Search results for: language learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9735

Search results for: language learning

5175 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD

Authors: Kourosh Modarresi

Abstract:

The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.

Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage

Procedia PDF Downloads 312
5174 Training as Barrier for Implementing Inclusion for Students with Learning Difficulties in Mainstream Primary Schools in Saudi Arabia

Authors: Mohammed Alhammad

Abstract:

The movement towards the inclusion of students with special educational needs (SEN) in mainstream schools has become widely accepted practice in many countries. However in Saudi Arabia, this is not happening. Instead the practice for students with learning difficulties (LD) is to study in special classrooms in mainstream schools and they are not included with their peers, except at break times and morning assembly, and on school trips. There are a number of barriers that face implementing inclusion for students with LD in mainstream classrooms: one such barrier is the training of teachers. The training, either pre- or in-service, that teachers receive is seen as playing an important role in leading to the successful implementation of inclusion. The aim of this presentation is to explore how pre-service training and in-service training are acting as barriers for implementing inclusion of students with LD in mainstream primary schools in Saudi Arabia from the perspective of teachers. The qualitative research approach was used to explore this barrier. Twenty-four teachers (general education teachers, special education teachers) were interviewed using semi-structured interview and a number of documents were used as method of data collection. The result showed teachers felt that not much attention was paid to inclusion in pre-services training for general education teachers and special education teachers in Saudi Arabia. In addition, pre-service training for general education teachers does not normally including modules on special education. Regarding the in-service training, no courses at all about inclusion are provided for teachers. Furthermore, training courses in special education are few. As result, the knowledge and skills required to implemented inclusion successfully.

Keywords: inclusion, learning difficulties, Saudi Arabia, training

Procedia PDF Downloads 379
5173 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 361
5172 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM

Procedia PDF Downloads 197
5171 Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices: Construction Proceedings and Validation

Authors: Cristina Costa-Lobo, Sandra Fernandes, Miguel Magalhães, José Dinis-Carvalho, Alfredo Regueiro, Ana Carvalho

Abstract:

This paper is a report on the findings of the construction and the validation of a questionnaire monetized in a portuguese higher education context with undergraduate students. The Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices consists of six scales: Critical appraisal of the project, Developed Learning and Skills, Teamwork, Teacher and Tutor Roles, Evaluation of Student Performance, and Project Effectiveness as a Teaching-Learning Methodology. The proceedings of its construction are analyzed, and the validity and internal consistency analysis are described. Findings indicate good indicators of validity, good fidelity and an interpretable factorial structure.

Keywords: entrepreneurship project, higher education, psychopedagogical practices, teacher and tutor roles

Procedia PDF Downloads 385
5170 The Effectiveness of Concept Mapping as a Tool for Developing Critical Thinking in Undergraduate Medical Education: A BEME Systematic Review: BEME Guide No. 81

Authors: Marta Fonseca, Pedro Marvão, Beatriz Oliveira, Bruno Heleno, Pedro Carreiro-Martins, Nuno Neuparth, António Rendas

Abstract:

Background: Concept maps (CMs) visually represent hierarchical connections among related ideas. They foster logical organization and clarify idea relationships, potentially aiding medical students in critical thinking (to think clearly and rationally about what to do or what to believe). However, there are inconsistent claims about the use of CMs in undergraduate medical education. Our three research questions are: 1) What studies have been published on concept mapping in undergraduate medical education? 2) What was the impact of CMs on students’ critical thinking? 3) How and why have these interventions had an educational impact? Methods: Eight databases were systematically searched (plus a manual and an additional search were conducted). After eliminating duplicate entries, titles, and abstracts, and full-texts were independently screened by two authors. Data extraction and quality assessment of the studies were independently performed by two authors. Qualitative and quantitative data were integrated using mixed-methods. The results were reported using the structured approach to the reporting in healthcare education of evidence synthesis statement and BEME guidance. Results: Thirty-nine studies were included from 26 journals (19 quantitative, 8 qualitative and 12 mixed-methods studies). CMs were considered as a tool to promote critical thinking, both in the perception of students and tutors, as well as in assessing students’ knowledge and/or skills. In addition to their role as facilitators of knowledge integration and critical thinking, CMs were considered both teaching and learning methods. Conclusions: CMs are teaching and learning tools which seem to help medical students develop critical thinking. This is due to the flexibility of the tool as a facilitator of knowledge integration, as a learning and teaching method. The wide range of contexts, purposes, and variations in how CMs and instruments to assess critical thinking are used increase our confidence that the positive effects are consistent.

Keywords: concept map, medical education, undergraduate, critical thinking, meaningful learning

Procedia PDF Downloads 130
5169 The Contribution of Translation to Arabic and Islamic Civilization during the Golden Age (661–1258)

Authors: Smail Hadj Mahammed

Abstract:

Translation is not merely a process of conveying the meaning from one particular language into another to overcome language barriers and ensure a good understanding; it is also a work of civilization and progress. Without the translation of Greek, Indian and Persian works, Arabic and Islamic Civilization would not have taken off, and without the translations of Arabic works into Latin, and then into European languages, the scientific and technological revolution of the modern world would not have taken place. In this context, the present paper seeks to investigate how the translation movement contributed to the Arabic and Islamic Civilizations during the Golden Age. The research paper consists of three major parts: the first part provides a brief historical overview of the translation movement during the golden age, which witnessed two important eras: the Umayyad and Abbasid eras. The second part shows the main reasons why translation was a prominent cultural activity during the Golden Age and why it gained great interest from the Arabs. The last part highlights the constructive contribution of translation to the Arabic and Islamic Civilization during the period (661–1258). The results demonstrate that Arabic translation movement was unprecedented in the transmission of knowledge in the whole history of humankind and that translation during the Golden Age had significantly assisted in enriching the Arabic and Islamic civilizations, which had absorbed major and important scientific works of old Greek, Indian and Persian civilizations.

Keywords: Arabic and Islamic civilization, contribution, golden age, translation

Procedia PDF Downloads 115
5168 Linking Pre-Class Engagement with Academic Achievement: The Role of Quests in a Flipped Chemistry Course

Authors: Anthony J. Rojas

Abstract:

In flipped classroom environments, students are tasked with engaging in pre-class learning to maximize the effectiveness of in-class time. This study investigates the use of ‘Quests’, brief formative assessments administered at the start of class, to evaluate student understanding of assigned pre-class materials in an undergraduate chemistry course. Students completed Quests via Microsoft Forms, based on content from instructional videos and worksheets, and these assessments were mandatory, with no opportunity for make-up. This paper examines the correlation between Quest performance and overall course success, finding that students who performed well on the Quests consistently achieved higher final grades in the course. The findings suggest that Quests are effective in both reinforcing student engagement with pre-class content and predicting their broader academic performance. The implications of these results for flipped classroom strategies and student learning outcomes will be discussed.

Keywords: chemistry, flipped classroom, attendance, assessments

Procedia PDF Downloads 31
5167 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments

Authors: Lana Burmistrova

Abstract:

Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.

Keywords: attention, blindness, memory, music learning, strategy

Procedia PDF Downloads 189
5166 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 102
5165 The Study of Difficulties of Understanding Idiomatic Expressions Encountered by Translators 2021

Authors: Mohamed Elmogbail

Abstract:

The present study aimed at investigating difficulties those Translators encounter in understanding idiomatic expressions between Arabic and English languages. To achieve this goal, the researcher raised the three questions are:(1) What are the major difficulties that translators encounter in translating idiomatic expressions? (2) What factors cause such difficulties that translators encountered in translating idiomatic expressions? (3) What are the possible techniques that should be followed to overcome these difficulties? To answer these questions, the researcher designed questionnaire Table (2) and mentioned tables related to Test Show the second question in the study is about the factors that stand behind the challenges. Translators encounter while translating idiomatic expressions. The translators asked Provided the following factors:1- Because of lack of exposure to the source culture, they do not know the connotations of the cultural words that are related to the environment, food, folklore 2- Misusing dictionaries made the participants unable to find a proper target language idiomatic expression. 3-Lack of using idiomatic expressions in daily life. Table (3): (Questionnaire) Results to the table (3) Questions Of the study are About suggestions that can be inferred to handle these challenges. The questioned translators provided the following solutions:1- translators must be exposed to source language culture, including religion, habits, and traditions.2- translators should also be exposed to source language idiomatic expressions by introducing English culture in textbooks and through participating in extensive English culture courses.3- translators should be familiar with the differences between source and target language cultures.4- translators should avoid literal translation that results in most cases in wrong or poor translation.5- Schools, universities, and institutions should introduce translators to English culture.6- translators should participate in cultural workshops at universities.7- translators should try to use idiomatic expressions in everyday situations.8- translators should read more idiomatic expressions books. And researcher also designed a translation test consisted of 40 excerpts given to a random sample of 100 Translators in Khartoum capital of Sudan to translate them. After Collected data for the study, the researcher proceeded to a more detailed analysis, the methodology used in the analysis of idiomatic expressions Is empirical and descriptive. This study is qualitative by nature, but the quantitative method used the analysis of the data. Some figure and statistics are used, such as (statistical package for the social sciences). The researcher calculated the percentage proportion of each translation expressions. And compared them to each other. The finding of the study showed that most translations are inadequate as the translators faced difficulties while communication, these difficulties were mostly due to their unfamiliarity with idiomatic expressions producing improper equivalence in the communication, and not being able to use translation techniques as required, and resorted to literal translation, furthermore, the study recommended that more comprehensive studies to executed on translating idiomatic expressions to enrich the translation field.

Keywords: translation, translators, idioms., expressions

Procedia PDF Downloads 153
5164 Cross Line of Causality in Childhood Stuttering between Psychology and Neurolinguistics: Systematic Literature Review and Meta-Analysis

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Ayman Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Fatehi Eissa

Abstract:

Stuttering is a multidimensional disorder that is influenced by different factors. As a result of their un-understanding of the genuine reasons behind stuttering, psychiatrists and Speech and Language Pathologists/Therapists (SLP/Ts) are often unfamiliar with the psychoneurolinguistic characteristics, support needs, and the disability measurement impacting requested rehabilitation of the stuttering population. PubMed, PsycInfo, Web of Science, Scopus, and Google scholar searches, in addition to some unpublished literature, were conducted in this Systematic Literature Review and Meta-analysis (SLR and Meta-analysis) to identify whether stuttering is caused by psychological or neurological reasons. The study concluded that psychological, not neurolinguistic factors were identified as most significant for the causality of childhood stuttering. Stutterers have intact language skills, but impaired ability more to communicate with others than to form letters in the brain or to articulate them. The study recommends research in the future that sheds light on the adult stuttering population often left out of the focus of diagnosis and in need of further exploration vis-a-vis issues they encounter, as well as the possible ways to deal with them psychoneurolinguistically.

Keywords: causality, childhood stuttering, psychology, neurolinguistics, systematic literature review, meta-analysis

Procedia PDF Downloads 56
5163 Semantics of the Word “Nas” in the Verse 24 of Surah Al-Baqarah Based on Izutsus’ Semantic Field Theory

Authors: Seyedeh Khadijeh. Mirbazel, Masoumeh Arjmandi

Abstract:

Semantics is a linguistic approach and a scientific stream, and like all scientific streams, it is dynamic. The study of meaning is carried out in the broad semantic collections of words that form the discourse. In other words, meaning is not something that can be found in a word; rather, the formation of meaning is a process that takes place in a discourse as a whole. One of the contemporary semantic theories is Izutsu's Semantic Field Theory. According to this theory, the discovery of meaning depends on the function of words and takes place within the context of language. The purpose of this research is to identify the meaning of the word "Nas" in the discourse of verse 24 of Surah Al-Baqarah, which introduces "Nas" as the firewood of hell, but the translators have translated it as "people". The present research has investigated the semantic structure of the word "Nas" using the aforementioned theory through the descriptive-analytical method. In the process of investigation, by matching the semantic fields of the Quranic word "Nas", this research came to the conclusion that "Nas" implies those persons who have forgotten God and His covenant in believing in His Oneness. For this reason, God called them "Nas (the forgetful)" - the imperfect participle of the noun /næsiwoɔn/ in single trinity of Arabic language, which means “to forget”. Therefore, the intended meaning of "Nas" in the verses that have the word "Nas" is not equivalent to "People" which is a general noun.

Keywords: Nas, people, semantics, semantic field theory.

Procedia PDF Downloads 195
5162 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique

Authors: Sandhya Baskaran, Hari Kumar Nagabushanam

Abstract:

Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.

Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer

Procedia PDF Downloads 295
5161 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 111
5160 Telepsychiatry for Asian Americans

Authors: Jami Wang, Brian Kao, Davin Agustines

Abstract:

COVID-19 highlighted the active discrimination against the Asian American population easily seen through media, social tension, and increased crimes against the specific population. It is well known that long-term racism can also have a large impact on both emotional and psychological well-being. However, the healthcare disparity during this time also revealed how the Asian American community lacked the research data, political support, and medical infrastructure for this particular population. During a time when Asian American fear for safety with decreasing mental health, telepsychiatry is particularly promising. COVID-19 demonstrated how well psychiatry could integrate with telemedicine, with psychiatry being the second most utilized telemedicine visits. However, the Asian American community did not utilize the telepsychiatry resources as much as other groups. Because of this, we wanted to understand why the patient population who was affected the most by COVID-19 mentally did not seek out care. To do this, we decided to study the top top telepsychiatry platforms. The current top telepsychiatry companies in the United States include Teladoc and BetterHelp. In the Teladoc mental health sector, they only had 4 available languages (English, Spanish, French, and Danis,) with none of them being an Asian language. In a similar manner, Teladoc’s top competitor in the telepsychiatry space, BetterHelp, only listed a total of 3 Asian languages, including Mandarin, Japanese, and Malaysian. However, this is still a short list considering they have over 20 languages available. The shortage of available physicians that speak multiple languages is concerning, as it could be difficult for the Asian American community to relate with. There are limited mental health resources that cater to their likely cultural needs, further exacerbating the structural racism and institutional barriers to appropriate care. It is important to note that these companies do provide interpreters to comply with the nondiscrimination and language assistance federal law. However, interactions with an interpreter are not only more time-consuming but also less personal than talking directly with a physician. Psychiatry is the field that emphasizes interpersonal relationships. The trust between a physician and the patient is critical in developing patient rapport to guide in better understanding the clinical picture and treating the patient appropriately. The language barrier creates an additional barrier between the physician and patient. Because Asian Americans are one of the largest growing patient population bases, these telehealth companies have much to gain by catering to the Asian American market. Without providing adequate access to bilingual and bicultural physicians, the current system will only further exacerbate the growing disparity. The healthcare community and telehealth companies need to recognize that the Asian American population is a severely underserved population in mental health and has much to gain from telepsychiatry. The lack of language is one of many reasons why there is a disparity for Asian Americans in the mental health space.

Keywords: telemedicine, psychiatry, Asian American, disparity

Procedia PDF Downloads 110
5159 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 126
5158 The Application of Cognitive Linguistics to Teaching EFL Students to Understand Spoken Coinages: Based on an Experiment with Speakers of Russian

Authors: Ekaterina Lukianchenko

Abstract:

The present article addresses the nuances of teaching English vocabulary to Russian-speaking students. The experiment involving 39 participants aged 17 to 21 proves that the key to understanding spoken coinages is not only the knowledge of their constituents, but rather the understanding of the context and co-text. The volunteers who took part knew the constituents, but did not know the meaning of the words. The assumption of the authors consists in the fact that the structure of the concept has a direct relation with the form of the particular vocabulary unit, but its form is secondary to its meaning, if the word is a spoken coinage, which is partly proved by the fact that in modern slang words have multiple meanings, as well as one notion can have various embodiments that have virtually nothing in common. The choice of vocabulary items that youngsters use is not exactly arbitrary, but, even if complex nominals are taken into consideration, whose meaning seems clear, as it looks like a sum of their constituents’ meanings, they are still impossible to understand without any context or co-text, as a lot of them are idiomatic, non-transparent. It is further explained what methods might be effective in teaching students how to deal with new words they encounter in real-life situations and how student’s knowledge of vocabulary might be enhanced.

Keywords: spoken language, cognitive linguistics, complex nominals, nominals with the incorporated object, concept, EFL, communicative language teaching

Procedia PDF Downloads 282
5157 Mood Choices and Modality Patterns in Donald Trump’s Inaugural Presidential Speech

Authors: Mary Titilayo Olowe

Abstract:

The controversies that trailed the political campaign and eventual choice of Donald Trump as the American president is so great that expectations are high as to what the content of his inaugural speech will portray. Given the fact that language is a dynamic vehicle of expressing intentions, the speech needs to be objectively assessed so as to access its content in the manner intended through the three strands of meaning postulated by the Systemic Functional Grammar (SFG): the ideational, the interpersonal and the textual. The focus of this paper, however, is on the interpersonal meaning which deals with how language exhibits social roles and relationship. This paper, therefore, attempts to analyse President Donald Trump’s inaugural speech to elicit interpersonal meaning in it. The analysis is done from the perspective of mood and modality which are housed in SFG. Results of the mood choice which is basically declarative, reveal an information-centered speech while the high option for the modal verb operator ‘will’ shows president Donald Trump’s ability to establish an equal and reliant relationship with his audience, i.e., the Americans. In conclusion, the appeal of the speech to different levels of Interpersonal meaning is largely responsible for its overall effectiveness. One can, therefore, understand the reason for the massive reaction it generates at the center of global discourse.

Keywords: interpersonal, modality, mood, systemic functional grammar

Procedia PDF Downloads 232
5156 Chronic Cognitive Impacts of Mild Traumatic Brain Injury during Aging

Authors: Camille Charlebois-Plante, Marie-Ève Bourassa, Gaelle Dumel, Meriem Sabir, Louis De Beaumont

Abstract:

To the extent of our knowledge, there has been little interest in the chronic effects of mild traumatic brain injury (mTBI) on cognition during normal aging. This is rather surprising considering the impacts on daily and social functioning. In addition, sustaining a mTBI during late adulthood may increase the effect of normal biological aging in individuals who consider themselves normal and healthy. The objective of this study was to characterize the persistent neuropsychological repercussions of mTBI sustained during late adulthood, on average 12 months prior to testing. To this end, 35 mTBI patients and 42 controls between the ages of 50 and 69 completed an exhaustive neuropsychological assessment lasting three hours. All mTBI patients were asymptomatic and all participants had a score ≥ 27 at the MoCA. The evaluation consisted of 20 standardized neuropsychological tests measuring memory, attention, executive and language functions, as well as information processing speed. Performance on tests of visual (Brief Visuospatial Memory Test Revised) and verbal memory (Rey Auditory Verbal Learning Test and WMS-IV Logical Memory subtest), lexical access (Boston Naming Test) and response inhibition (Stroop) revealed to be significantly lower in the mTBI group. These findings suggest that a mTBI sustained during late adulthood induces lasting effects on cognitive function. Episodic memory and executive functions seem to be particularly vulnerable to enduring mTBI effects.

Keywords: cognitive function, late adulthood, mild traumatic brain injury, neuropsychology

Procedia PDF Downloads 171
5155 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 499
5154 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 407
5153 Play-Based Early Education and Teachers’ Professional Development: Impact on Vulnerable Children

Authors: Chirine Dannaoui, Maya Antoun

Abstract:

This paper explores the intricate dynamics of play-based early childhood education (ECE) and the impact of professional development on teachers implementing play-based pedagogy, particularly in the context of vulnerable Syrian refugee children in Lebanon. By utilizing qualitative methodologies, including classroom observations and in-depth interviews with five early childhood educators and a field manager, this study delves into the challenges and transformations experienced by teachers in adopting play-based learning strategies. The research unveils the critical role of continuous and context-specific professional development in empowering teachers to implement play-based pedagogies effectively. When appropriately supported, it emphasizes how such educational approaches significantly enhance children's cognitive, social, and emotional development in crisis-affected environments. Key findings indicate that despite diverse educational backgrounds, teachers show considerable growth in their pedagogical skills through targeted professional development. This growth is vital for fostering a learning environment where vulnerable children can thrive, particularly in humanitarian settings. The paper also addresses educators' challenges, including adapting to play-based methodologies, resource limitations, and balancing curricular requirements with the need for holistic child development. This study contributes to the discourse on early childhood education in crisis contexts, emphasizing the need for sustainable, well-structured professional development programs. It underscores the potential of play-based learning to bridge educational gaps and contribute to the healing process of children facing calamity. The study highlights significant implications for policymakers, educators, schools, and not-for-profit organizations engaged in early childhood education in humanitarian contexts, stressing the importance of investing in teacher capacity and curriculum reform to enhance the quality of education for children in general and vulnerable ones in particular.

Keywords: play-based learning, professional development, vulnerable children, early childhood education

Procedia PDF Downloads 63
5152 The Predictive Utility of Subjective Cognitive Decline Using Item Level Data from the Everyday Cognition (ECog) Scales

Authors: J. Fox, J. Randhawa, M. Chan, L. Campbell, A. Weakely, D. J. Harvey, S. Tomaszewski Farias

Abstract:

Early identification of individuals at risk for conversion to dementia provides an opportunity for preventative treatment. Many older adults (30-60%) report specific subjective cognitive decline (SCD); however, previous research is inconsistent in terms of what types of complaints predict future cognitive decline. The purpose of this study is to identify which specific complaints from the Everyday Cognition Scales (ECog) scales, a measure of self-reported concerns for everyday abilities across six cognitive domains, are associated with: 1) conversion from a clinical diagnosis of normal to either MCI or dementia (categorical variable) and 2) progressive cognitive decline in memory and executive function (continuous variables). 415 cognitively normal older adults were monitored annually for an average of 5 years. Cox proportional hazards models were used to assess associations between self-reported ECog items and progression to impairment (MCI or dementia). A total of 114 individuals progressed to impairment; the mean time to progression was 4.9 years (SD=3.4 years, range=0.8-13.8). Follow-up models were run controlling for depression. A subset of individuals (n=352) underwent repeat cognitive assessments for an average of 5.3 years. For those individuals, mixed effects models with random intercepts and slopes were used to assess associations between ECog items and change in neuropsychological measures of episodic memory or executive function. Prior to controlling for depression, subjective concerns on five of the eight Everyday Memory items, three of the nine Everyday Language items, one of the seven Everyday Visuospatial items, two of the five Everyday Planning items, and one of the six Everyday Organization items were associated with subsequent diagnostic conversion (HR=1.25 to 1.59, p=0.003 to 0.03). However, after controlling for depression, only two specific complaints of remembering appointments, meetings, and engagements and understanding spoken directions and instructions were associated with subsequent diagnostic conversion. Episodic memory in individuals reporting no concern on ECog items did not significantly change over time (p>0.4). More complaints on seven of the eight Everyday Memory items, three of the nine Everyday Language items, and three of the seven Everyday Visuospatial items were associated with a decline in episodic memory (Interaction estimate=-0.055 to 0.001, p=0.003 to 0.04). Executive function in those reporting no concern on ECog items declined slightly (p <0.001 to 0.06). More complaints on three of the eight Everyday Memory items and three of the nine Everyday Language items were associated with a decline in executive function (Interaction estimate=-0.021 to -0.012, p=0.002 to 0.04). These findings suggest that specific complaints across several cognitive domains are associated with diagnostic conversion. Specific complaints in the domains of Everyday Memory and Language are associated with a decline in both episodic memory and executive function. Increased monitoring and treatment of individuals with these specific SCD may be warranted.

Keywords: alzheimer’s disease, dementia, memory complaints, mild cognitive impairment, risk factors, subjective cognitive decline

Procedia PDF Downloads 85
5151 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN

Authors: Kwangmin Joo

Abstract:

Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.

Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique

Procedia PDF Downloads 129
5150 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 95
5149 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors

Authors: Ayyaz Hussain, Tariq Sadad

Abstract:

Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.

Keywords: breast cancer, DCNN, KNN, mammography

Procedia PDF Downloads 140
5148 Simulating an Interprofessional Hospital Day Shift: A Student Interprofessional (IP) Collaborative Learning Activity

Authors: Fiona Jensen, Barb Goodwin, Nancy Kleiman, Rhonda Usunier

Abstract:

Background: Clinical simulation is now a common component in many health profession curricula in preparation for clinical practice. In the Rady Faculty of Health Sciences (RFHS) college leads in simulation and interprofessional (IP) education, planned an eight hour simulated hospital day shift, where seventy students from six health professions across two campuses, learned with each other in a safe, realistic environment. Learning about interprofessional collaboration, an expected competency for many health professions upon graduation, was a primary focus of the simulation event. Method: Faculty representatives from the Colleges of Nursing, Medicine, Pharmacy and Rehabilitation Sciences (Physical Therapy, Occupation Therapy, Respiratory Therapy) and Pharmacy worked together to plan the IP event in a simulation facility in the College of Nursing. Each college provided a faculty mentor to guide the same profession students. Students were placed in interprofessional teams consisting of a nurse, physician, pharmacist, and then sharing respiratory, occupational, and physical therapists across the team depending on the needs of the patients. Eight patient scenarios were role played by health profession students, who had been provided with their patient’s story shortly before the event. Each team was guided by a facilitator. Results and Outcomes: On the morning of the event, all students gathered in a large group to meet mentors and facilitators and have a brief overview of the six competencies for effective collaboration and the session objectives. The students assuming their same profession roles were provided with their patient’s chart at the beginning of the shift, met with their team, and then completed professional specific assessments. Shortly into the shift, IP team rounds began, facilitated by the team facilitator. During the shift, each patient role-played a spontaneous health incident, which required collaboration between the IP team members for assessment and management. The afternoon concluded with team rounds, a collaborative management plan, and a facilitated de-brief. Conclusions: During the de-brief sessions, students responded to set questions related to the session learning objectives and expressed many positive learning moments. We believe that we have a sustainable simulation IP collaborative learning opportunity, which can be embedded into curricula, and has the capacity to grow to include more health profession faculties and students. Opportunities are being explored in the RFHS at the administrative level, to offer this event more frequently in the academic year to reach more students. In addition, a formally structured event evaluation tool would provide important feedback and inform the qualitative feedback to event organizers and the colleges about the significance of the simulation event to student learning.

Keywords: simulation, collaboration, teams, interprofessional

Procedia PDF Downloads 133
5147 Benefits of Gamification in Agile Software Project Courses

Authors: Nina Dzamashvili Fogelström

Abstract:

This paper examines concepts of Game-Based Learning and Gamification. Conducted literature survey found an increased interest in the academia in these concepts, limited evidence of a positive effect on student motivation and academic performance, but also certain scepticism for adding games to traditional educational activities. A small-scale empirical study presented in this paper aims to evaluate student experience and usefulness of GameBased Learning and Gamification for a better understanding of the threshold concepts in software engineering project courses. The participants of the study were 22 second year students from bachelor’s program in software engineering at Blekinge Institute of Technology. As a part of the course instruction, the students were introduced to a digital game specifically designed to simulate agile software project. The game mechanics were designed as to allow manipulation of the agile concept of team velocity. After the application of the game, the students were surveyed to measure the degree of a perceived increase in understanding of the studied threshold concept. The students were also asked whether they would like to have games included in their education. The results show that majority of the students found the game helpful in increasing their understanding of the threshold concept. Most of the students have indicated that they would like to see games included in their education. These results are encouraging. Since the study was of small scale and based on convenience sampling, more studies in the area are recommended.

Keywords: agile development, gamification, game based learning, digital games, software engineering, threshold concepts

Procedia PDF Downloads 173
5146 AI-Powered Prediction of Email Spoofing Using Deep Learning Approach

Authors: N. Kannaiya Raja, Himay Mehta, Jay Garg, Anurag Kumar Singh, Aryan Tiwari, Daksha Thorecha

Abstract:

Email spoofing poses a significant threat to cybersecurity, as it exploits vulnerabilities in email systems to mislead individuals and organizations, leading to data breaches, financial losses, and compromised systems. To tackle this issue, this research presents an AI-powered framework that leverages deep learning techniques to detect spoofed emails with high accuracy. The framework analyzes various factors, including email content, metadata, and sender authenticity, to identify fraudulent messages effectively. Furthermore, the study evaluates machine learning approaches for phishing detection using a balanced dataset of legitimate and phishing emails. Among seven tested algorithms, Gradient Boosting demonstrated superior performance, achieving an accuracy of 96.1% and an AUC score of 97.9%. These findings highlight the advantages of ensemble and neural-based models in capturing intricate phishing patterns. However, challenges such as dependence on specific datasets and the difficulty of detecting deceptive emails that mimic legitimate ones underscore the need for further advancements. The deep learning model, trained on diverse datasets that include linguistic and header information, showed robust results with high accuracy and minimal false positives. This research highlights the crucial role of automation in improving detection systems and strengthening email security. By providing a scalable and efficient solution, it strengthens efforts to combat email spoofing and phishing. Integrating such AI-driven tools into existing email platforms can proactively mitigate these threats, fostering a more secure digital communication environment.

Keywords: neural networks (NN), gradient boosting (GB), decision forest (DF), support vector machine (SVM), false positives and negatives (FPFN), adaptive detection models (ADM)

Procedia PDF Downloads 5