Search results for: direct voice input
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5736

Search results for: direct voice input

1176 Analogy in Microclimatic Parameters, Chemometric and Phytonutrient Profiles of Cultivated and Wild Ecotypes of Origanum vulgare L., across Kashmir Himalaya

Authors: Sumira Jan, Javid Iqbal Mir, Desh Beer Singh, Anil Sharma, Shafia Zaffar Faktoo

Abstract:

Background and Aims: Climatic and edaphic factors immensely influence crop quality and proper development. Regardless of economic potential, Himalayan Oregano has not subjected to phytonutrient and chemometric evaluation and its relationship with environmental conditions are scarce. The central objective of this research was to investigate microclimatic variation among wild and cultivated populations located in a microclimatic gradient in north-western Himalaya, Kashmir and analyse if such disparity was related with diverse climatic and edaphic conditions. Methods: Micrometeorological, Atomic absorption spectroscopy for micro elemental analysis was carried for soil. HPLC was carried out to estimate variation in phytonutrients and phytochemicals. Results: Geographic variation in phytonutrient was observed among cultivated and wild populations and among populations diverse within regions. Cultivated populations exhibited comparatively lesser phytonutrient value than wild populations. Moreover, our results observed higher vegetative growth of O. vulgare L. with higher pH (6-7), elevated organic carbon (2.42%), high nitrogen (97.41Kg/ha) and manganese (10-12ppm) and zinc contents (0.39-0.50) produce higher phytonutrients. HPLC data of phytonutrients like quercetin, betacarotene, ascorbic acid, arbutin and catechin revealed direct relationship with UV-B flux (r2=0.82), potassium (r2=0.97) displaying parallel relationship with phytonutrient value. Conclusions: Catechin was found as predominant phytonutrient among all populations with maximum accumulation of 163.8 ppm while as quercetin exhibited lesser value. Maximum arbutin (53.42ppm) and quercetin (2.87ppm) accumulated in plants thriving under intense and high UV-B flux. Minimum variation was demonstrated by beta carotene and ascorbic acid.

Keywords: phytonutrient, ascorbic acid, beta carotene, quercetin, catechin

Procedia PDF Downloads 245
1175 Optimizing the Design Parameters of Acoustic Power Transfer Model to Achieve High Power Intensity and Compact System

Authors: Ariba Siddiqui, Amber Khan

Abstract:

The need for bio-implantable devices in the field of medical sciences has been increasing day by day; however, the charging of these devices is a major issue. Batteries, a very common method of powering the implants, have a limited lifetime and bulky nature. Therefore, as a replacement of batteries, acoustic power transfer (APT) technology is being accepted as the most suitable technique to wirelessly power the medical implants in the present scenario. The basic model of APT consists of piezoelectric transducers that work on the principle of converse piezoelectric effect at the transmitting end and direct piezoelectric effect at the receiving end. This paper provides mechanistic insight into the parameters affecting the design and efficient working of acoustic power transfer systems. The optimum design considerations have been presented that will help to compress the size of the device and augment the intensity of the pressure wave. A COMSOL model of the PZT (Lead Zirconate Titanate) transducer was developed. The model was simulated and analyzed on a frequency spectrum. The simulation results displayed that the efficiency of these devices is strongly dependent on the frequency of operation, and a wrong choice of the operating frequency leads to the high absorption of acoustic field inside the tissue (medium), poor power strength, and heavy transducers, which in effect influence the overall configuration of the acoustic systems. Considering all the tradeoffs, the simulations were performed again by determining an optimum frequency (900 kHz) that resulted in the reduction of the transducer's thickness to 1.96 mm and augmented the power strength with an intensity of 432 W/m². Thus, the results obtained after the second simulation contribute to lesser attenuation, lightweight systems, high power intensity, and also comply with safety limits provided by the U.S Food and Drug Administration (FDA). It was also found that the chosen operating frequency enhances the directivity of the acoustic wave at the receiver side.

Keywords: acoustic power, bio-implantable, COMSOL, Lead Zirconate Titanate, piezoelectric, transducer

Procedia PDF Downloads 148
1174 Post-Experts in Polish Mainstream Media: Quantitative and Qualitative Analysis of Selected Information Programs

Authors: Aldona Guzik

Abstract:

Experts have always played a special role in society. Drawing on their opinions was and most certainly is one of the most important strategies that direct people when they make decisions; something often used with the aim of exerting influence and ensuring social conformism. Many factors decide on who becomes an expert. The most important of these have hitherto been: the possession of extensive knowledge, charisma, authority as well as experience. Increasingly, however, these factors are insufficient and may even be deemed unnecessary. This state of affairs has been brought about (among other things) by the development of the media and the media’s influence on our lives. The inspiration to write the present article has its grounding in the book by Tom Nichols The Death of Expertise. The Campaign Against Established Knowledge and Why it Matters, in which the author claims that in our present-day open society experts and their expertise count for increasingly less for everyone who has unlimited access to the Internet and education. This has, in turn, resulted in the creation of so-called ‘collective wisdom,’ which is placed higher than any of the specialist knowledge proclaimed by experts. However, this is an incomplete picture, because admittedly, access to knowledge is nowadays unlimited, but on the other hand, the ubiquitous risk causes that the expert is someone who allows them to minimize it. Therefore, a modern society so readily refers to their opinion; from the smallest matters, eg home appliance, to important political issues. Hence, many information services include numerous experts (scientists, journalists, specialists, celebrities), whose task is to explain to the viewers in a simple way the presented reality. However, more and more often their role is also to give credence to what they explain. Hence the questions arise: who are the experts, what is their typology and what roles they play in Polish information services? To answer them, quantitative and qualitative research was used, such as analysis of lists of 100 most influential experts, analysis of expert profiles and their statements in three differentiated information services (TVN - commercial, TVP1 - public, TV Trwam - non-commercial/religious). They will be the basis for answering the above-mentioned questions and, above all, determining their role in information services in Poland.

Keywords: experts, media, public discours, symbolic elites

Procedia PDF Downloads 106
1173 Studying the Influence of Systematic Pre-Occupancy Data Collection through Post-Occupancy Evaluation: A Shift in the Architectural Design Process

Authors: Noor Abdelhamid, Donovan Nelson, Cara Prosser

Abstract:

The architectural design process could be mapped out as a dialogue between designer and user that is constructed across multiple phases with the overarching goal of aligning design outcomes with user needs. Traditionally, this dialogue is bounded within a preliminary phase of determining factors that will direct the design intent, and a completion phase, of handing off the project to the client. Pre- and post-occupancy evaluations (P/POE’s) could provide an alternative process by extending this dialogue on both ends of the design process. The purpose of this research is to study the influence of systematic pre-occupancy data collection in achieving design goals by conducting post-occupancy evaluations of two case studies. In the context of this study, systematic pre-occupancy data collection is defined as the preliminary documentation of the existing conditions that helps portray stakeholders’ needs. When implemented, pre-occupancy occurs during the early phases of the architectural design process, utilizing the information to shape the design intent. Investigative POE’s are performed on two case studies with distinct early design approaches to understand how the current space is impacting user needs, establish design outcomes, and inform future strategies. The first case study underwent systematic pre-occupancy data collection and synthesis, while the other represents the traditional, uncoordinated practice of informally collecting data during an early design phase. POE’s target the dynamics between the building and its occupants by studying how spaces are serving the needs of the users. Data collection for this study consists of user surveys, audiovisual materials, and observations during regular site visits. Mixed methods of qualitative and quantitative analyses are synthesized to identify patterns in the data. The paper concludes by positioning value on both sides of the architectural design process: the integration of systematic pre-occupancy methods in the early phases and the reinforcement of a continued dialogue between building and design team after building completion.

Keywords: architecture, design process, pre-occupancy data, post-occupancy evaluation

Procedia PDF Downloads 142
1172 Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+

Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, A. Khelifa

Abstract:

Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken.

Keywords: adsorption, acidity, ion exchange, zeolite

Procedia PDF Downloads 177
1171 The Impact of Environmental Corporate Social Responsibility (ECSR) and the Perceived Moral Intensity on the Intention of Ethical Investment

Authors: Chiung-Yao Huang, Yu-Cheng Lin, Chiung-Hui Chen

Abstract:

This study seeks to examine perceived environmental corporate social responsibility (ECSR) with a focus on negative environmental questions, related to intention of ethical investment intention after a environmental failure recovery. An empirical test was employed to test the hypotheses. We manipulated the information on negative ECSR activities of a hypothetical firm in a experimental design with a failure recovery treatment. The company’s negative ECSR recovery was depicted in a positive perspective (depicting a follow-up strong social action), whereas in the negative ECSR treatment it was described in a negative perspective (depicting a follow-up non social action). In both treatments, information about other key characteristics of the focal company were kept constant. Investors’ intentions to invest in the company’s stock were evaluated by multi-item scales. Results indicate that positive ECSR recovery information about a firm enhances investors’ intentions to invest in the company’s stock. In addition, perceived moral intensity has a significant impact on the intention of ethical investment and that perceived moral intensity also serves as a key moderating variable in the relationship between negative ECSR and the intention of ethical investment. Finally, theoretical and managerial implications of the findings are discussed. Practical implications: The results suggest that managers may need to be aware of perceived moral intensity as a key variable in restoring the intention of ethical investment. The results further suggest that perceived moral intensity has a direct, and it also has an moderating influence between ECSR and the intention of ethical investment. Originality/value: In an attempt to deepen the understanding of how investors perceptions of firm environmental CSR are connected with other investor‐related outcomes through ECSR recovery, the present research proposes a comprehensive model which encompasses ECSR and other key relationship constructs after a ECSR failure and recovery.

Keywords: ethical investment, Environmental Corporate Social Responsibility(ECSR), ECSR recovery, moral intensity

Procedia PDF Downloads 328
1170 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 216
1169 Early and Mid-Term Results of Anesthetic Management of Minimal Invasive Coronary Artery Bypass Grafting Using One Lung Ventilation

Authors: Devendra Gupta, S. P. Ambesh, P. K Singh

Abstract:

Introduction: Minimally invasive coronary artery bypass grafting (MICABG) is a less invasive method of performing surgical revascularization. Minimally invasive direct coronary artery bypass (MIDCAB) provides many anesthetic challenges including one lung ventilation (OLV), managing myocardial ischemia, and pain. We present an early and midterm result of the use of this technique with OLV. Method: We enrolled 62 patients for analysis operated between 2008 and 2012. Patients were anesthetized and left endobronchial tube was placed. During the procedure left lung was isolated and one lung ventilation was maintained through right lung. Operation was performed utilizing off pump technique of coronary artery bypass grafting through a minimal invasive incision. Left internal mammary artery graft was done for single vessel disease and radial artery was utilized for other grafts if required. Postoperative ventilation was done with single lumen endotracheal tube. Median follow-up is 2.5 years (6 months to 4 years). Results: Median age was 58.5 years (41-77) and all were male. Single vessel disease was present in 36, double vessel in 24 and triple vessel disease in 2 patients. All the patients had normal left ventricular size and function. In 2 cases difficulty were encounter in placement of endobronchial tube. In 1 case cuff of endobronchial tube was ruptured during intubation. High airway pressure was developed on OLV in 1 case and surgery was accomplished with two lung anesthesia with low tidal volume. Mean postoperative ventilation time was 14.4 hour (11-22). There was no perioperative and 30 day mortality. Conversion to median sternotomy to complete the operation was done in 3.23% (2 out of 62 patients). One patient had acute myocardial infarction postoperatively and there were no deaths during follow-up. Conclusion: MICABG is a safe and effective method of revascularization with OLV in low risk candidates for coronary artery bypass grafting.

Keywords: MIDCABG, one lung ventilation, coronary artery bypass grafting, endobronchial tube

Procedia PDF Downloads 402
1168 Gender Differences in Objectively Assessed Physical Activity among Urban 15-Year-Olds

Authors: Marjeta Misigoj Durakovic, Maroje Soric, Lovro Stefan

Abstract:

Background and aim: Physical inactivity has been linked with increased morbidity and premature mortality and adolescence has been recognised as the critical period for a decline in physical activity (PA) level. In order to properly direct interventions aimed at increasing PA, high-risk groups of individuals should be identified. Therefore, the aim of this study is to describe gender differences in: a) PA level; b) weekly PA patterns. Methods: This investigation is a part of the CRO-PALS study which is an on-going longitudinal study conducted in a representative sample of urban youth in Zagreb (Croatia). CRO-PALS involves 903 adolescents and for the purpose of this study data from a subgroup of 190 participants with information on objective PA level were analysed (116 girls; mean age [SD]=15.6[0.3] years). Duration of moderate and vigorous PA was measured during 5 consecutive by a multiple-sensor physical activity monitor (SenseWear Armband, BodyMedia inc., Pittsburgh, USA). Gender differences in PA level were evaluated using independent samples t-test. Differences in school week and weekend levels of activity were assessed using mixed ANOVA with gender as between-subjects factor. The amount of vigorous PA had to be log-transformed to achieve normality in the distribution. Results: Boys were more active than girls. Duration of moderate-to-vigorous PA averaged 111±44 min/day in boys and 80±38 min/day in girls (mean difference=31 min/day, 95%CI=20-43 min/day). Vigorous PA was 2.5 times higher in boys compared to girls (95%CI=1.9-3.5). Participants were more active during school days than on weekends. The magnitude of the difference in moderate-to-vigorous PA was similar in both gender (p value for time*gender interaction = 0.79) and averaged 19 min/day (95%CI=11-27 min/day). Similarly, vigorous PA was 36% lower on weekends compared with school days (95%CI=22-46%) with no gender difference (p value for time*gender interaction = 0.52). Conclusion: PA level was higher in boys than in girls throughout the week. Still, in both boys and girls, the amount of PA reduced markedly on weekends compared with school days.

Keywords: adolescence, multiple-sensor physical activity monitor, physical activity level, weekly physical activity pattern

Procedia PDF Downloads 239
1167 Economics of Precision Mechanization in Wine and Table Grape Production

Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka

Abstract:

The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.

Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes

Procedia PDF Downloads 237
1166 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System

Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue

Abstract:

The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio

Procedia PDF Downloads 77
1165 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils

Authors: Waddah Abdullah, Saleh Al-Sarem

Abstract:

Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.

Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency

Procedia PDF Downloads 162
1164 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages

Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova

Abstract:

Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.

Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages

Procedia PDF Downloads 143
1163 Metallograpy of Remelted A356 Aluminium following Squeeze Casting

Authors: Azad Hussain, Andrew Cobley

Abstract:

The demand for lightweight parts with high mechanical strength(s) and integrity, in sectors such as the aerospace and automotive is ever increasing, motivated by the need for weight reduction in order to increase fuel efficiency with components usually manufactured using a high grade primary metal or alloy. For components manufactured using the squeeze casting process, this alloy is usually A356 aluminium (Al), it is one of the most versatile Al alloys; and is used extensively in castings for demanding environments. The A356 castings provide good strength to weight ratio making it an attractive option for components where strength has to be maintained, with the added advantage of weight reduction. In addition, the versatility in castabilitiy, weldability and corrosion resistance are other attributes that provide for the A356 cast alloy to be used in a large array of industrial applications. Conversely, it is rare to use remelted Al in these cases, due the nature of the applications of components in demanding environments, were material properties must be defined to meet certain specifications for example a known strength or ductility. However the use of remelted Al, especially primary grade Al such as A356, would offer significant cost and energy savings for manufacturers using primary alloys, provided that remelted aluminium can offer similar benefits in terms of material microstructure and mechanical properties. This study presents the results of the material microstructure and properties of 100% primary A356 Al and 100% remelt Al cast, manufactured via the direct squeeze cast method. The microstructures of the castings made from remelted A356 Al were then compared with the microstructures of primary A356 Al. The outcome of using remelting Al on the microstructure was examined via different analytical techniques, optical microscopy of polished and etched surfaces, and scanning electron microscopy. Microstructural analysis of the 100% remelted Al when compared with primary Al show similar α-Al phase, primary Al dendrites, particles and eutectic constituents. Mechanical testing of cast samples will elucidate further information as to the suitability of utilising 100% remelt for casting.

Keywords: A356, microstructure, remelt, squeeze casting

Procedia PDF Downloads 186
1162 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 196
1161 Correlates of Cost Effectiveness Analysis of Rating Scale and Psycho-Productive Multiple Choice Test for Assessing Students' Performance in Rice Production in Secondary Schools in Ebonyi State, Nigeria

Authors: Ogbonnaya Elom, Francis N. Azunku, Ogochukwu Onah

Abstract:

This study was carried out to determine the correlates of cost effectiveness analysis of rating scale and psycho-productive multiple choice test for assessing students’ performance in rice production. Four research questions were developed and answered, while one hypothesis was formulated and tested. Survey and correlation designs were adopted. The population of the study was 20,783 made up of 20,511 senior secondary (SSII) students and 272 teachers of agricultural science from 221 public secondary schools. Two schools with one intact class of 30 students each was purposely selected as sample based on certain criteria. Four sets of instruments were used for data collection. One of the instruments-the rating scale, was subjected to face and content validation while the other three were subjected to face validation only. Cronbach alpha technique was utilized to determine the internal consistency of the rating scale items which yielded a coefficient of 0.82 while the Kudder-Richardson (K-R 20) formula was involved in determining the stability of the psycho-productive multiple choice test items which yielded a coefficient of 0.80. Method of data collection involved a step-by-step approach in collecting data. Data collected were analyzed using percentage, weighted mean and sign test to answer the research questions while the hypothesis was tested using Spearman rank-order of correlation and t-test statistic. Findings of the study revealed among others, that psycho-productive multiple choice test is more effective than rating scale when the former is applied on the two groups of students. It was recommended among others, that the external examination bodies should integrate the use of psycho- productive multiple choice test into their examination policy and direct secondary schools to comply with it.

Keywords: correlates, cost-effectiveness, psycho-productive multiple-choice scale, rating scale

Procedia PDF Downloads 114
1160 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 103
1159 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 30
1158 The Association between Antimicrobial Usage and Biosecurity Practices on Commercial Chicken Farms in Bangladesh

Authors: Tasneem Imam, Justine S. Gibson, Mohammad Foysal, Shetu B. Das, Rashed Mahmud, Suman D. Gupta, Ahasanul Hoque, Guillaume Fournie, Joerg Henning

Abstract:

Commercial chicken production is an import livestock industry in Bangladesh. Antimicrobials are commonly used to control and prevent infectious diseases. It was hypothesized that inadequate biosecurity practices might promote antimicrobial usage on commercial chicken farms. A cross-sectional study was carried out to evaluate antimicrobial usage and farm biosecurity practices implemented on 57 layer and 83 broiler farms in eight sub-districts of the Chattogram district in Bangladesh. A questionnaire was used to collect data on antimicrobial usage and biosecurity practices on these farms. A causal framework was used to guide the development of a multi-level mixed-effects logistic regression analysis to evaluate the total and direct effects of practiced biosecurity management on prophylactic and therapeutic administration of antimicrobials. A total of 24 antimicrobials were administered in the current production cycle at the time of the survey. The most administered antimicrobials on layer farms were ciprofloxacin (37.0% of farms), amoxicillin (33.3%), and tiamulin (31.5%); however, on broiler farms, colistin (56.6% of farms), doxycycline (50.6%), and neomycin (38.6%) were most used. Only 15.3% of commercial farmers used antimicrobials entirely for therapeutic purposes, whereas 84.7% administered antimicrobials prophylactically. Inadequate biosecurity practices were more common among commercial broiler farmers compared to layer farmers. For example, only 2.4% of broiler farmers used footbaths before entering sheds compared to 22.2% of the layer farmers (p < 0.001). Farms that used antimicrobials only for therapeutic purposes (vs prophylactic) implemented more frequently adequate disease control measures, such as separating sick birds from healthy birds. This research highlighted that the prophylactic application of antimicrobials is often conducted to substitute poor biosecurity practices on commercial chicken farms. Awareness programs for farmers are crucial to inform them about the risk associated with antimicrobial usage and to highlight the economic benefits of implementing cost-effective biosecurity measures to control infectious poultry diseases.

Keywords: antimicrobial, biosecurity, broiler, layer

Procedia PDF Downloads 135
1157 Using a Phenomenological Approach to Explore the Experiences of Nursing Students in Coping with Their Emotional Responses in Caring for End-Of-Life Patients

Authors: Yun Chan Lee

Abstract:

Background: End-of-life care is a large area of all nursing practice and student nurses are likely to meet dying patients in many placement areas. It is therefore important to understand the emotional responses and coping strategies of student nurses in order for nursing education systems to have some appreciation of how nursing students might be supported in the future. Methodology: This research used a qualitative phenomenological approach. Six student nurses understanding a degree-level adult nursing course were interviewed. Their responses to questions were analyzed using interpretative phenomenological analysis. Finding: The findings identified 3 main themes. First, the common experience of ‘unpreparedness’. A very small number of participants felt that this was unavoidable and that ‘no preparation is possible’, the majority felt that they were unprepared because of ‘insufficient input’ from the university and as a result of wider ‘social taboos’ around death and dying. The second theme showed that emotions were affected by ‘the personal connection to the patient’ and the important sub-themes of ‘the evoking of memories’, ‘involvement in care’ and ‘sense of responsibility’. The third theme, the coping strategies used by students, seemed to fall into two broad areas those ‘internal’ with the student and those ‘external’. In terms of the internal coping strategies, ‘detachment’, ‘faith’, ‘rationalization’ and ‘reflective skills’ are the important components of this part. Regarding the external coping strategies, ‘clinical staff’ and ‘the importance of family and friends’ are the importance of accessing external forms of support. Implication: It is clear that student nurses are affected emotionally by caring for dying patients and many of them have apprehension even before they begin on their placements but very often this is unspoken. Those anxieties before the placement become more pronounced during and continue after the placements. This has implications for when support is offered and possibly its duration. Another significant point of the study is that participants often highlighted their wish to speak to qualified nurses after their experiences of being involved in end-of-life care and especially when they had been present at the time of death. Many of the students spoke that qualified nurses were not available to them. This seemed to be due to a number of reasons. Because the qualified nurses were not available, students had to make use of family members and friends to talk to. Consequently, the implication of this study is not only to educate student nurses but also to educate the qualified mentors on the importance of providing emotional support to students.

Keywords: nursing students, coping strategies, end-of-life care, emotional responses

Procedia PDF Downloads 137
1156 Lateralisation of Visual Function in Yellow-Eyed Mullet (Aldrichetta forsteri) and Its Role in Schooling Behaviour

Authors: Karen L. Middlemiss, Denham G. Cook, Peter Jaksons, Alistair Jerrett, William Davison

Abstract:

Lateralisation of cognitive function is a common phenomenon found throughout the animal kingdom. Strong biases in functional behaviours have evolved from asymmetrical brain hemispheres which differ in structure and/or cognitive function. In fish, lateralisation is involved in visually mediated behaviours such as schooling, predator avoidance, and foraging, and is considered to have a direct impact on species fitness. Currently, there is very little literature on the role of lateralisation in fish schools. The yellow-eyed mullet (Aldrichetta forsteri), is an estuarine and coastal species found commonly throughout temperate regions of Australia and New Zealand. This study sought to quantify visually mediated behaviours in yellow-eyed mullet to identify the significance of lateralisation, and the factors which influence functional behaviours in schooling fish. Our approach to study design was to conduct a series of tank based experiments investigating; a) individual and population level lateralisation, b) schooling behaviour, and d) optic lobe anatomy. Yellow-eyed mullet showed individual variation in direction and strength of lateralisation in juveniles, and trait specific spatial positioning within the school was evidenced in strongly lateralised fish. In combination with observed differences in schooling behaviour, the possibility of ontogenetic plasticity in both behavioural lateralisation and optic lobe morphology in adults is suggested. These findings highlight the need for research into the genetic and environmental factors (epigenetics) which drive functional behaviours such as schooling, feeding and aggression. Improved knowledge on collective behaviour could have significant benefits to captive rearing programmes through improved culture techniques and will add to the limited body of knowledge on the complex ecophysiological interactions present in our inshore fisheries.

Keywords: cerebral asymmetry, fisheries, schooling, visual bias

Procedia PDF Downloads 194
1155 Derivation of Human NK Cells from T Cell-Derived Induced Pluripotent Stem Cells Using Xenogeneic Serum-Free and Feeder Cell-Free Culture System

Authors: Aliya Sekenova, Vyacheslav Ogay

Abstract:

The derivation of human induced pluripotent stem cells (iPSCs) from somatic cells by direct reprogramming opens wide perspectives in the regenerative medicine. It means the possibility to develop the personal and, consequently, any immunologically compatible cells for applications in cell-based therapy. The purpose of our study was to develop the technology for the production of NK cells from T cell-derived induced pluripotent stem cells (TiPSCs) for subsequent application in adoptive cancer immunotherapy. Methods: In this study iPSCs were derived from peripheral blood T cells using Sendai virus vectors expressing Oct4, Sox2, Klf4 and c-Myc. Pluripotent characteristics of TiPSCs were examined and confirmed with alkaline phosphatase staining, immunocytochemistry and RT-PCR analysis. For NK cell differentiation, embryoid bodies (EB) formed from (TiPSCs) were cultured in xenogeneic serum-free medium containing human serum, IL-3, IL-7, IL-15, SCF, FLT3L without using M210-B4 and AFT-024 stromal feeder cells. After differentiation, NK cells were characterized with immunofluorescence analysis, flow cytometry and cytotoxicity assay. Results: Here, we for the first time demonstrate that TiPSCs can effectively differentiate into functionally active NK cells without M210-B4 and AFT-024 xenogeneic stroma cells. Immunofluorescence and flow cytometry analysis showed that EB-derived cells can differentiate into a homogeneous population of NK cell expressing high levels of CD56, CD45 and CD16 specific markers. Moreover, these cells significantly express killing activation receptors such as NKp44 and NKp46. In the comparative analysis, we observed that NK cells derived using feeder-free culture system have more high killing activity against K-562 tumor cells, than NK cells derived by feeder-dependent method. Thus, we think that our obtained data will be useful for the development of large-scale production of NK cells for translation into cancer immunotherapy.

Keywords: induced pluripotent stem cells, NK cells, T cells, cell diffentiation, feeder cell-free culture system

Procedia PDF Downloads 306
1154 A Systematic Review on Development of a Cost Estimation Framework: A Case Study of Nigeria

Authors: Babatunde Dosumu, Obuks Ejohwomu, Akilu Yunusa-Kaltungo

Abstract:

Cost estimation in construction is often difficult, particularly when dealing with risks and uncertainties, which are inevitable and peculiar to developing countries like Nigeria. Direct consequences of these are major deviations in cost, duration, and quality. The fundamental aim of this study is to develop a framework for assessing the impacts of risk on cost estimation, which in turn causes variabilities between contract sum and final account. This is very important, as initial estimates given to clients should reflect the certain magnitude of consistency and accuracy, which the client builds other planning-related activities upon, and also enhance the capabilities of construction industry professionals by enabling better prediction of the final account from the contract sum. In achieving this, a systematic literature review was conducted with cost variability and construction projects as search string within three databases: Scopus, Web of science, and Ebsco (Business source premium), which are further analyzed and gap(s) in knowledge or research discovered. From the extensive review, it was found that factors causing deviation between final accounts and contract sum ranged between 1 and 45. Besides, it was discovered that a cost estimation framework similar to Building Cost Information Services (BCIS) is unavailable in Nigeria, which is a major reason why initial estimates are very often inconsistent, leading to project delay, abandonment, or determination at the expense of the huge sum of money invested. It was concluded that the development of a cost estimation framework that is adjudged an important tool in risk shedding rather than risk-sharing in project risk management would be a panacea to cost estimation problems, leading to cost variability in the Nigerian construction industry by the time this ongoing Ph.D. research is completed. It was recommended that practitioners in the construction industry should always take into account risk in order to facilitate the rapid development of the construction industry in Nigeria, which should give stakeholders a more in-depth understanding of the estimation effectiveness and efficiency to be adopted by stakeholders in both the private and public sectors.

Keywords: cost variability, construction projects, future studies, Nigeria

Procedia PDF Downloads 171
1153 Off-Body Sub-GHz Wireless Channel Characterization for Dairy Cows in Barns

Authors: Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens, Leen Vandaele, Annelies Van Nuffel, Frank A. M. Tuyttens, Bart Sonck, Wout Joseph

Abstract:

The herd monitoring and managing - in particular the detection of ‘attention animals’ that require care, treatment or assistance is crucial for effective reproduction status, health, and overall well-being of dairy cows. In large sized farms, traditional methods based on direct observation or analysis of video recordings become labour-intensive and time-consuming. Thus, automatic monitoring systems using sensors have become increasingly important to continuously and accurately track the health status of dairy cows. Wireless sensor networks (WSNs) and internet-of-things (IoT) can be effectively used in health tracking of dairy cows to facilitate herd management and enhance the cow welfare. Since on-cow measuring devices are energy-constrained, a proper characterization of the off-body wireless channel between the on-cow sensor nodes and the back-end base station is required for a power-optimized deployment of these networks in barns. The aim of this study was to characterize the off-body wireless channel in indoor (barns) environment at 868 MHz using LoRa nodes. LoRa is an emerging wireless technology mainly targeted at WSNs and IoT networks. Both large scale fading (i.e., path loss) and temporal fading were investigated. The obtained path loss values as a function of the transmitter-receiver separation were well fitted by a lognormal path loss model. The path loss showed an additional increase of 4 dB when the wireless node was actually worn by the cow. The temporal fading due to movement of other cows was well described by Rician distributions with a K-factor of 8.5 dB. Based on this characterization, network planning and energy consumption optimization of the on-body wireless nodes could be performed, which enables the deployment of reliable dairy cow monitoring systems.

Keywords: channel, channel modelling, cow monitoring, dairy cows, health monitoring, IoT, LoRa, off-body propagation, PLF, propagation

Procedia PDF Downloads 290
1152 Yellow Necklacepod and Shih-Balady: Possible Promising Sources Against Human Coronaviruses

Authors: Howaida I. Abd-Alla, Omnia Kutkat, Yassmin Moatasim, Magda T. Ibrahim, Marwa A. Mostafa, Mohamed GabAllah, Mounir M. El-Safty

Abstract:

Artemisia judaica (known shih-balady), Azadirachta indica and Sophora tomentosa (known yellow necklace pod) are members of available medicinal plants well-known for their traditional medical use in Egypt which suggests that they probably harbor broad-spectrum antiviral, immunostimulatory and anti-inflammatory functions. Their ethyl acetate-dichloromethane (1:1, v/v) extracts were evaluated for the potential anti-Middle East respiratory syndrome-related coronavirus (anti-MERS-CoV) activity. Their cytotoxic activity was tested in Vero-E6 cells using 3-(4,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modification. The plot of percentage cytotoxicity for each extract concentration has calculated the concentration which exhibited 50% cytotoxic concentration (TC50). A plaque reduction assay was employed using safe dose of extract to evaluate its effect on virus propagation. The highest inhibition percentage was recorded for the yellow necklace pod, followed by Shih-balady. The possible mode of action of virus inhibition was studied at three different levels viral replication, viral adsorption and virucidal activity. The necklace pod leaves have induced virucidal effects and direct effects on the replication of virus. Phytochemical investigation of the promising necklace pod led to the isolation and structure determination of nine compounds. The structure of each compound was determined by a variety of spectroscopic methods. Compounds 4-O-methyl sorbitol 1, 8-methoxy daidzin 6 and 6-methoxy apigenin-7-O-β-D-glucopyranoside 8 were isolated for the first time from the Sophora genus and the other six compounds were the first time that they were isolated from this species according to available works of literature. Generally, the highest anti-CoV 2 activity of S. tomentosa was associated with the crude ethanolic extract, indicating the possibility of synergy among the antiviral phytochemical constituents (1-9).

Keywords: coronavirus, MERS-CoV, mode of action, necklace pod, shih-balady

Procedia PDF Downloads 182
1151 Investigation of the Prevalence, Phenotypes, and Risk Factors Associated with Demodex Infestation and Its Relationship with Acne

Authors: Sina Alimohammadi, Mahnaz Banihashemi, Maryam Poursharif

Abstract:

Demodex is a mandatory parasite of pilosebaceous. D. folliculorum lives as a single parasite or as a number of parasites in hair follicles, and D. brevis as a single parasite living in sebaceous glands. Transmission of Demodex from one person to another requires direct skin contact; it also has a greater density in the forehead, cheeks, nose, and nasolabial folds. Demodex can cause some clinical symptoms such as follicular pityriasis, rosacea-like demodicosis, postural folliculitis, papules, seborrheic dermatitis, blepharitis, dermatitis around the lips, and hyperpigmented spots. In this study, the prevalence of Demodex species in patients referred to the dermatology department of Sayad Shirazi Hospital Gorgan, Iran, in the years 2019-2020 was investigated. Material and Methods: The study population consisted of 242 samples taken from the people referred to the dermatology department of Sayad Shirazi Hospital during the years 2019-2020, which were sampled by adhesive tape. All of the participants completed the questionnaires. The samples were examined microscopically for the presence of Demodex. Results: Out of 242 participants, 67 (27.68%) were infected with Demodex. Most cases of infection were observed in the group of 21 to 30 years (28 people; 11.57%) and then in the group of 31 to 40 years (21 people; 8.67%). Also, in the group of people under 10 years and over 60 years, no positive cases (0%) of Demodex were observed in microscopic examinations. Out of 11 variables, there was a statistically significant difference in relation to the three variables of age (P = 0.000003), use of cleansing solutions (P = 0.002), and the presence of acne (P = 0.0013). Conclusion: According to the results of this study, it was found that the incidence of Demodex in one group of acne patients is higher than in others, which emphasizes the possible role of Demodex in the pathogenesis of acne. In this study, there was an inverse relationship between the incidence of Demodex and the use of skin cleansing solutions. Also, the prevalence of Demodex is higher in the group of 20-30 years, and its prevalence does not increase with age. Due to the possibility of drug resistance in the future, regular studies on genotyping and drug resistance are recommended.

Keywords: acne, demodex, mite, prevalence

Procedia PDF Downloads 66
1150 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study

Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.

Abstract:

Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.

Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist

Procedia PDF Downloads 87
1149 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 52
1148 A Review of the Agroecological Farming System as a Viable Alternative Food Production Approach in South Africa

Authors: Michael Rudolph, Evans Muchesa, Katiya Yassim, Venkatesha Prasad

Abstract:

Input-intensive production systems characterise industrial agriculture as an unsustainable means to address food and nutrition security and sustainable livelihoods. There is extensive empirical evidence that supports the diversification and reorientation of industrial agriculture and that incorporates ecological practices viewed as essential for achieving balanced and productive farming systems. An agroecological farming system is a viable alternative approach that can improve food production, especially for the most vulnerable communities and households. Furthermore, substantial proof and supporting evidence show that such a system holds the key to increasing dietary diversity at the local level and reducing the multiple health and environmental risks stemming from industrial agriculture. This paper, therefore, aims to demonstrate the benefits of the agroecology food system through an evidenced-based approach that shows how the broader agricultural network structures can play a meaningful role, particularly for impoverished households in today’s reality. The methodology is centered on a structured literature review that analyses urban agriculture, agroecology, and food insecurity. Notably, ground-truthing, practical experiences, and field observation of agroecological farming were deployed. This paper places particular emphasis on the practical application of the agroecological approach in urban and peri-urban settings. Several evaluation reports on local and provincial initiatives clearly show that very few households engage in food gardens and urban agriculture. These households do not make use of their backyards or nearby open spaces for a number of reasons, such as stringent city by-laws, restricted access to land, little or no knowledge of innovative or alternative farming practices, and a general lack of interest. Furthermore, limited resources such as water and energy and lack of capacity building and training implementation are additional constraints that are hampering small scale food gardens and farms in other settings. The Agroecology systems approach is viewed as one of the key solutions to tackling these problems.

Keywords: agroecology, water-energy-food nexus, sutainable development goals, social, environmental and economc impact

Procedia PDF Downloads 78
1147 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 496