Search results for: mechanical behaviors
678 Improving Sanitation and Hygiene Using a Behavioral Change Approach in Public and Private Schools in Kampala, Uganda
Authors: G. Senoga, D. Nakimuli, B. Ndagire, B. Lukwago, D. Kyamagwa
Abstract:
Background: The COVID-19 epidemic affected the education sector, with some private schools closing while other children missed schooling for fear contracting COVID-19. Post COVID-19, PSIU in collaborated with Kampala City Council Authority Directorate of Education and Social Science, Water and Sanitation department, and Directorate of Public Health and Environment to improve sanitation and hygiene among pupils and staff in 50 public and private school system in Kampala city. The “Be Clean, Stay Healthy Campaign” used a behavioral change approach in educating, reinforcing and engaging learners on proper hand washing behaviors, proper toilet usage and garbage disposal. In April 2022, 40 Washa lots were constructed, to reduce the pupil - hand wash station ratio; distributed KCCA approved printed materials; oriented 50 teachers, WASH committees to execute and implement hygiene promotion. To ensure sustainability, WASH messages were memorized and practiced through hand washing songs, Pledge, prayer, Poems, Skits, Music, dance and drama, coupled with participatory, practical demonstrations using peer to peer approach, guest speakers at assemblies and in classes. This improved hygiene and sanitation practices. Premised on this, PSI conducted an end line assessment to explore the impact of a hand washing campaign in regards to improvements in hand washing practices and hand hygiene among pupils, accessibility, functionality and usage of the constructed hygiene and sanitation facilities. Method: A cross-sectional post intervention assessment using a mixed methods approach, targeting headteachers, wash committee members and pupils less <17 years was used. Quantitative approaches with a mix of open-ended questions were used in purposively selected respondents in 50 schools. Primary three to primary seven pupils were randomly selected, data was analyzed using the Statistical Package for Social Scientists (SPSS) Outcomes and Findings: 46,989 pupils (51% female), 1,127 and 524 teaching and non-teaching staff were reached by the intervention, respectively. 96% of schools trained on sanitation, sustainable water usage and hygiene constituted 17-man school WASH committees with teacher, parents and pupils representatives. (31%) of the WASH committees developed workplans, (78%) held WASH meetings monthly. This resulted into improved sanitation, water usage, waste management, proper use of toilets, and improved pupils’ health with reduced occurrences of stomach upsets, diarrhoea initially attributed to improper use of latrines and general waste management. Teachers reported reduced number of school absenteeism due to improved hygiene and general waste management at school, especially proper management of sanitary pads. School administrations response rate in purchase of hygiene equipment’s and detergents like soap improved. Regular WASH meetings in classes, teachers and community supervision ensured WASH facilities are used appropriately. Conclusion and Recommendations: Practical behaviour change innovations improves pupil’s knowledge and understanding of hygiene messages and usage. Over 70% of pupils had clear recall of key WASH Messages. There is need for continuous water flow in the Washa lots, harvesting rain water would reduce water bills while complementing National water supply coupled with increasing on Washa lots in densely populated schools.Keywords: handwashing, hygyiene, sanitation, behaviour change
Procedia PDF Downloads 90677 Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture
Authors: Esra Turker, Umit Hakan Yildiz, Ahu Arslan Yildiz
Abstract:
The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug.Keywords: biomaterials, 3D cell culture, drug screening, electrospinning, lab-on-a-chip, tissue engineering
Procedia PDF Downloads 312676 Numerical Evaluation of Deep Ground Settlement Induced by Groundwater Changes During Pumping and Recovery Test in Shanghai
Authors: Shuo Wang
Abstract:
The hydrogeological parameters of the engineering site and the hydraulic connection between the aquifers can be obtained by the pumping test. Through the recovery test, the characteristics of water level recovery and the law of surface subsidence recovery can be understood. The above two tests can provide the basis for subsequent engineering design. At present, the deformation of deep soil caused by pumping tests is often neglected. However, some studies have shown that the maximum settlement subject to groundwater drawdown is not necessarily on the surface but in the deep soil. In addition, the law of settlement recovery of each soil layer subject to water level recovery is not clear. If the deformation-sensitive structure is deep in the test site, safety accidents may occur. In this study, the pumping test and recovery test of a confined aquifer in Shanghai are introduced. The law of measured groundwater changes and surface subsidence are analyzed. In addition, the fluid-solid coupling model was established by ABAQUS based on the Biot consolidation theory. The models are verified by comparing the computed and measured results. Further, the variation law of water level and the deformation law of deep soil during pumping and recovery tests under different site conditions and different times and spaces are discussed through the above model. It is found that the maximum soil settlement caused by pumping in a confined aquifer is related to the permeability of the overlying aquitard and pumping time. There is a lag between soil deformation and groundwater changes, and the recovery rate of settlement deformation of each soil layer caused by the rise of water level is different. Finally, some possible research directions are proposed to provide new ideas for academic research in this field.Keywords: coupled hydro-mechanical analysis, deep ground settlement, numerical simulation, pumping test, recovery test
Procedia PDF Downloads 44675 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing
Authors: John Eric C. Bargas, Maria Cecilia M. Marcos
Abstract:
One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing
Procedia PDF Downloads 47674 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments
Authors: Shari S. C. Shang, Lynn S. L. Chiu
Abstract:
In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions
Procedia PDF Downloads 158673 Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys
Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça
Abstract:
The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications.Keywords: Fe-Al alloys, high energy milling, iron-aluminum alloys, metallography characterization, powder metallurgy, recycling ferrous alloy, SAE 1020 steel recycling
Procedia PDF Downloads 358672 Spatial Interpolation of Intermediate Soil Properties to Enhance Geotechnical Surveying for Foundation Design
Authors: Yelbek B. Utepov, Assel T. Mukhamejanova, Aliya K. Aldungarova, Aida G. Nazarova, Sabit A. Karaulov, Nurgul T. Alibekova, Aigul K. Kozhas, Dias Kazhimkanuly, Akmaral K. Tleubayeva
Abstract:
This research focuses on enhancing geotechnical surveying for foundation design through the spatial interpolation of intermediate soil properties. Traditional geotechnical practices rely on discrete data from borehole drilling, soil sampling, and laboratory analyses, often neglecting the continuous nature of soil properties and disregarding values in intermediate locations. This study challenges these omissions by emphasizing interpolation techniques such as Kriging, Inverse Distance Weighting, and Spline interpolation to capture the nuanced spatial variations in soil properties. The methodology is applied to geotechnical survey data from two construction sites in Astana, Kazakhstan, revealing continuous representations of Young's Modulus, Cohesion, and Friction Angle. The spatial heatmaps generated through interpolation offered valuable insights into the subsurface environment, highlighting heterogeneity and aiding in more informed foundation design decisions for considered cites. Moreover, intriguing patterns of heterogeneity, as well as visual clusters and transitions between soil classes, were explored within seemingly uniform layers. The study bridges the gap between discrete borehole samples and the continuous subsurface, contributing to the evolution of geotechnical engineering practices. The proposed approach, utilizing open-source software geographic information systems, provides a practical tool for visualizing soil characteristics and may pave the way for future advancements in geotechnical surveying and foundation design.Keywords: soil mechanical properties, spatial interpolation, inverse distance weighting, heatmaps
Procedia PDF Downloads 85671 Preparation and Optimization of Curcumin-HPβCD Complex Bioadhesive Vaginal Films for Vaginal Candidiasis by Factorial Design
Authors: Umme Hani, H. G. Shivakumar, M. D. Younus Pasha
Abstract:
The purpose of this work was to design and optimize a novel vaginal drug delivery system for more effective treatment against vaginal candidiasis. To achieve a better therapeutic efficacy and patient compliance in the treatment for vaginal candidiasis, herbal antifungal agent Curcumin which is 2.5 fold more potent than fluconazole at inhibiting the adhesion of candida albicans has been formulated in a bio-adhesive vaginal film. Curcumin was formulated in bio-adhesive film formulations that could be retained in the vagina for prolonged intervals. The polymeric films were prepared by solvent evaporation and optimized for various physicodynamic and aesthetic properties. Curcumin HPβCD (Hydroxypropyl β Cyclodextrin) was first developed to increase the solubility of curcumin. The formation of the Curcumin HPβCD complex was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and FT-IR and evaluated for its solubility. Curcumin HPβCD complex was formulated in a bio-adhesive film using hydroxypropyl methyl cellulose (HPMC) and Carbopol 934P and characterized. DSC and FT-IR data of Curcumin HPβCD indicate there was complex formation between the drug and HPβCD. The little moisture content (8.02±0.34% w/w) was present in the film, which helps them to remain stable and kept them from being completely dry and brittle. The mechanical properties, tensile strength, and percentage elongation at break reveal that the formulations were found to be soft and tough. The films showed good peelability, relatively good swelling index, and moderate tensile strength and retained vaginal mucosa up to 8 h. The developed Curcumin vaginal film could be a promising safe herbal medication and can ensure longer residence at the vagina and provide an efficient therapy for vaginal candidiasis.Keywords: curcumin, curcumin-HPβCD complex, bio-adhesive vaginal film, vaginal candidiasis, 23 factorial design
Procedia PDF Downloads 382670 Experimental Investigations on the Mechanical properties of Spiny (Kawayan Tinik) Bamboo Layers
Authors: Ma. Doreen E. Candelaria, Ma. Louise Margaret A. Ramos, Dr. Jaime Y. Hernandez, Jr
Abstract:
Bamboo has been introduced as a possible alternative to some construction materials nowadays. Its potential use in the field of engineering, however, is still not widely practiced due to insufficient engineering knowledge on the material’s properties and characteristics. Although there are researches and studies proving its advantages, it is still not enough to say that bamboo can sustain and provide the strength and capacity required of common structures. In line with this, a more detailed analysis was made to observe the layered structure of the bamboo, particularly the species of Kawayan Tinik. It is the main intent of this research to provide the necessary experiments to determine the tensile strength of dried bamboo samples. The test includes tensile strength parallel to fibers with samples taken at internodes only. Throughout the experiment, methods suggested by the International Organization for Standardization (ISO) were followed. The specimens were tested using 3366 INSTRON Universal Testing Machine, with a rate of loading set to 0.6 mm/min. It was then observed from the results of these experiments that dried bamboo samples recorded high layered tensile strengths, as high as 600 MPa. Likewise, along the culm’s length and across its cross section, higher tensile strength were observed at the top part and at its outer layers. Overall, the top part recorded the highest tensile strength per layer, with its outer layers having tensile strength as high as 600 MPa. The recorded tensile strength of its middle and inner layers, on the other hand, were approximately 450 MPa and 180 MPa, respectively. From this variation in tensile strength across the cross section, it may be concluded that an increase in tensile strength may be observed towards the outer periphery of the bamboo. With these preliminary investigations on the layered tensile strength of bamboo, it is highly recommended to conduct experimental investigations on the layered compressive strength properties as well. It is also suggested to conduct investigations evaluating perpendicular layered tensile strength of the material.Keywords: bamboo strength, layered strength tests, strength test, tensile test
Procedia PDF Downloads 418669 Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer
Authors: Aparna M. Joshi
Abstract:
Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties.Keywords: doped aluminium oxide, methyl vinyl silicone polymer, microwave synthesis, static dissipation
Procedia PDF Downloads 557668 The Feasibility Evaluation Of The Compressed Air Energy Storage System In The Porous Media Reservoir
Authors: Ming-Hong Chen
Abstract:
In the study, the mechanical and financial feasibility for the compressed air energy storage (CAES) system in the porous media reservoir in Taiwan is evaluated. In 2035, Taiwan aims to install 16.7 GW of wind power and 40 GW of photovoltaic (PV) capacity. However, renewable energy sources often generate more electricity than needed, particularly during winter. Consequently, Taiwan requires long-term, large-scale energy storage systems to ensure the security and stability of its power grid. Currently, the primary large-scale energy storage options are Pumped Hydro Storage (PHS) and Compressed Air Energy Storage (CAES). Taiwan has not ventured into CAES-related technologies due to geological and cost constraints. However, with the imperative of achieving net-zero carbon emissions by 2050, there's a substantial need for the development of a considerable amount of renewable energy. PHS has matured, boasting an overall installed capacity of 4.68 GW. CAES, presenting a similar scale and power generation duration to PHS, is now under consideration. Taiwan's geological composition, being a porous medium unlike salt caves, introduces flow field resistance affecting gas injection and extraction. This study employs a program analysis model to establish the system performance analysis capabilities of CAES. The finite volume model is then used to assess the impact of porous media, and the findings are fed back into the system performance analysis for correction. Subsequently, the financial implications are calculated and compared with existing literature. For Taiwan, the strategic development of CAES technology is crucial, not only for meeting energy needs but also for decentralizing energy allocation, a feature of great significance in regions lacking alternative natural resources.Keywords: compressed-air energy storage, efficiency, porous media, financial feasibility
Procedia PDF Downloads 66667 Potential of Rice Husk Ash as a Partial Cement Replacement in Concrete for Highways Application
Authors: Ash Ahmed, Fraser Hyndman, Heni Fitriani, John Kamau
Abstract:
The highway pavement is the biggest structural asset a government can construct and maintain. Concrete rigid pavements are used to carry traffic in large volumes across countries safely and efficiently. Pavement quality concrete mixes have high levels of cement which contribute to up to 10% of global CO₂ emissions. Currently the UK specifies (ground granulated blastfurnace slag) GGBS and (pulverised fuel ash) PFA to reduce the quantity of cement used in pavement construction. GGBS and PFA come from heavy industry that should not be relied upon to improve the sustainability of construction materials. This report shows that cement in pavement quality concrete can be replaced with rice husk ash (RHA) without causing adverse effects to the mechanical properties required for highways. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in highway pavement construction that is sourced from an environmentally friendly industry. The report investigates the properties of RHA mixes and compares them to existing pavement quality mixes already used and specified. The report found that sieving RHA and not grinding it gives the best performance. Due to the low density of RHA the investigation found that replacing cement by volume rather than weight provided the best results. Findings showed that CEM II mixed with 20% RHA meets the required specification for pavement quality concrete and mitigates using the comparative CEM I. The investigation also notes that RHA is observed to be more reactive with CEM II rather than CEM I and suits early strength gains required for pavement construction. The report concludes that RHA is a sustainable material that reduces the embodied CO₂ of pavement quality concrete, which is well suited for UK highway specifications and has the potential to improve the lives of people living in the developing countries.Keywords: pavement, pozzolan, rice husk ash, sustainable concrete
Procedia PDF Downloads 172666 Exploring the Use of Drones for Corn Borer Management: A Case Study in Central Italy
Authors: Luana Centorame, Alessio Ilari, Marco Giustozzi, Ester Foppa Pedretti
Abstract:
Maize is one of the most important agricultural cash crops in the world, involving three different chains: food, feed, and bioenergy production. Nowadays, the European corn borer (ECB), Ostrinia nubilalis, to the best of the author's knowledge, is the most important pest to control for maize growers. The ECB is harmful to maize; young larvae are responsible for minor damage to the leaves, while the most serious damage is tunneling by older larvae that burrow into the stock. Soon after, larvae can affect cobs, and it was found that ECB can foster mycotoxin contamination; this is why it is crucial to control it. There are multiple control methods available: agronomic, biological, and microbiological means, agrochemicals, and genetically modified plants. Meanwhile, the European Union’s policy focuses on the transition to sustainable supply chains and translates into the goal of reducing the use of agrochemicals by 50%. The current work aims to compare the agrochemical treatment of ECB and biological control through beneficial insects released by drones. The methodology used includes field trials of both chemical and biological control, considering a farm in central Italy as a case study. To assess the mechanical and technical efficacy of drones with respect to standard machinery, the available literature was consulted. The findings are positive because drones allow them to get in the field promptly, in difficult conditions and with lower costs if compared to traditional techniques. At the same time, it is important to consider the limits of drones regarding pilot certification, no-fly zones, etc. In the future, it will be necessary to deepen the topic with the real application in the field of both systems, expanding the scenarios in which drones can be used and the type of material distributed.Keywords: beneficial insects, corn borer management, drones, precision agriculture
Procedia PDF Downloads 103665 Characterization of Hyaluronic Acid-Based Injections Used on Rejuvenation Skin Treatments
Authors: Lucas Kurth de Azambuja, Loise Silveira da Silva, Gean Vitor Salmoria, Darlan Dallacosta, Carlos Rodrigo de Mello Roesler
Abstract:
This work provides a physicochemical and thermal characterization assessment of three different hyaluronic acid (HA)-based injections used for rejuvenation skin treatments. The three products analyzed are manufactured by the same manufacturer and commercialized for application on different skin levels. According to the manufacturer, all three HA-based injections are crosslinked and have a concentration of 23 mg/mL of HA, and 0.3% of lidocaine. Samples were characterized by Fourier-transformed infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) techniques. FTIR analysis resulted in a similar spectrum when comparing the different products. DSC analysis demonstrated that the fusion points differ in each product, with a higher fusion temperature observed in specimen A, which is used for subcutaneous applications, when compared with B and C, which are used for the middle dermis and deep dermis, respectively. TGA data demonstrated a considerable mass loss at 100°C, which means that the product has more than 50% of water in its composition. TGA analysis also showed that Specimen A had a lower mass loss at 100°C when compared to Specimen C. A mass loss of around 220°C was observed on all samples, characterizing the presence of hyaluronic acid. SEM images displayed a similar structure on all samples analyzed, with a thicker layer for Specimen A when compared with B and C. This series of analyses demonstrated that, as expected, the physicochemical and thermal properties of the products differ according to their application. Furthermore, to better characterize the crosslinking degree of each product and their mechanical properties, a set of different techniques should be applied in parallel to correlate the results and, thereby, relate injection application with material properties.Keywords: hyaluronic acid, characterization, soft-tissue fillers, injectable gels
Procedia PDF Downloads 88664 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent
Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar
Abstract:
Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.Keywords: artificial intelligence, trustworthiness, voice, adolescent
Procedia PDF Downloads 55663 Experimental Investigation of Beams Having Spring Mass Resonators
Authors: Somya R. Patro, Arnab Banerjee, G. V. Ramana
Abstract:
A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response.Keywords: euler bernoulli beam theory, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers
Procedia PDF Downloads 104662 Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese
Abstract:
Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness.Keywords: water purification, polyelectrolytes, membrane modification, layer-by-layer coating, ceramic membranes
Procedia PDF Downloads 245661 Extraction, Synthesis, Characterization and Antioxidant Properties of Oxidized Starch from an Abundant Source in Nigeria
Authors: Okafor E. Ijeoma, Isimi C. Yetunde, Okoh E. Judith, Kunle O. Olobayo, Emeje O. Martins
Abstract:
Starch has gained interest as a renewable and environmentally compatible polymer due to the increase in its use. However, starch by itself could not be satisfactorily applied in industrial processes due to some inherent disadvantages such as its hydrophilic character, poor mechanical properties, its inability to withstand processing conditions such as extreme temperatures, diverse pH, high shear rate, freeze-thaw variation and dimensional stability. The range of physical properties of parent starch can be enlarged by chemical modification which invariably enhances their use in a number of applications found in industrial processes and food manufacture. In this study, Manihot esculentus starch was subjected to modification by oxidation. Fourier Transmittance Infra- Red (FTIR) and Raman spectroscopies were used to confirm the synthesis while Scanning Electron Microscopy (SEM) and X- Ray Diffraction (XRD) were used to characterize the new polymer. DPPH (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay was used to determine the antioxidant property of the oxidized starch. Our results show that the modification had no significant effect on the foaming capacity as well as on the emulsion capacity. Scanning electron microscopy revealed that oxidation did not alter the predominantly circular-shaped starch granules, while the X-ray pattern of both starch, native and modified were similar. FTIR results revealed a new band at 3007 and 3283cm-1. Differential scanning calorimetry returned two new endothermic peaks in the oxidized starch with an improved gelation capacity and increased enthalpy of gelatinization. The IC50 of oxidized starch was notably higher than that of the reference standard, ascorbic acid.Keywords: antioxidant activity, DPPH, M. esculentus, oxidation, starch
Procedia PDF Downloads 298660 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions
Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka
Abstract:
Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68
Procedia PDF Downloads 134659 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles
Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek
Abstract:
Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces
Procedia PDF Downloads 207658 Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback
Authors: Kevin V. Bui, Richard A. Claytor, Elizabeth M. Priolo, Weihui Li
Abstract:
Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement.Keywords: oxygen deprivation mask, lung function, spirometer, Bluetooth
Procedia PDF Downloads 218657 Filled Polymer Composite
Authors: Adishirin Mammadov
Abstract:
Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.Keywords: polyethylene, polymer, composites, filler, reology
Procedia PDF Downloads 56656 An Assessment of Finite Element Computations in the Structural Analysis of Diverse Coronary Stent Types: Identifying Prerequisites for Advancement
Authors: Amir Reza Heydari, Yaser Jenab
Abstract:
Coronary artery disease, a common cardiovascular disease, is attributed to the accumulation of cholesterol-based plaques in the coronary arteries, leading to atherosclerosis. This disease is associated with risk factors such as smoking, hypertension, diabetes, and elevated cholesterol levels, contributing to severe clinical consequences, including acute coronary syndromes and myocardial infarction. Treatment approaches such as from lifestyle interventions to surgical procedures like percutaneous coronary intervention and coronary artery bypass surgery. These interventions often employ stents, including bare-metal stents (BMS), drug-eluting stents (DES), and bioresorbable vascular scaffolds (BVS), each with its advantages and limitations. Computational tools have emerged as critical in optimizing stent designs and assessing their performance. The aim of this study is to provide an overview of the computational methods of studies based on the finite element (FE) method in the field of coronary stenting and discuss the potential for development and clinical application of stent devices. Additionally, the importance of assessing the ability of computational models is emphasized to represent real-world phenomena, supported by recent guidelines from the American Society of Mechanical Engineers (ASME). Validation processes proposed include comparing model performance with in vivo, ex-vivo, or in vitro data, alongside uncertainty quantification and sensitivity analysis. These methods can enhance the credibility and reliability of in silico simulations, ultimately aiding in the assessment of coronary stent designs in various clinical contexts.Keywords: atherosclerosis, materials, restenosis, review, validation
Procedia PDF Downloads 91655 The Comparison of Safety Factor in Dry and Rainy Condition at Coal Bearing Formation. Case Study: Lahat Area South Sumatera Province, Indonesia
Authors: Teguh Nurhidayat, Nurhamid, Dicky Muslim, Zufialdi Zakaria, Irvan Sophian
Abstract:
This paper presents the role of climate change as the factor that induces landslide. Case study is located at Lahat Regency, South Sumatera Province, Indonesia. Study area has high economic value of coal reserves (mostly subbituminous – bituminous), which is developable for open pit coal mining in the future. Seams are found in Muara Enim Formation. This formation is at south Sumatera basin which is formed at Tertiary as a result of collision between the indian plate and eurasian plate. South Sumatera basin which is a basin located in back arc basin. This study aims to unravel the relationship between slope stability with different season condition in tropical climate. Undisturbed soil samples were obtained in the field along with other geological data. Laboratory works were carried out to obtain physical and mechanical properties of soils. Methodology to analyze slope stability is bishop method. Bishop methods are used to identify safety factor of slope. Result shows that slopes in rainy season conditions are more prone to landslides than in dry season. In the dry seasons with moisture content is 22.65%, safety factor is 1.28 the slope in stable condition. If rain is approaching with moisture content increasing to 97.8%, the slope began to be critical. On wet condition groundwater levels is increased, followed by γ (unit weight), c (cohesion), and φ (angle of friction) at 18.04, 5,88 kN/m2, and 28,04°, respectively, which ultimately determines the security factor FS to be 1.01 (slope in unstable conditions).Keywords: rainfall, moisture content, slope analysis, landslide prone
Procedia PDF Downloads 313654 A Compact Extended Laser Diode Cavity Centered at 780 nm for Use in High-Resolution Laser Spectroscopy
Authors: J. Alvarez, J. Pimienta, R. Sarmiento
Abstract:
Diode lasers working in free mode present different shifting and broadening determined by external factors such as temperature, current or mechanical vibrations, and they are not more useful in applications such as spectroscopy, metrology, and cooling of atoms, among others. Different configurations can reduce the spectral width of a laser; one of the most effective is to extend the optical resonator of the laser diode and use optical feedback either with the help of a partially reflective mirror or with a diffraction grating; this latter configuration is not only allowed to reduce the spectral width of the laser line but also to coarsely adjust its working wavelength, within a wide range typically ~ 10nm by slightly varying the angle of the diffraction grating. Two settings are commonly used for this purpose, the Littrow configuration and the Littmann Metcalf. In this paper, we present the design, construction, and characterization of a compact extended laser cavity in Littrow configuration. The designed cavity is compact and was machined on an aluminum block using computer numerical control (CNC); it has a mass of only 380 g. The design was tested on laser diodes with different wavelengths, 650nm, 780nm, and 795 nm, but can be equally efficient at other wavelengths. This report details the results obtained from the extended cavity working at a wavelength of 780 nm, with an output power of around 35mW and a line width of less than 1Mhz. The cavity was used to observe the spectrum of the corresponding Rubidium D2 line. By modulating the current and with the help of phase detection techniques, a dispersion signal with an excellent signal-to-noise ratio was generated that allowed the stabilization of the laser to a transition of the hyperfine structure of Rubidium with an integral proportional controller (PI) circuit made with precision operational amplifiers.Keywords: Littrow, Littman-Metcalf, line width, laser stabilization, hyperfine structure
Procedia PDF Downloads 227653 Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor
Authors: Jorge Prada, Christina Cordes, Carsten Harms, Walter Lang
Abstract:
The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process.Keywords: biosensor, cyclo-olefin copolymer, hot embossing, thermal bonding, thermoplastics
Procedia PDF Downloads 239652 Preparation of Papers: Impacts of COVIDSAFE Practices and CO₂ Feedback Devices on Indoor Air Quality in Classrooms
Authors: Chun Yu, Tahlia M. Farrant, Max G. Marschall
Abstract:
Most of Australia’s school classrooms are equipped with operable windows and occupant-controlled air-conditioners that do not provide fresh air. This can result in insufficient ventilation and high indoor CO₂ levels, which comes at a detriment to occupant productivity and health. This paper reports on the results of an in-situ study capturing indoor CO₂ levels in classrooms at a school in Victoria, Australia. The study consisted of 3 measurement periods: First, CO₂ levels pre-pandemic were measured, finding that the readings exceeded the recommended ASHRAE threshold of 1000 ppm more than 50% of the time, with levels often rising as high as 5000 ppm. Then, after the staff had been informed of the poor indoor air quality and the Victorian government had put COVIDSAFE measures in place, a second data set was captured; the impact was significant, with now only about 30% of readings above the ASHRAE threshold, and values rarely exceeding 2500 ppm. Finally, devices were installed that gave the occupants visual feedback when CO₂ levels were high, thus prompting them to open the windows; this further improved the air quality, with now less than 20% of readings above the threshold and values rarely exceeding 1500 ppm. The study suggests that, while relying on occupants to operate windows can lead to poor indoor air quality due to insufficient ventilation, it is possible to considerably influence occupant behavior through education and feedback devices. While these interventions alone did not mitigate the problem of inadequate ventilation entirely, they were sufficient to keep CO₂ levels within a generally healthy range. Considering the large energy savings that are possible by foregoing mechanical ventilation, it is evident that natural ventilation is a feasible operation method for school buildings in temperate climates, as long as classrooms are equipped with CO₂ feedback devices.Keywords: COVID, CO₂, education, feedback devices, health, indoor air quality, natural ventilation, occupant behaviour
Procedia PDF Downloads 108651 Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes
Authors: Katarzyna Rzeszut, Ilona Szewczak
Abstract:
The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed.Keywords: CFRP tapes, sigma profiles, steel thin-walled structures, strengthening
Procedia PDF Downloads 302650 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application
Authors: Hailu Dessalegn, T. Srinivas
Abstract:
We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6 nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974 nm with a flat top pass band at 1dB of 0.5205 nm and free spectral range of about 14.9 nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54 pm/V has been achieved with negligible tunability variation in the eight channel tunable optical filter proportional to the DC voltage applied in the structure, and it is capable of tuning up to 3.45 nm in each channel with a maximum loss difference of 0.22 dB in the tuning range and out of band rejection ratio of 35 dB, with a low channel crosstalk ≤ 30 dB.Keywords: optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer
Procedia PDF Downloads 437649 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test
Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela
Abstract:
Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.Keywords: EBSD, plain strain compression test, Ti alloys
Procedia PDF Downloads 380