which led to the development of R2P doctrine, and Libya intervention of 2011, which is followed by the demise of the norm. The comparative analysis will be conducted through process tracing method with a document analysis on the Security Council meeting minutes, resolutions, and press releases. This study aims to contribute to the norm contestation literature with the introduction of legal process analysis. It also relates to further questions in IR/IL nexus, relating to the value added of norm legality as well as the politics of legalization.

Keywords: humanitarian intervention, legality, norm contestation, norm dynamics, norm strength, responsibility to protect

Procedia PDF Downloads 162
12656 Sulfide Removal from Liquid Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno Ambarwati Sigit Lestari, Wahyudi Budi Sediawan, Sarto Sarto

Abstract:

This study focused on the removal of sulfide from liquid solution using biofilm on packed bed of salak fruit seeds. Biofilter operation of 444 hours consists of 6 phases of operation. Each phase lasted for approximately 72 hours to 82 hours and run at various inlet concentration and flow rate. The highest removal efficiency is 92.01%, at the end of phase 7 at the inlet concentration of 60 ppm and the flow rate of 30 mL min-1. Mathematic model of sulfide removal was proposed to describe the operation of biofilter. The model proposed can be applied to describe the removal of sulfide liquid using biofilter in packed bed. The simulation results the value of the parameters in process. The value of the rate maximum spesific growth is 4.15E-8 s-1, Saturation constant is 9.1E-8 g cm-3, mass transfer coefisient of liquid is 0.5 cm s-1, Henry’s constant is 0.007, and mass of microorganisms growth to mass of sulfide comsumed is 30. The value of the rate maximum spesific growth in early process is 0.00000004 s-1.

Keywords: biofilm, packed bed, removal, sulfide, salak fruit seeds.

Procedia PDF Downloads 196
12655 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility

Authors: Fu Jinyu, Lin Jinguan

Abstract:

This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.

Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate

Procedia PDF Downloads 166
12654 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis

Authors: Pratima Kumari, Sukha Ranjan Samadder

Abstract:

This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.

Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach

Procedia PDF Downloads 58
12653 Improving Automotive Efficiency through Lean Management Tools: A Case Study

Authors: Raed El-Khalil, Hussein Zeaiter

Abstract:

Managing and improving efficiency in the current highly competitive global automotive industry demands that companies adopt leaner and more flexible systems. During the past 20 years the domestic automotive industry in North America has been focusing on establishing new management strategies in order to meet market demands. 98The lean management process also known as Toyota Manufacturing Process (TPS) or lean manufacturing encompasses tools and techniques that were established in order to provide the best quality product with the fastest lead time at the lowest cost. The following paper presents a study that focused on improving labor efficiency at one of the Big Three (Ford, GM, Chrysler LLC) domestic automotive facility in North America. The objective of the study was to utilize several lean management tools in order to optimize the efficiency and utilization levels at the “Pre-Marriage” chassis area in a truck manufacturing and assembly facility. Utilizing three different lean tools (i.e. Standardization of work, 7 Wastes, and 5S) this research was able to improve efficiency by 51%, utilization by 246%, and reduce operations by 14%. The return on investment calculated based on the improvements made was 284%.

Keywords: lean manufacturing, standardized work, operation efficiency, utilization

Procedia PDF Downloads 531
12652 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 156
12651 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
12650 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs

Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude

Abstract:

Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.

Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision

Procedia PDF Downloads 15
12649 Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives

Authors: Oiane Ruiz de Azua, Salvador Borros, Nuria Agullo, Jordi Arbusa

Abstract:

Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces.

Keywords: epoxy adhesive, manufacturing process of pieces, sulfanilamide, tackifiers

Procedia PDF Downloads 190
12648 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 300
12647 Improved Hydrogen Sorption Kinetics of Compacted LiNH₂-LiH Based Small Hydrogen Storage Tank by Doping with TiF₄ and MWCNTs

Authors: Chongsutthamani Sitthiwet, Praphatsorn Plerdsranoy, Palmarin Dansirima, Priew Eiamlamai, Oliver Utke, Rapee Utke

Abstract:

Hydrogen storage tank containing compacted LiNH2-LiH is developed by doping with TiF₄ and multi-walled nanotubes (MWCNTs) to study kinetic properties. Transition metal-based catalyst (TiF₄) provides the catalytic effect on hydrogen dissociation/recombination, while MWCNTs benefit thermal conductivity and hydrogen permeability during de/rehydrogenation process. The Enhancement of dehydrogenation kinetics is observed from the single-step reaction at a narrower and lower temperature range of 150-350 ºC (100 ºC lower than the compacted LiNH₂-LiH without additives) as well as long plateau temperature and constant hydrogen flow rate (50 SCCM) up to 30 min during desorption. Besides, Hydrogen contents de/absorbed during 5-6 cycles increase from 1.90-2.40 to 3.10-4.70 wt. % H₂ (from 29 to up to 80 % of theoretical capacity). In the process, Li₅TiN₃ is detected upon cycling probably absorbs NH₃ to form Li₅TiN₃(NH₃)x, which is favoring hydrogen sorption properties of the LiNH₂-LiH system. Importantly, the homogeneous reaction mechanisms and performances are found at all positions inside the tank of compacted LiNH₂-LiH doped with TiF₄ and MWCNTs.

Keywords: carbon, hydride, kinetics, dehydrogenation

Procedia PDF Downloads 149
12646 Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces

Authors: Belkacem Chebil Sonia, Bensalem Wacef

Abstract:

The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters.

Keywords: ball end milling, cutting forces, cutting parameters, residual stress, tool-workpiece inclination

Procedia PDF Downloads 312
12645 Factors Related to Behaviors of Thai Travelers Traveling to Koh Kred Island, Nonthaburi Province

Authors: Bundit Pungnirund, Boonyada Pahasing

Abstract:

The objective of this research is to study factors related to behaviors of Thai travelers traveling to Koh Kret Island, Nonthaburi Province. The subjects of this study included 400 Thai travelers coming to Koh Kred. Questionnaires were used to collect data which were analyzed by computer program to find mean and correlation coefficient by Pearson. The results showed that Thai travelers reported their opinions and attitudes in high level on the marketing service mix, product, price, place, promotion, personal, physical evidence, and process. They reported on travelling motivation factor, tourist attraction, and facility at high level. Moreover, marketing service mix, product, price, place, promotion, personal, physical, and process including travelling motivation factor, tourist attraction, and facility had positive relationship with the frequency in travelling at statistically significant level (0.01), though in a low relationship but in the same direction.

Keywords: factors, behaviors, Thai travelers, Koh Kled, Nonthaburi Province

Procedia PDF Downloads 227
12644 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners

Authors: Leila Najeh Bel'Kiry

Abstract:

Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.

Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners

Procedia PDF Downloads 68
12643 A South African Perspective on Self-Leadership Development for Women Engineering Students – A Pilot Study

Authors: A. S. Lourens, B. Du Plooy

Abstract:

Across the world, initiatives have been introduced to encourage women to enter into and remain in engineering fields. However, research has shown that many women leave engineering or suffer a loss of self-esteem and self-confidence compared to their male counterparts. To address this problem, a South African comprehensive university developed a self-leadership intervention pilot study in 2013, aimed at improving the self-efficacy of its female engineering students and increasing retention rates. This paper is a qualitative, descriptive, and interpretive study of the rationale and operational aspects of the Women in Engineering Leadership Association’s (WELA) self-leadership workshop. The objectives of this paper are to provide a framework for the design of a self-leadership workshop and to provide insight into the process of developing such a workshop specifically for women engineering students at a South African university. Finally, the paper proposes an evaluation process for the pilot workshop, which also provides a framework to improve future workshops. It is anticipated that the self-leadership development framework will be applicable to other higher education institutions wishing to improve women engineering student’s feelings of self-efficacy and therefore retention rates of women in engineering.

Keywords: co-curricular interventions, self-efficacy, self-leadership, women in engineering

Procedia PDF Downloads 454
12642 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 236
12641 Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods

Authors: Murat Arıbaş, Uğur Özcan

Abstract:

Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects.

Keywords: Academic projects, Ahp method, Research projects evaluation, Topsis method.

Procedia PDF Downloads 594
12640 On the Principle of Sustainable Development and International Law

Authors: Zhang Rui

Abstract:

Context: The paper addresses the necessity of incorporating the principle of sustainable development into international law to guide states and international organizations towards achieving this goal. Research aim: To emphasize the importance of integrating sustainable development into international law and establishing procedures to attain this objective. Methodology: The study utilizes document analysis, comparative law analysis, and international law analysis to support the argument for including sustainable development in international legal frameworks. Findings: The findings suggest that integrating sustainable development into international law can lead to significant improvements in legal practices, treaty interpretations, and state behaviors. Theoretical importance: The paper highlights the potential impacts of the principle of sustainable development on reshaping existing legal norms and promoting sustainable practices globally. Data collection: The data is gathered through the analysis of relevant legal documents, comparative studies, and international legal frameworks. Analysis procedures: The analysis involves examining how the principle of sustainable development can influence legal outcomes, treaty interpretations, and state behaviors. Questions addressed: The study addresses how the principle of sustainable development can be integrated into international law and what implications this integration can have on legal practices and state behaviors. Conclusion: Integrating sustainable development into international law is crucial for advancing global sustainability objectives and guiding states and international organizations towards sustainable practices.

Keywords: international law, sustainable development, environmental legislation, sovereign equality

Procedia PDF Downloads 28
12639 From Vertigo to Verticality: An Example of Phenomenological Design in Architecture

Authors: E. Osorio Schmied

Abstract:

Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.

Keywords: architecture, design statements, nature, perception

Procedia PDF Downloads 346