Search results for: social-emotional power
1775 Investigation on Cost Reflective Network Pricing and Modified Cost Reflective Network Pricing Methods for Transmission Service Charges
Authors: K. Iskandar, N. H. Radzi, R. Aziz, M. S. Kamaruddin, M. N. Abdullah, S. A. Jumaat
Abstract:
Nowadays many developing countries have been undergoing a restructuring process in the power electricity industry. This process has involved disaggregating former state-owned monopoly utilities both vertically and horizontally and introduced competition. The restructuring process has been implemented by the Australian National Electricity Market (NEM) started from 13 December 1998, began operating as a wholesale market for supply of electricity to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory, Victoria and South Australia. In this deregulated market, one of the important issues is the transmission pricing. Transmission pricing is a service that recovers existing and new cost of the transmission system. The regulation of the transmission pricing is important in determining whether the transmission service system is economically beneficial to both side of the users and utilities. Therefore, an efficient transmission pricing methodology plays an important role in the Australian NEM. In this paper, the transmission pricing methodologies that have been implemented by the Australian NEM which are the Cost Reflective Network Pricing (CRNP) and Modified Cost Reflective Network Pricing (MCRNP) methods are investigated for allocating the transmission service charges to the transmission users. A case study using 6-bus system is used in order to identify the best method that reflects a fair and equitable transmission service charge.Keywords: cost-reflective network pricing method, modified cost-reflective network pricing method, restructuring process, transmission pricing
Procedia PDF Downloads 4451774 World’s Fair (EXPO) Induced Heritage
Authors: Işılay Tiarnagh Sheridan
Abstract:
World EXPO, short version for the “exposition”, is a large universal public exhibition held since 1851. Within the 164 years, it was organized 34 times in 22 cities and as a result it has given birth to its very own culture unlike most of other international events. It has an outstanding power in transforming the places, in which it is held, into trademarks via changes in their urban tissues. For that, it is widely remembered with its cities instead of its countries. Within the scope of this change, some constructions were planned to be temporary, some planned to be permanent and some were thought to be temporary but kept afterwards becoming important monuments such as the Crystal Palace of London (though it was destroyed later by a fire) and the Eiffel Tower of Paris. These examples are the most prominent names upon considering World EXPOs. Yet, there are so many other legacies of these events within modern city fabric today that we don’t usually associate with its Expo history. Some of them are leading figures not only for the housing city but for other cities also, such as the first Metro line of Paris during 1900 World EXPO; some of them are listed as monuments of the cities such as Saint Louis Art Museum of 1904 World EXPO; some of them, like Melbourne Royal Exhibition Building of 1880 World’s EXPO, are among UNESCO World Heritage Sites and some of them are the masterpieces of modern architecture such as the famous Barcelona Pavilion, German pavilion of the 1929 World’s EXPO, of Ludwig Mies van der Rohe. Thus, the aim of this paper is to analyze the history of World’s EXPO and its eventual results in the birth of its own cultural heritage. Upon organizing these results, the paper aims to create a brief list of EXPO heritage monuments and sites so as to form a database for their further conservation needs.Keywords: expo, heritage, world's fair, legacy
Procedia PDF Downloads 4421773 Smart Energy Storage: W₁₈O₄₉ NW/Ti₃C₂Tₓ Composite-Enabled All Solid State Flexible Electrochromic Supercapacitors
Authors: Muhammad Hassan, Kemal Celebi
Abstract:
Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W₁₈O₄₉ NW/Ti₃C₂Tₓ composite has been fabricated and deposited on a pre-assembled Ag and W₁₈O₄₉ NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W₁₈O₄₉ NW/Ti₃C₂Tₓ exhibits an areal capacitance of 125 mF/cm², with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mAcm⁻². Using this electrode, we fabricated a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 μWh/cm² and a power density of 0.605 mW/cm², with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching) and a significant coloration efficiency of 116 cm²/C with good optical modulation stability. In addition, the device exhibits remarkable mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications.Keywords: MXene, nanowires, supercapacitor, ion diffusion, electrochromic, coloration efficiency
Procedia PDF Downloads 811772 Relationship between Electricity Consumption and Economic Growth: Evidence from Nigeria (1971-2012)
Authors: N. E Okoligwe, Okezie A. Ihugba
Abstract:
Few scholars disagrees that electricity consumption is an important supporting factor for economy growth. However, the relationship between electricity consumption and economy growth has different manifestation in different countries according to previous studies. This paper examines the causal relationship between electricity consumption and economic growth for Nigeria. In an attempt to do this, the paper tests the validity of the modernization or depending hypothesis by employing various econometric tools such as Augmented Dickey Fuller (ADF) and Johansen Co-integration test, the Error Correction Mechanism (ECM) and Granger Causality test on time series data from 1971-2012. The Granger causality is found not to run from electricity consumption to real GDP and from GDP to electricity consumption during the year of study. The null hypothesis is accepted at the 5 per cent level of significance where the probability value (0.2251 and 0.8251) is greater than five per cent level of significance because both of them are probably determined by some other factors like; increase in urban population, unemployment rate and the number of Nigerians that benefit from the increase in GDP and increase in electricity demand is not determined by the increase in GDP (income) over the period of study because electricity demand has always been greater than consumption. Consequently; the policy makers in Nigeria should place priority in early stages of reconstruction on building capacity additions and infrastructure development of the electric power sector as this would force the sustainable economic growth in Nigeria.Keywords: economic growth, electricity consumption, error correction mechanism, granger causality test
Procedia PDF Downloads 3111771 Hair Symbolism and Changing Perspective of Women’s Role in Children’s and Young Adult Literature
Authors: Suchismita Dattagupta
Abstract:
Social rules and guidelines specify how a body should be clothed and how it should look. The social rules have made the body a space for expression, oppression and sexual 'commodification'. Being a malleable aspect of the human body, hair has always been worn in a number of ways and this characteristic of hair has made it an essential vehicle for conveying symbolic meaning. Hair, particularly women’s hair has always been considered to be associated with richness and beauty, apart from being associated with sexual power. Society has always had a preoccupation with hair bordering on obsession and has projected its moral and political supremacy by controlling and influencing how an individual wears their hair. Irrespective of the gender of the individual, society has tried to control an individual’s hair to express its control. However, with time, there has been a marked change in the way hair has been used by the individual. Hair has always been the focus of scholarly studies; not just aesthetically, but also in the cultural and social context. The fascination with hair rises from the fact that it is the only part of the human body that is always on display. Fetishization of hair is common in literature and goes ahead to reveal the character’s social and moral status. Modern authors for children and young adults have turned this concept on its head to point out how characters are breaking away from the mould and establishing their personal, moral and social boundaries. This paper will trace the change in hair symbolism in literature for children and young adults to understand how it has changed over the course of the time and what light it throws on the changing pattern of women’s position in society.Keywords: gender, hair, social symbols, society, women's role
Procedia PDF Downloads 2341770 From Ride-Hailing App to Diversified and Sustainable Platform Business Model
Authors: Ridwan Dewayanto Rusli
Abstract:
We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce
Procedia PDF Downloads 961769 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles
Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil
Abstract:
The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing
Procedia PDF Downloads 971768 Using Autoencoder as Feature Extractor for Malware Detection
Authors: Umm-E-Hani, Faiza Babar, Hanif Durad
Abstract:
Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.Keywords: malware, auto encoders, automated feature engineering, classification
Procedia PDF Downloads 741767 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film
Authors: Sarekha Woranuch, Rangrong Yoksan
Abstract:
Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid
Procedia PDF Downloads 5051766 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 4401765 Rising Velocity of a Non-Newtonian Liquids in Capillary Tubes
Authors: Reza Sabbagh, Linda Hasanovich, Aleksey Baldygin, David S. Nobes, Prashant R. Waghmare
Abstract:
The capillary filling process is significantly important to study for numerous applications such as the under filling of the material in electronic packaging or liquid hydrocarbons seepage through porous structure. The approximation of the fluid being Newtonian, i.e., linear relationship between the shear stress and deformation rate cannot be justified in cases where the extent of non-Newtonian behavior of liquid governs the surface driven transport, i.e., capillarity action. In this study, the capillary action of a non-Newtonian fluid is not only analyzed, but also the modified generalized theoretical analysis for the capillary transport is proposed. The commonly observed three regimes: surface forces dominant (travelling air-liquid interface), developing flow (viscous force dominant), and developed regimes (interfacial, inertial and viscous forces are comparable) are identified. The velocity field along each regime is quantified with Newtonian and non-Newtonian fluid in square shaped vertically oriented channel. Theoretical understanding of capillary imbibition process, particularly in the case of Newtonian fluids, is relied on the simplified assumption of a fully developed velocity profile which has been revisited for developing a modified theory for the capillary transport of non-Newtonian fluids. Furthermore, the development of the velocity profile from the entrance regime to the developed regime, for different power law fluids, is also investigated theoretically and experimentally.Keywords: capillary, non-Newtonian flow, shadowgraphy, rising velocity
Procedia PDF Downloads 2061764 Comparison of Isokinetic Powers (Flexion and Knee Extension) of Basketball and Football Players (Age 17–20)
Authors: Ugur Senturk, Ibrahım Erdemır, Faruk Guven, Cuma Ece
Abstract:
The objective of this study is to compare flexion and extension movements in knee-joint group by measuring isokinetic knee power of amateur basketball and football players. For this purpose, total 21 players were included, which consist of football players (n=12) and basketball players (n=9), within the age range of 17–20. After receiving the age, length, body weight, vertical jump, and BMI measurements of all subjects, the measurement of lower extremity knee-joint movement (Flexion-Extension) was made with isokinetic dynamometer (isomed 2000) at 60 o/sec. and 240 o/sec. angular velocity. After arrangement and grouping of collected information forms and knee flexion and extension parameters, all data were analyzed with SPSS for Windows. Descriptive analyses of the parameters were made. Non-parametric t test and Mann-Whitney U test were used to compare the parameters of football players and basketball players and to find the inter-group differences. The comparisons and relations in the range p<0.05 and p<0.01 between the groups were surveyed. As a conclusion, no statistical differences were found between isokinetic knee flexion and extension parameters of football and basketball players. However, it was found that the football players were older than the basketball players. In addition to this, the average values of the basketball players in the highest torque and the highest torque average curve were found higher than football players in comparisons of left knee extension. However, it was found that fat levels of the basketball players were found to be higher than the football players.Keywords: isokinetic contraction, isokinetic dynamometer, peak torque, flexion, extension, football, basketball
Procedia PDF Downloads 5311763 Bioethical Standards as a Tool for the Improvement of Human Relations Toward Health, Animals, and Plants: The Example of Three Croatian Mediterranean Local Communities
Authors: Toni Buterin, Robert Doričić
Abstract:
Mainstream bioethics, narrowed down mainly to human medicine and research, can hardly be expected to efficiently face modern challenges related to environmental issues. Departing from the interpretation of "European Bioethics" as a discipline considering ethical duties not only toward fellow humans, but to all living beings, this paper presents the results of a study conducted in three communities in Croatian Northern Adriatic region, selected for their recent experience of ecological threats (Labin – thermo-electric power plant; Bakar – cokery), or representing a highly-valuable and vulnerable natural insular pocket (Mali Lošinj – health tourism, dolphin wildlife refuge, fragrant gardens programme, etc.). After targeted workshops and interviews had been organised in those communities, the results of the obtained insights were combined with experts' opinion and a list of around hundred “bioethical standards” was formed. "Bioethical standards" represent a set of principles and measures of the correct attitude of people towards their own health, animals, plants, and the eco-system as a whole. "Bioethical standards" charter might improve the level of local community environmental consciousness, and provide direct guidance for its sustainable development (including its tourism-advertising ace card). The present paper discusses the standards' potential benefits and some implementational risks.Keywords: bioethical standards, croatia, European bioethics, local communities
Procedia PDF Downloads 1511762 Modelling and Optimization of Geothermal Energy in the Gulf of Suez
Authors: Amira Abdelhafez, Rufus Brunt
Abstract:
Geothermal energy in Egypt represents a significant untapped renewable resource that can reduce reliance on conventional power generation. Exploiting these geothermal resources depends on depth, temperature range, and geological characteristics. The intracontinental rift setting of the Gulf of Suez (GoS)-Red Sea rift is a favourable tectonic setting for convection-dominated geothermal plays. The geothermal gradient across the GoS ranges from 24.9 to 86.66 °C/km, with a heat flow of 31-127.2 mW/m². Surface expressions of convective heat loss emerge along the gulf flanks as hot springs (e.g., Hammam Faraun) accompanying deeper geothermal resources. These thermal anomalies are driven mainly by the local tectonic configuration. Characterizing the structural framework of major faults and their control on reservoir properties and subsurface hydrothermal fluid circulation is vital for geothermal applications in the gulf. The geothermal play systems of the GoS depend on structural and lithological properties that contribute to heat storage and vertical transport. Potential geothermal reservoirs include the Nubia sandstones, which, due to their thickness, continuity, and contact with hot basement rocks at a mean depth of 3 km, create an extensive reservoir for geothermal fluids. To develop these geothermal resources for energy production, defining the permeability anisotropy of the reservoir due to faults and facies variation is a crucial step in our study, particularly the evaluation of influence on thermal breakthrough and production rates.Keywords: geothermal, October field, site specific study, reservoir modelling
Procedia PDF Downloads 211761 Root Cause Analysis of Excessive Vibration in a Feeder Pump of a Large Thermal Electric Power Plant: A Simulation Approach
Authors: Kavindan Balakrishnan
Abstract:
Root cause Identification of the Vibration phenomenon in a feedwater pumping station was the main objective of this research. First, the mode shapes of the pumping structure were investigated using numerical and analytical methods. Then the flow pressure and streamline distribution in the pump sump were examined using C.F.D. simulation, which was hypothesized can be a cause of vibration in the pumping station. As the problem specification of this research states, the vibration phenomenon in the pumping station, with four parallel pumps operating at the same time and heavy vibration recorded even after several maintenance steps. They also specified that a relatively large amplitude of vibration exited by pumps 1 and 4 while others remain normal. As a result, the focus of this research was on determining the cause of such a mode of vibration in the pump station with the assistance of Finite Element Analysis tools and Analytical methods. Major outcomes were observed in structural behavior which is favorable to the vibration pattern phenomenon in the pumping structure as a result of this research. Behaviors of the numerical and analytical models of the pump structure have similar characteristics in their mode shapes, particularly in their 2nd mode shape, which is considerably related to the exact cause of the research problem statement. Since this study reveals several possible points of flow visualization in the pump sump model that can be a favorable cause of vibration in the system, there is more room for improved investigation on flow conditions relating to pump vibrations.Keywords: vibration, simulation, analysis, Ansys, Matlab, mode shapes, pressure distribution, structure
Procedia PDF Downloads 1261760 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali
Abstract:
This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics
Procedia PDF Downloads 1521759 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study
Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno
Abstract:
The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.Keywords: consolidation, hard sludge, secondary circuit, steam generator
Procedia PDF Downloads 1911758 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube
Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan
Abstract:
Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity
Procedia PDF Downloads 1471757 Quasistationary States and Mean Field Model
Authors: Sergio Curilef, Boris Atenas
Abstract:
Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states
Procedia PDF Downloads 2121756 Avidity and IgE versus IgG and IgM in Diagnosis of Maternal Toxoplasmosis
Authors: Ghada A. Gamea, Nabila A. Yaseen, Ahmed A. Othman, Ahmed S. Tawfik
Abstract:
Infection with Toxoplasma gondii can cause serious complications in pregnant women, leading to abortion, stillbirth, and congenital anomalies in the fetus. Definitive diagnosis of T. gondii acute infection is therefore critical for the clinical management of a mother and her fetus. This study was conducted on 250 pregnant females in the first trimester who were inpatients or outpatients at Obstetrics and Gynaecology Department at Tanta University Hospital. Screening of the selected females was done for the detection of immunoglobulin (IgG and IgM), and all subjects were submitted to history taking through a questionnaire including personal data, risk factors for Toxoplasma, complaint and history of the present illness. Thirty-eight samples, including 18 IgM +ve and 20 IgM-ve cases were further investigated by the avidity and IgE ELISA tests. The seroprevalence of toxoplasmosis in pregnant women was (42.8%) based on the presence of IgG antibodies in their sera. Contact with cats and consumption of raw or undercooked meat are important risk factors that were associated with toxoplasmosis in pregnant women. By serology, it could be observed that in the IgM +ve group, only one case (5.6%) showed an acute pattern by using the avidity test, though 10 (55.6%) cases were found to be acute by the IgE assay. On the other hand, in the IgM –ve group, 3 (15%) showed low avidity, but none of them was positive by using the IgE assay. In conclusion, there is no single serological test that can be used to confirm whether T. gondii infection is recent or was acquired in the distant past. A panel of tests for detection of toxoplasmosis will certainly have higher discriminatory power than any test alone.Keywords: diagnosis, serology, seroprevalence, toxoplasmosis
Procedia PDF Downloads 1531755 Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions
Authors: Ahmed Khalil
Abstract:
Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait.Keywords: e-efficient systems, hybrid source, intermittence challenge, renewable energy
Procedia PDF Downloads 1361754 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage
Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A. F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee
Abstract:
Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy
Procedia PDF Downloads 521753 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment
Authors: Yousaf Ayub
Abstract:
A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis
Procedia PDF Downloads 671752 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation
Procedia PDF Downloads 4291751 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 3651750 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach
Authors: Ali Akbar Heydari
Abstract:
Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter
Procedia PDF Downloads 1561749 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna
Authors: Amit Kumar Baghel, Sisir Kumar Nayak
Abstract:
The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.Keywords: metamaterial, side lobe level, front to back ratio, beam forming
Procedia PDF Downloads 2761748 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships
Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis
Abstract:
The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture
Procedia PDF Downloads 801747 The Mayan Calendar: An Ideology Laden and Worldview Changing Discourse
Authors: John Rosswell Cummings III
Abstract:
This research examines the discourse ancient Maya ritual practice manifest and maintained through language in a contemporary society as led by a daykeeper— a Maya spiritual leader— with the objective of discovering if the Maya Calendar has an influence on worldview. Through an ethnography of communication and discursive analysis framework, this research examines the discourse of and around the Maya calendar through original research. Data collected includes the ceremonial performance of the Tzolkin ritual, a ritual that takes place every 13 days to ceremonially welcome one of the 20 Universal Forces. During the ceremony, participants supplicate, sacrifice, and venerate. This ritual, based off the Tzolkin cycle in the Mayan Calendar, contains strong, culture-binding ideologies. This research performs a close analysis of the 20 energies of the Tzolkin and their glyphs so as to gain a better understanding of current ideologies in Maya communities. Through a linguistic relativity frame of reference, including both the strong and weak versions, the 20 Universal Forces are shown to influence ways of life. This research argues that it is not just the native language, but the discourses native to the community as held through the calendar, influence thought and have the potential to offer an alternate worldview, thus shaping the cultural narrative which in return influences identity of the community. Research of this kind, on calendric systems and linguistic relativity, has the power to make great discoveries about the societies of the world and their worldviews.Keywords: anthropological linguistics, discourse analysis, cultural studies, sociolinguistics
Procedia PDF Downloads 1491746 Measurement and Research of Green Office Building Operational Performance in China: A Case Study of a Green Office Building in Zhejiang Province
Authors: Xuechen Gui, Jian Ge, Senmiao Li
Abstract:
In recent years, green buildings in China have been developing rapidly and have developed into a wide variety of types, of which office building is a very important part. In many green office buildings, the energy consumption of building operation is high; the indoor environment quality needs to be improved, and the level of occupants’ satisfaction is low. This paper conducted a one-year measurement of operational performance of a green office building in Zhejiang Province. The measurement includes energy consumption of the building's one-year operation, the quality of the indoor environment and occupants’ satisfaction in different seasons. The energy consumption is collected from the power bureau. The quality of the indoor environment have been measured at different measuring points including offices, meeting rooms and reception for the whole year. The satisfaction of occupants are obtained from questionnaires. The results are compared with given standards and goals and the reasons why occupants are dissatisfied with the indoor environment are analyzed. Regarding energy consumption, the energy consumption of the building operational performance is much higher than the standard. Regarding the indoor environment, the temperature and humidity meet the standard for most of the time, but fine particulate matter (PM2.5) concentration is pretty high. Regarding occupants satisfaction, occupants have a higher expectation for indoor air quality even when the indoor air quality is well and occupants prefer a relatively humid environment. However the overall satisfaction is more than 80%, which indicates that occupants have a higher tolerability.Keywords: green office building, energy consumption, indoor environment quality, occupants satisfaction, operational performance
Procedia PDF Downloads 178