Search results for: subjective learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7827

Search results for: subjective learning

3297 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 64
3296 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok

Authors: Noriyuki Suyama

Abstract:

The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.

Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior

Procedia PDF Downloads 89
3295 The Effect of Using Mobile Listening Applications on Listening Skills of Iranian Intermediate EFL Learners

Authors: Mahmoud Nabilu

Abstract:

The present study explored the effect of using Mobile listening applications on developing listening skills by Iranian intermediate EFL learners. Fifty male intermediate English learners whose age range was between 15 and 20, participated in the study. The participants were placed in two groups on the basis of their scores on a placement test. Therefore, the participants of the study were homogenized in terms of general proficiency, and groups were assigned as one experimental group and one control group. The experimental group was instructed by the treatment which was using mobile applications to develop their listening skills while the control group received traditional methods. The research data were obtained from the 40-item multiple-choice tests as a pre-test and a post-test. The results of the t-test clearly revealed that the learners in the experimental group performed better in the post-test than the pre-test. This implies that using a mobile application for developing listening skills as a treatment was effective in helping the language learners perform better on post-test. However, a statistically significant difference was found between the post-tests scores of the two groups. The mean of the experimental group was greater compared to the control group. The participants were Iranian and from an Iranian Language Institute, so care should be taken while generalizing the results to the learners of other nationalities. However, in the researcher's view, the findings of this study have valuable implications for teachers and learners, methodologists and syllabus designers, linguists and MALL/CALL (mobile/computer-assisted language learning) experts. Using the result of the present paper is an aim of raising the consciousness of a better technique of developing listening skills in order to make language learning more efficient for the learners.

Keywords: Mobile listening applications, intermediate EFL learners, MALL, CALL

Procedia PDF Downloads 194
3294 Analyzing the Perceptions of Accounting Practitioners regarding Communication Skills of Distance-Learning Graduates

Authors: Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth, Annelien A. Van Rooyen

Abstract:

Higher education institutions are constantly challenged to deliver skilled graduates into the workplace. Employers expect graduates to have the required technical knowledge as well as various pervasive skills. This also applies to accountants who need to know the technical requirements of financial reporting and be able to communicate with individuals, teams and clients at a high level. Accountants need to develop effective business conversational skills and use these skills to communicate up, down and across organizations, taking into consideration cultural and gender diversity. In addition, they need to master business writing and presentation skills. However, providing students with these skills in a distance-learning environment where interaction between students and instructors is limited, is a challenge for academics. The study on which this paper reports, forms part of a larger body of research, which explored the perceptions of accounting practitioners of the communication skills (or lack thereof) of recently qualified accounting students. Feedback (qualitative and quantitative) was obtained from various accounting practitioners in South Africa. Taking into consideration that distance learners communicate mainly with their instructors via email communication and their assignments are submitted using various word processor software, the researchers were of the opinion that the accounting graduates would be capable of communicating effectively once they entered the workplace. However, the research findings, inter alia, suggested that the accounting graduates lacked communication skills and that training was needed to differentiate between business and social communication once they entered the workplace. Recommendations on how these communication challenges may be addressed by higher education institutions are provided.

Keywords: accounting practitioners, communication skills, distance education, pervasive skills

Procedia PDF Downloads 204
3293 Beyond Rhetoric and Buzzword, Policies and Politics: Towards Practical Institutional Involvement in Science and Technology Teacher Education Programmes for Sustainable Development

Authors: Alvin Uchenna Ugwu

Abstract:

The United Nation’s 2030 agenda and Global Action Programme (GAP) for implementation of the Sustainable Development Goals (SDGs), has mandated all sectors in the societies, including education, to develop strategies towards actualizing sustainability in all facets of the society, by the year 2030. Education is no doubt a key tool for social change. However, educational institutions in most African nations need a paradigmatic shift to strike a balance between policies (curricular) and practices, with regards to Education for Sustainable Development (ESD). The paradigm shift in this regard is described as whole-institution/school approach. The whole institution approaches advocate action-focused ESD. In other words, ESD policy and curriculum makers, formal and non-formal education institutions, need to ‘practice what they preach’. This paper is developed from an ongoing study carried out by the author and guided by two research questions: -What are the views of intermediate phase science and technology preservice teachers on the ESD content included in the science and technology modules? -What challenges or enable intermediate phase science and technology pre-service teachers to learn about ESD in science and technology modules? The study drew from the views and experiences of preservice science teachers, learning about ESD in a university’s college of education in South Africa. Using qualitative case study research design, the research data were generated via questionnaires and focus group discussions. Analysis of generated data indicates that universities and institutions of higher learning need to demonstrate practical involvement while implementing ESD in societies, rather than just standing as knowledge media. Findings of the study further suggest that natural sciences and technology courses in teacher education programmes and other institutions of higher learning, should be perceived as key transformative tools in shaping the consciousness of students towards integrating and fostering ESD in developing countries such as South Africa. Thus, this paper seeks to promote ‘Whole Institution Involvement’ in teacher education colleges in South Africa, as a measure of improving ESD in higher education settings. The paper suggests that in order to achieve ESD in higher education settings and beyond, policies and practices should be reexamined beyond rhetoric and buzzwords. The paper further argues that implementation of ESD is largely influenced by context, hence two different contexts should be examined empirically.

Keywords: education for sustainable development, higher education institutions, pre-service science teachers, qualitative case study research, whole institution involvement

Procedia PDF Downloads 174
3292 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 121
3291 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 234
3290 The Youth Employment Peculiarities in Post-Soviet Georgia

Authors: M. Lobzhanidze, N. Damenia

Abstract:

The article analyzes the current structural changes in the economy of Georgia, liberalization and integration processes of the economy. In accordance with this analysis, the peculiarities and the problems of youth employment are revealed. In the paper, the Georgian labor market and its contradictions are studied. Based on the analysis of materials, the socio-economic losses caused by the long-term and mass unemployment of young people are revealed, the objective and subjective circumstances of getting higher education are studied. The youth employment and unemployment rates are analyzed. Based on the research, the factors that increase unemployment are identified. According to the analysis of the youth employment, it has appeared that the unemployment share in the number of economically active population has increased in the younger age group. It demonstrates the high requirements of the labour market in terms of the quality of the workforce. Also, it is highlighted that young people are exposed to a highly paid job. The following research methods are applied in the presented paper: statistical (selection, grouping, observation, trend, etc.) and qualitative research (in-depth interview), as well as analysis, induction and comparison methods. The article presents the data by the National Statistics Office of Georgia and the Ministry of Agriculture of Georgia, policy documents of the Parliament of Georgia, scientific papers by Georgian and foreign scientists, analytical reports, publications and EU research materials on similar issues. The work estimates the students and graduates employment problems existing in the state development strategy and priorities. The measures to overcome the challenges are defined. The article describes the mechanisms of state regulation of youth employment and the ways of improving this regulatory base. As for major findings, it should be highlighted that the main problems are: lack of experience and incompatibility of youth qualification with the requirements of the labor market. Accordingly, it is concluded that the unemployment rate of young people in Georgia is increasing.

Keywords: migration of youth, youth employment, migration management, youth employment and unemployment

Procedia PDF Downloads 148
3289 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 518
3288 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 132
3287 Threading Professionalism Through Occupational Therapy Curriculum: A Framework and Resources

Authors: Ashley Hobson, Ashley Efaw

Abstract:

Professionalism is an essential skill for clinicians, particularly for Occupational Therapy Providers (OTPs). The World Federation of Occupational Therapy (WFOT) Guiding Principles for Ethical Occupational Therapy and American Occupational Therapy Association (AOTA) Code of Ethics establishes expectations for professionalism among OTPs, emphasizing its importance in the field. However, the teaching and assessment of professionalism vary across OTP programs. The flexibility provided by the country standards allows programs to determine their own approaches to meeting these standards, resulting in inconsistency. Educators in both academic and fieldwork settings face challenges in objectively assessing and providing feedback on student professionalism. Although they observe instances of unprofessional behavior, there is no standardized assessment measure to evaluate professionalism in OTP students. While most students are committed to learning and applying professionalism skills, they enter OTP programs with varying levels of proficiency in this area. Consequently, they lack a uniform understanding of professionalism and lack an objective means to self-assess their current skills and identify areas for growth. It is crucial to explicitly teach professionalism, have students to self-assess their professionalism skills, and have OTP educators assess student professionalism. This approach is necessary for fostering students' professionalism journeys. Traditionally, there has been no objective way for students to self-assess their professionalism or for educators to provide objective assessments and feedback. To establish a uniform approach to professionalism, the authors incorporated professionalism content into our curriculum. Utilizing an operational definition of professionalism, the authors integrated professionalism into didactic, fieldwork, and capstone courses. The complexity of the content and the professionalism skills expected of students increase each year to ensure students graduate with the skills to practice in accordance with the WFOT Guiding Principles for Ethical Occupational Therapy Practice and AOTA Code of Ethics. Two professionalism assessments were developed based on the expectations outlined in the both documents. The Professionalism Self-Assessment allows students to evaluate their professionalism, reflect on their performance, and set goals. The Professionalism Assessment for Educators is a modified version of the same tool designed for educators. The purpose of this workshop is to provide educators with a framework and tools for assessing student professionalism. The authors discuss how to integrate professionalism content into OTP curriculum and utilize professionalism assessments to provide constructive feedback and equitable learning opportunities for OTP students in academic, fieldwork, and capstone settings. By adopting these strategies, educators can enhance the development of professionalism among OTP students, ensuring they are well-prepared to meet the demands of the profession.

Keywords: professionalism, assessments, student learning, student preparedness, ethical practice

Procedia PDF Downloads 41
3286 Investigating the Use of English Arabic Codeswitching in EFL classroom Oral Discourse Case study: Middle school pupils of Ain Fekroun, Wilaya of Oum El Bouaghi Algeria

Authors: Fadila Hadjeris

Abstract:

The study aims at investigating the functions of English-Arabic code switching in English as a foreign language classroom oral discourse and the extent to which they can contribute to the flow of classroom interaction. It also seeks to understand the views, beliefs, and perceptions of teachers and learners towards this practice. We hypothesized that code switching is a communicative strategy which facilitates classroom interaction. Due to this fact, both teachers and learners support its use. The study draws on a key body of literature in bilingualism, second language acquisition, and classroom discourse in an attempt to provide a framework for considering the research questions. It employs a combination of qualitative and quantitative research methods which include classroom observations and questionnaires. The analysis of the recordings shows that teachers’ code switching to Arabic is not only used for academic and classroom management reasons. Rather, the data display instances in which code switching is used for social reasons. The analysis of the questionnaires indicates that teachers and pupils have different attitudes towards this phenomenon. Teachers reported their deliberate switching during EFL teaching, yet the majority was against this practice. According to them, the use of the mother has detrimental effects on the acquisition and the practice of the target language. In contrast, pupils showed their preference to their teachers’ code switching because it enhances and facilitates their understanding. These findings support the fact that the shift to pupils’ mother tongue is a strategy which aids and facilitates the teaching and the learning of the target language. This, in turn, necessitates recommendations which are suggested to teachers and course designers.

Keywords: bilingualism, codeswitching, classroom interaction, classroom discourse, EFL learning/ teaching, SLA

Procedia PDF Downloads 479
3285 The Impact of Project Management Approaches in Enhancing Entrepreneurial Growth: A Study Using the Theory of Planned Behaviour as a Lens to Understand

Authors: Akunna Agunwah, Kevin Gallimore, Kathryn Kinnmond

Abstract:

Entrepreneurship and project management are widely associated and seen as a vehicle for economic growth, but are studied separately. A few authors have considered the interconnectivity existing between these two fields, but relatively little empirical data currently exist in the literature. The purpose of the present empirical study is to explore whether successful entrepreneurs utilise project management approaches in enhancing enterprise growth by understanding the working practices and experiences of the entrepreneurs’ using the Theory of Planned Behaviour (TPB) as a lens. In order to understand those experiences, ten successful entrepreneurs in various business sectors in the North West of England were interviewed through a face-to-face semi-structured interview method. The collected audio tape-recorded data was transcribed and analysed using the deductive thematic technique (qualitative approach). The themes were viewed through the lens of Theory of Planned Behaviour to identify the three intentional antecedents (attitude, subjective norms, and perceived behavioural control) and to understand how they relate to the project management approaches (Planning, execution, and monitoring). The findings are twofold, the first evidence of the three intentional antecedents, which make up Theory of Planned Behaviour was present. Secondly, the analysis of project management approaches themes (planning, execution, and monitoring) using the lens of the theory of planned behaviour shows evidence of the three intentional antecedents. There were more than one intentional antecedents found in a particular project management theme, which indicates that the entrepreneur does utilise these approaches without categorising them into definite themes. However, the entrepreneur utilised these intentional antecedents as processes to enhanced business growth. In conclusion, the work presented here showed a way of understanding the interconnectivity between entrepreneurship and project management towards enhancing enterprise growth by examining the working practices and experiences of the successful entrepreneurs in the North-West England.

Keywords: business growth, entrepreneurship, project management approaches, theory of planned behaviour

Procedia PDF Downloads 205
3284 Reception Class Practitioners' Understandings on the Role of Teaching Assistants, in Particular Supporting Children in Mathematics

Authors: Nursel Bektas

Abstract:

The purpose of this study is to investigate the roles of teaching assistants (TAs) working in reception classes through practitioners’ perspectives. The study has two major purposes; firstly to explore the general roles of TAs, and secondly to identify their roles in supporting children for mathematics. A small-scale case study approach was adopted for this study. The research was carried out in two reception classes within a primary school in London. The qualitative data were gathered through observations and semi-structured interviews with four reception class practitioners, comprising two teachers and two TAs. The results show that TAs consider their role to be more like a teacher, whereas classroom teachers do not corroborate this and they generally believe that the role of TAs depends on their personal characteristics and skills. In regard to the general role of TAs, the study suggests that reception class TAs are deployed both at the classroom level to provide academic support for children’s learning and development, and at the school level they are deployed as support staff such as Midday Meal Supervisor or assistants. In terms of the pedagogical roles of TAs, it was found that TAs have a strong teaching role in literacy development, with notable autonomy if conducting their own phonics sessions without teacher direction, but a negligible influence in numeracy/ math’s. In addition, the results show that the TA role is perceived to be quite limited in planning and assessment processes. Linked to their limited roles in such processes, all participants agree that all the responsibility regarding the children’s learning and development, planning and assessment lies with the teacher. Therefore, data suggest that TAs’ roles in these areas depend on TAs’ their own initiatives.

Keywords: early years education, reception classes, roles, teaching assistants

Procedia PDF Downloads 186
3283 A Model of Human Security: A Comparison of Vulnerabilities and Timespace

Authors: Anders Troedsson

Abstract:

For us humans, risks are intimately linked to human vulnerabilities - where there is vulnerability, there is potentially insecurity, and risk. Reducing vulnerability through compensatory measures means increasing security and decreasing risk. The paper suggests that a meaningful way to approach the study of risks (including threats, assaults, crisis etc.), is to understand the vulnerabilities these external phenomena evoke in humans. As is argued, the basis of risk evaluation, as well as responses, is the more or less subjective perception by the individual person, or a group of persons, exposed to the external event or phenomena in question. This will be determined primarily by the vulnerability or vulnerabilities that the external factor are perceived to evoke. In this way, risk perception is primarily an inward dynamic, rather than an outward one. Therefore, a route towards an understanding of the perception of risks, is a closer scrutiny of the vulnerabilities which they can evoke, thereby approaching an understanding of what in the paper is called the essence of risk (including threat, assault etc.), or that which a certain perceived risk means to an individual or group of individuals. As a necessary basis for gauging the wide spectrum of potential risks and their meaning, the paper proposes a model of human vulnerabilities, drawing from i.a. a long tradition of needs theory. In order to account for the subjectivity factor, which mediates between the innate vulnerabilities on the one hand, and the event or phenomenon out there on the other hand, an ensuing ontological discussion about the timespace characteristics of risk/threat/assault as perceived by humans leads to the positing of two dimensions. These two dimensions are applied on the vulnerabilities, resulting in a modelling effort featuring four realms of vulnerabilities which are related to each other and together represent a dynamic whole. In approaching the problem of risk perception, the paper thus defines the relevant realms of vulnerabilities, depicting them as a dynamic whole. With reference to a substantial body of literature and a growing international policy trend since the 1990s, this model is put in the language of human security - a concept relevant not only for international security studies and policy, but also for other academic disciplines and spheres of human endeavor.

Keywords: human security, timespace, vulnerabilities, risk perception

Procedia PDF Downloads 336
3282 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 144
3281 Inclusive Education for Deaf and Hard-of-Hearing Students in China: Ideas, Practices, and Challenges

Authors: Xuan Zheng

Abstract:

China is home to one of the world’s largest Deaf and Hard of Hearing (DHH) populations. In the 1980s, the concept of inclusive education was introduced, giving rise to a unique “learning in regular class (随班就读)” model tailored to local contexts. China’s inclusive education for DHH students is diversifying with innovative models like special education classes at regular schools, regular classes at regular schools, resource classrooms, satellite classes, and bilingual-bimodal projects. The scope extends to preschool and higher education programs. However, the inclusive development of DHH students faces challenges. The prevailing pathological viewpoint on disabilities persists, emphasizing the necessity for favorable auditory and speech rehabilitation outcomes before DHH students can integrate into regular classes. In addition, inadequate support systems in inclusive schools result in poor academic performance and increased psychological disorders among the group, prompting a notable return to special education schools. Looking ahead, China’s inclusive education for DHH students needs a substantial shift from “learning in regular class” to “sharing equal regular education.” Particular attention should be devoted to the effective integration of DHH students who employ sign language into mainstream educational settings. It is crucial to strengthen regulatory frameworks and institutional safeguards, advance the professional development of educators specializing in inclusive education for DHH students, and consistently enhance resources tailored to this demographic. Furthermore, the establishment of a robust, multidimensional, and collaborative support network, engaging both families and educational institutions, is also a pivotal facet.

Keywords: deaf, hard of hearing, inclusive education, China

Procedia PDF Downloads 54
3280 Exploring Well-Being: Lived Experiences and Assertions From a Marginalized Perspective

Authors: Ritwik Saha, Anindita Chaudhuri

Abstract:

The psychological dimension of work-based mobility of the contemporary time in the context of the ever-changing socio-economic process mounting the interest to address the consequential issues of quality of life and well-being of the migrant section of society. The negotiation with the fluidity of the job market and the changing psychosocial dimensions within and between psychosocial relations may disentangle the resilience as well as the mechanism of diligence toward migrant (marginal) life. The work-based mobility and its associated phenomena have highly impacted the migrant’s quality of life especially the marginalized (socioeconomically weak) ones along with their family members staying away from them. The subjective experiences of the journey of their migrant life and reconstruction of the psychosocial being in terms of existence and well-being at the host place are the minimal addressed issues in migrant literature. Hence this gap instigates to bring forth the issue with the present study exploring the phenomenal aspects of lived experiences, resilience, and sense-making of the well-being of migrant living by the marginalized migrant people engaging in unorganized space. In doing so qualitative research method was followed, and semi-structured interviews were used for data collection from the four selected migrant groups (Fuchkawala, Bhunjawala, Bhari - drinking water supplier, Construction worker) as they migrated to Kolkata and its metropolis area from different states of India, Five participants from each group (20 participants in total) age range between 20 to 45 were interviewed physically and participants’ observatory notes were taken to capture their lived experiences, audio recordings were transcribed and analyzed systematically following Charmaz’s three-layer coding of grounded theory. Being truthful to daily industry, the strong desire to build children’s future, the mastering mechanism to dual existence, use of traditional social network these four themes emerges after analysis of the data. However, incorporating fate as their usual way of life and making sense of well-being through their assertion is another evolving aspect of migrant life.

Keywords: lived experiences, marginal living, resilience, sense-making process, well-being

Procedia PDF Downloads 61
3279 An Initiative for Improving Pre-Service Teachers’ Pedagogical Content Knowledge in Mathematics

Authors: Taik Kim

Abstract:

Mathematics anxiety has an important consequence for teacher practices that influence students’ attitudes and achievement. Elementary prospective teachers have the highest levels of mathematics anxiety in comparison with other college majors. In his teaching practice, the researcher developed a highly successful teaching model to reduce pre-service teachers’ higher math anxiety and simultaneously to improve their pedagogical math content knowledge. There were eighty one participants from 2015 to 2018 who took the Mathematics for Elementary Teachers I and II. As the analysis data indicated, elementary prospective teachers’ math anxiety was greatly reduced with improving their math pedagogical knowledge. U.S encounters a critical shortage of well qualified educators. To solve the issue, it is essential to engage students in a long-term commitmentto shape better teachers, who will, in turn, produce k-12 school students that are better-prepared for college students. It is imperative that new instructional strategies are implemented to improve student learning and address declining interest, poor preparedness, a lack of diverse representation, and low persistence of students in mathematics. Many four year college students take math courses from the math department in the College of Arts& Science and then take methodology courses from the College of Education. Before taking pedagogy, many students struggle in learning mathematics and lose their confidence. Since the content course focus on college level math, instead of pre service teachers’ teaching area, per se elementary math, they do not have a chance to improve their teaching skills on topics which eventually they teach. The research, a joint appointment of math and math education, has been involved in teaching content and pedagogy. As the result indicated, participants were able to math content at the same time how to teach. In conclusion, the new initiative to use several teaching strategies was able not only to increase elementary prospective teachers’ mathematical skills and knowledge but also to improve their attitude toward mathematics. We need an innovative teaching strategy which implements evidence-based tactics in redesigning a education and math to improve pre service teachers’math skills and which can improve students’ attitude toward math and students’ logical and reasoning skills. Implementation of these best practices in the local school district is particularly important because K-8 teachers are not generally familiar with lab-based instruction. At the same time, local school teachers will learn a new way how to teach math. This study can be a vital teacher education model expanding throughout the State and nationwide. In summary, this study yields invaluable information how to improve teacher education in the elementary level and, eventually, how to enhance K-8 students’ math achievement.

Keywords: quality of education and improvement method, teacher education, innovative teaching and learning methodologies, math education

Procedia PDF Downloads 104
3278 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 230
3277 A Learning Package on Medical Cannabis for Nurses

Authors: Kulveer Sandhu

Abstract:

Background: In 1999, the Government of Canada legalized the use of cannabis for the therapeutic purpose (CTP); however, its users remain highly vulnerable to stigma and are judged by care providers and nonusers of cannabis. Findings from a literature review suggest health care providers (HCPs), including nurses in palliative care settings, lack knowledge about medical cannabis. For this reason, it is important to enhance HCPs’awarenessand knowledge of medical cannabis. Significance of the Project: Nurses are the first point of contact and spend more time with patients than other care providers; it is, therefore, important for them to be informed about CTPto provide quality and equitable care for medical cannabis users. Although nurses and other HCPs want information on CTP, the topic is rarely included in their educational curriculum. The purpose of this project is to create an evidence informed Package designed to increase knowledge among palliative care nurses about CTP. The information package will empower palliative nurses to help palliative patients make informed decisions about their treatment plan. Method: The information package will include a basic overview of the endocannabinoid system, common cannabis plants and products, and methods of consumption, as well as information to help nurses better understand consumption and harm reduction. The package will also include a set of cannabis fact sheets for nurses. Each fact sheet will comprise a high-level overview with graphics followed by a description of medical cannabis with links and references. At the end of the learning package, there are five self-reflection questions that allow nurses to examine their personal values, attitudes, and practices regarding medical cannabis. These questions will help each nurse understand their personal approach towards CTP and its users.

Keywords: medical cannabis, improve knowledge, cannabis for therapeutic purpose (CTP), patient experience, palliative care

Procedia PDF Downloads 221
3276 Selection Criteria in the Spanish Secondary Education Content and Language Integrated Learning (CLIL) Programmes and Their Effect on Code-Switching in CLIL Methodology

Authors: Dembele Dembele, Philippe

Abstract:

Several Second Language Acquisition (SLA) studies have stressed the benefits of Content and Language Integrated Learning (CLIL) and shown how CLIL students outperformed their non-CLIL counterparts in many L2 skills. However, numerous experimental CLIL programs seem to have mainly targeted above-average and rather highly motivated language learners. The need to understand the impact of the student’s language proficiency on code-switching in CLIL instruction motivated this study. Therefore, determining the implications of the students’ low-language proficiency for CLIL methodology, as well as the frequency with which CLIL teachers use the main pedagogical functions of code-switching, seemed crucial for a Spanish CLIL instruction on a large scale. In the mixed-method approach adopted, ten face-to-face interviews were conducted in nine Valencian public secondary education schools, while over 30 CLIL teachers also contributed with their experience in two online survey questionnaires. The results showed the crucial role language proficiency plays in the Valencian CLIL/Plurilingual selection criteria. The presence of a substantial number of low-language proficient students in CLIL groups, which in turn implied important methodological consequences, was another finding of the study. Indeed, though the pedagogical use of L1 was confirmed as an extended practice among CLIL teachers, more than half of the participants perceived that code-switching impaired attaining their CLIL lesson objectives. Therein, the dissertation highlights the need for more extensive empirical research on how code-switching could prove beneficial in CLIL instruction involving low-language proficient students while maintaining the maximum possible exposure to the target language.

Keywords: CLIL methodology, low language proficiency, code switching, selection criteria, code-switching functions

Procedia PDF Downloads 81
3275 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 70
3274 A Literature Review about Responsible Third Cycle Supervision

Authors: Johanna Lundqvist

Abstract:

Third cycle supervision is a multifaceted and complex task for supervisors in higher education. It progresses over several years and is affected by several proximal and distal factors. It can result in positive learning outcomes for doctoral students and high-quality publications. However, not all doctoral students thrive during their doctoral studies; nor do they all complete their studies. This is problematic for both the individuals themselves as well as society at large: doctoral students are valuable and important in current research, future research and higher education. The aim of this literature review is to elucidate what responsible third cycle supervision can include and be in practice. The question posed is as follows: according to recent literature, what is it that characterises responsible third cycle supervision in which doctoral students can thrive and develop their research knowledge and skills? A literature review was conducted, and the data gathered from the literature regarding responsible third cycle supervision was analysed by means of a thematic analysis. The analysis was inspired by the notion of responsible inclusion outlined by David Mitchell. In this study, the term literature refers to research articles and regulations. The results (preliminary) show that responsible third cycle supervision is associated with a number of interplaying factors (themes). These are as follows: committed supervisors and doctoral students; a clear vision and research problem; an individual study plan; adequate resources; interaction processes and constructive feedback; creativity; cultural awareness; respect and research ethics; systematic quality work and improvement efforts; focus on overall third cycle learning goals; and focus on research presentations and publications. Thus, responsible third cycle supervision can occur if these factors are realized in practice. This literature review is of relevance to evaluators, researchers, and management in higher education, as well as third cycle supervisors.

Keywords: doctoral student, higher education, third cycle supervisors, third cycle programmes

Procedia PDF Downloads 137
3273 Teacher Agency in Localizing Textbooks for International Chinese Language Teaching: A Case of Minsk State Linguistic University

Authors: Min Bao

Abstract:

The teacher is at the core of the three fundamental factors in international Chinese language teaching, the other two being the textbook and the method. Professional development of the teacher comprises a self-renewing process that is characterized by knowledge impartment and self-reflection, in which individual agency plays a significant role. Agency makes a positive contribution to teachers’ teaching practice and their life-long learning. This study, taking Chinese teaching and learning in Minsk State Linguistic University of Belarus as an example, attempts to understand agency by investigating the teacher’s strategic adaptation of textbooks to meet local needs. Firstly, through in-depth interviews, teachers’ comments on textbooks are collected and analyzed to disclose their strategies of adapting and localizing textbooks. Then, drawing on the theory of 'The chordal triad of agency', the paper reveals the process in which teacher agency is exercised as well as its rationale. The results verify the theory, that is, given its temporal relationality, teacher agency is constructed through a combination of experiences, purposes and aims, and context, i.e., projectivity, iteration and practice-evaluation as mentioned in the theory. Evidence also suggests that the three dimensions effect differently; It is usually one or two dimensions that are of greater effects on the construction of teacher agency. Finally, the paper provides four specific insights to teacher development in international Chinese language teaching: 1) when recruiting teachers, priority be given on candidates majoring in Chinese language or international Chinese language teaching; 2) measures be taken to assure educational quality of the two said majors at various levels; 3) pre-service teacher training program be tailored for improved quality, and 4) management of overseas Confucius Institutions be enhanced.

Keywords: international Chinese language teaching, teacher agency, textbooks, localization

Procedia PDF Downloads 157
3272 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index

Authors: Kwaku Damoah

Abstract:

The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.

Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index

Procedia PDF Downloads 63
3271 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 148
3270 English Language Competency among the Mathematics Teachers as the Precursor for Performance in Mathematics

Authors: Mirriam M. Moleko, Sekanse A. Ntsala

Abstract:

Language in mathematics instruction enables the teacher to communicate mathematical knowledge to the learners with precision. It also enables the learner to deal with mathematical activities effectively. This scholarly piece was motivated by the fact that mathematics performance in the South African primary classrooms has not been satisfactory, and English, which is a Language of Learning and Teaching (LoLT) for the majority of the learners, has been singled out as one of the major impediments. This is not only on the part of the learners, but also on the part of the teachers as well. The study thus focused on the lack of competency in English among the primary school teachers as one of the possible causes of poor performance in mathematics in primary classrooms. The qualitative processes, which were premised on the social interaction theory as a lens, sourced the narratives of 10 newly qualified primary school mathematics teachers from the disadvantaged schools on the matter. This was achieved through the use of semi-structured interviews and focus group discussions. The data, which were analyzed thematically, highlighted the actuality that the challenges cut across the pre-service stage to the in-service stage. The findings revealed that the undergraduate mathematics courses in the number of the institutions neglect the importance of language. The study further revealed that the in-service mathematics teachers lack adequate linguistic command, thereby finding it difficult to successfully teach some mathematical concepts, or even to outline instructions clearly. The study thus suggests the need for training institutions to focus on improving the teachers’ English language competency. The need for intensive in-service training targeting the problem areas was also highlighted. The study thus contributes to the body of knowledge by providing suggestions on how the mathematics teachers’ language incompetency can be mitigated.

Keywords: Competency, English language proficiency, language of learning and teaching, primary mathematics teachers

Procedia PDF Downloads 178
3269 Lessons from Seven Years of Teaching Mindfulness to Children Living in a Context of Vulnerability

Authors: Annie Devault

Abstract:

Mindfulness-based interventions (MBI) can be beneficial for the well-being of children. MBIs offered for children in contexts of vulnerability (poverty, neglect) report positive results in terms of emotion regulation and cognitive flexibility. Anxiety is a common issue for children living in a vulnerable context. It has a negative impact on children’s attention span, emotional regulation and self-esteem. The MBI (12 weeks) associated with this research has been developed for a total of 30 children suffering from anxiety (7 to 9 years old) and receiving services from a community center over the last seven years. The first objective is to describe in details the content of the mindfulness-based intervention. The second purpose is to document what helps and what hinders the practice of mindfulness for children living in a context of vulnerability. A special attention will be given to the importance of the way that the intervention is offered and the principles that are followed by the practitioners. Perceived effects of the intervention on children were collected through an individual semi-structured interview with each child at the end of the program. Parents were also interviewed to have their point of view on the effect of their children’s participation in the group. Anxiety was measure with the Beck youth pre-post and at follow up (2 months). Qualitative analysis of the interviews with children showed that most of them mentioned that the program helped them become calmer, more confident, less scared and more able to deal with difficult emotions. Almost all of them reported having used the material provided to them to practice at home. This result has been confirmed by parents. They reported that their child had gained confidence and were better at verbalizing emotions. Children also grew calmer, even though all anxiety was not gone. They would have liked more material to practice at home. The quantitative instrument used to measure anxiety did not corroborate the qualitative interviews about anxiety. Discussion will question the use of this questionnaire for children who have important cognitive limitations. Discussion will also report the importance of the personalized contact with children, along with other consideration, to enhance the adherence of children and parents. The MBI seems to have benefited children in different ways, which is corroborated by most parents. Since the sample was limited, we will need to continue documenting its effects with more children and parents. The major strength of this research is to have reported the subjective perspectives of children on their experience of mindfulness.

Keywords: anxiety, mindfulness, children, best practices

Procedia PDF Downloads 113
3268 Smart Safari: Safari Guidance Mobile Application

Authors: D. P. Lawrence, T. M. M. D. Ariyarathna, W. N. K. De Silva, M. D. S. C. De Silva, Lasantha Abeysiri, Pradeep Abeygunawardhna

Abstract:

Safari traveling is one of the most famous hobbies all over the world. In Sri Lanka, 'Yala' is the second-largest national park, which is a better place to go for a safari. Many number of local and foreign travelers are coming to go for a safari in 'Yala'. But 'Yala' does not have a mobile application that is made to facilitate the traveler with some important features that the traveler wants to achieve in the safari experience. To overcome these difficulties, the proposed mobile application by adding those identified features to make travelers, guiders, and administration's works easier. The proposed safari traveling guidance mobile application is called 'SMART SAFARI' for the 'Yala' National Park in Sri Lanka. There are four facilities in this mobile application that provide for travelers as well as the guiders. As the first facility, the guider and traveler can view the created map of the park, and the guider can add temporary locations of animals and special locations on the map. This is a Geographic Information System (GIS) to capture, analyze, and display geographical data. And as the second facility is to generate optimal paths according to the travelers' requirements through the park by using machine learning techniques. In the third part, the traveler can get information about animals using an animal identification system by capturing the animal. As in the other facility, the traveler will be facilitated to add reviews and a rate and view those comments under categorized sections and pre-defined score range. With those facilities, this user-friendly mobile application provides the user to get a better experience in safari traveling, and it will probably help to develop tourism culture in Sri Lanka.

Keywords: animal identification system, geographic information system, machine learning techniques, pre defined score range

Procedia PDF Downloads 134