Search results for: air flow performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16224

Search results for: air flow performance

11724 Behavior of Polymeric Mortars: An Analysis from the Point of View of Application in Severe Conditions

Authors: J. P. Gorninski, J. M. L. Reis

Abstract:

This present work was aimed to develop polymeric mortars having as binder two polyester resins namely isophtalic and orthophtalic polyester. The inorganic phase was composed by medium-size river sand and fly ash fíller, a by-product of the burning of coal in power plants. The compositions in this study are high performance mortars and were assessed by mechanical properties, through compressive strength and flexural strength, by durability strength when exposed to the cyclical variation of temperature from -400C to +300C and by the chemical aggression test. The composites displayed good performance when exposed to cyclical temperature variations and chemical solutions. The mechanical strength values reached the 100 MPa, the flexural strength yielded values of about twenty percent of mechanical strength.

Keywords: polymer mortar, mechanical strength, cyclical temperatures, chemical strength, sustainability

Procedia PDF Downloads 373
11723 Influences of Socioeconomic Status and Age on Child Creativity: An Exploratory Study Applied to School Children in Poland

Authors: Bernard Vaernes

Abstract:

Creativity is thought to be of importance for educational success. Educational institutions vary greatly in regard to socioeconomic status (SES) and curricular emphasis on creativity. Research is needed to clarify the effects of age and SES on creativity. The objective of this study will be to compare the creative performance of children with different SES, low or high, and age. It is hypothesized that younger children will score higher than older children, independent of their SES. Children aged 15, 12, and 9 from four different junior and secondary schools in Warsaw, Poland, will participate in the study. The schools will differ in terms of socioeconomic, geographic localization. To assess creative performance, a Polish adaptation of the Torrance Test of Creative Thinking (TTCT) will be used. In order to select low and high SES individuals for SES grouping, a Polish adaptation of the MacArthur Scale of Subjective Social Status will be given to all participants. To control for individual differences in personality traits, a Polish adaptation of the Big Five Questionnaire for Children (BFQ-C) will be used. These measures will allow to compare the creative performance of children with different age and SES and eliminate confound variables. It is predicted that younger children, as well as high SES children, will score higher on the TTCT than older children, and low SES children. The findings of this study may provide useful insight into socioeconomic and age differences in creativity, as well as facilitating teacher’s adjustment of learning styles and emphasis on creativity in relation to the SES and age of their students.

Keywords: big five questionnaire for children, children, creativity, socioeconomic status, Torrance test of creative thinking, TTCT

Procedia PDF Downloads 129
11722 Design, Fabrication, and Experimental Validation of a Warm Bulge Test System

Authors: Emine Feyza Şükür, Mevlüt Türköz, Murat Dilmeç, Hüseyin Selçuk Halkacı

Abstract:

In this study, a warm bulge test system was designed, built and experimentally validated to perform warm bulge tests with all necessary systems. In addition, performance of each sub-system is validated through repeated production and/or test runs as well as through part quality measurements. Validation and performance tests were performed to characterize the repeatability of the system. As a result of these tests, the desired temperature distribution on the sheet metal was obtained by the heating systems and the good repeatability of the bulge tests was obtained. Consequently, this study is expected to provide other researchers and manufacturer with a set of design and process guidelines to develop similar systems.

Keywords: design, test unit, warm bulge test unit, validation test

Procedia PDF Downloads 472
11721 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter

Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba

Abstract:

In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.

Keywords: diesel engine, helicopter, simulation, environmental impact

Procedia PDF Downloads 557
11720 Analysis of Sustainability of Groundwater Resources in Rote Island, Indonesia under HADCM3 Global Model Climate Scenarios: Groundwater Flow Simulation and Proposed Adaptive Strategies

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Developing tailored management strategies to ensure the sustainability of groundwater resource under climate and demographic changes is critical for tropical karst island, where relatively small watershed and highly porous soil nature make this natural resource highly susceptible and thus very sensitive to those changes. In this study, long-term impacts of climate variability on groundwater recharge and discharge at the Oemau spring, Rote Island, Indonesia were investigated. Following calibration and validation of groundwater model using MODFLOW code, groundwater flow was simulated for period of 2020-2090 under HadCM3 global model climate (GCM) scenarios, using input data of weather variables downscaled by Statistical Downscaling Model (SDSM). The reported analysis suggests that the sustainability of groundwater resources will be adversely affected by climate change during dry years. The area is projected to variably experience 2.53-22.80% decrease of spring discharge. A subsequent comprehensive set of management strategies as palliative and adaptive efforts was proposed to be implemented by relevant stakeholders to assist the community dealing with water deficit during the dry years. Three main adaptive strategies, namely socio-cultural, technical, and ecological measures, were proposed by incorporating physical and socio-economic characteristics of the area. This study presents a blueprint for assessing groundwater sustainability under climate change scenarios and developing tailored management strategies to cope with adverse impacts of climate change, which may become fundamental necessities across other tropical karst islands in the future.

Keywords: climate change, groundwater, management strategies, tropical karst island, Rote Island, Indonesia

Procedia PDF Downloads 140
11719 Evaluating Classification with Efficacy Metrics

Authors: Guofan Shao, Lina Tang, Hao Zhang

Abstract:

The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.

Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty

Procedia PDF Downloads 194
11718 Comprehensive Microstructural and Thermal Analysis of Nano Intumescent Fire Retardant Coating for Structural Applications

Authors: Hammad Aziz

Abstract:

Intumescent fire retardant coating (IFRC) is applied on the surface of material requiring fire protection. In this research work, IFRC’s were developed using ammonium polyphosphate, expandable graphite, melamine, boric acid, zinc borate, mica, magnesium oxide, and bisphenol A BE-188 with polyamide polyamine H-4014 as curing agent. Formulations were prepared using nano size MgO and compared with control formulation i.e. without nano size MgO. Small scale hydrocarbon fire test was conducted to scrutinize the thermal performance of the coating. Char and coating were further characterized by using FESEM, FTIR, EDS, TGA and DTGA. Thus, Intumescent coatings reinforced with 2 wt. % of nano-MgO (rod shaped particles) provide superior thermal performance and uniform microstructure of char due to well dispersion of nano particles.

Keywords: intumescent coating, char, SEM, TGA

Procedia PDF Downloads 416
11717 Measuring Energy Efficiency Performance of Mena Countries

Authors: Azam Mohammadbagheri, Bahram Fathi

Abstract:

DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.

Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model

Procedia PDF Downloads 673
11716 Increasing Efficiency, Performance and Safety of Aircraft during Takeoff and Landing by Interpreting Electromagnetism

Authors: Sambit Supriya Dash

Abstract:

Aerospace Industry has evolved over the last century and is growing by approaching towards, more fuel efficient, cheaper, simpler, convenient and safer ways of flight stages. In this paper, the accident records of aircrafts are studied and found about 71% of accidents caused on runways during Takeoff and Landing. By introducing the concept of interpreting electromagnetism, the cause of bounced touchdown and flare failure such as landing impact loads and instability could be eliminated. During Takeoff, the rate of fuel consumption is observed to be maximum. By applying concept of interpreting electromagnetism, a remarkable rate of fuel consumption is reduced, which can be used in case of emergency due to lack of fuel or in case of extended flight. A complete setup of the concept, its effects and characteristics are studied and provided with references of few popular aircrafts. By embedding series of strong and controlled electromagnets below the runway along and aside the centre line and fixed in the line of acting force through wing-fuselage aerodynamic centre. By the essence of its strength controllable nature, it can contribute to performance and fuel efficiency for aircraft. This ensures a perfect Takeoff with less fuel consumption followed by safe cruise stage, which in turn ensures a short and safe landing, eliminating the till known failures, due to bounced touchdowns and flare failure.

Keywords: efficiency, elctromagnetism, performance, reduced fuel consumption, safety

Procedia PDF Downloads 215
11715 Polymer Mixing in the Cavity Transfer Mixer

Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson

Abstract:

In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.

Keywords: Mixing, non-Newtonian fluids, polymers, rheology.

Procedia PDF Downloads 365
11714 How to Improve the Environmental Performance in a HEI in Mexico, an EEA Adaptation

Authors: Stephanie Aguirre Moreno, Jesús Everardo Olguín Tiznado, Claudia Camargo Wilson, Juan Andrés López Barreras

Abstract:

This research work presents a proposal to evaluate the environmental performance of a Higher Education Institution (HEI) in Mexico in order to minimize their environmental impact. Given that public education has limited financial resources, it is necessary to conduct studies that support priorities in decision-making situations and thus obtain the best cost-benefit ratio of continuous improvement programs as part of the environmental management system implemented. The methodology employed, adapted from the Environmental Effect Analysis (EEA), weighs the environmental aspects identified in the environmental diagnosis by two characteristics. Number one, environmental priority through the perception of the stakeholders, compliance of legal requirements, and environmental impact of operations. Number two, the possibility of improvement, which depends of factors such as the exchange rate that will be made, the level of investment and the return time of it. The highest environmental priorities, or hot spots, identified in this evaluation were: electricity consumption, water consumption and recycling, and disposal of municipal solid waste. However, the possibility of improvement for the disposal of municipal solid waste is higher, followed by water consumption and recycling, in spite of having an equal possibility of improvement to the energy consumption, time of return and cost-benefit is much greater.

Keywords: environmental performance, environmental priority, possibility of improvement, continuous improvement programs

Procedia PDF Downloads 477
11713 Efficient Passenger Counting in Public Transport Based on Machine Learning

Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa

Abstract:

Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.

Keywords: computer vision, object detection, passenger counting, public transportation

Procedia PDF Downloads 132
11712 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, channel condition, BER

Procedia PDF Downloads 354
11711 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton

Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna

Abstract:

A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.

Keywords: backstepping control, iterative control, Rehabilitation, ETS-MARSE

Procedia PDF Downloads 269
11710 An Improved Approach for Hybrid Rocket Injection System Design

Authors: M. Invigorito, G. Elia, M. Panelli

Abstract:

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Keywords: hybrid rocket, injection system design, OpenFOAM®, cavitation

Procedia PDF Downloads 202
11709 Chemical Warfare Agent Simulant by Photocatalytic Filtering Reactor: Effect of Operating Parameters

Authors: Youcef Serhane, Abdelkrim Bouzaza, Dominique Wolbert, Aymen Amin Assadi

Abstract:

Throughout history, the use of chemical weapons is not exclusive to combats between army corps; some of these weapons are also found in very targeted intelligence operations (political assassinations), organized crime, and terrorist organizations. To improve the speed of action, important technological devices have been developed in recent years, in particular in the field of protection and decontamination techniques to better protect and neutralize a chemical threat. In order to assess certain protective, decontaminating technologies or to improve medical countermeasures, tests must be conducted. In view of the great toxicity of toxic chemical agents from (real) wars, simulants can be used, chosen according to the desired application. Here, we present an investigation about using a photocatalytic filtering reactor (PFR) for highly contaminated environments containing diethyl sulfide (DES). This target pollutant is used as a simulant of CWA, namely of Yperite (Mustard Gas). The influence of the inlet concentration (until high concentrations of DES (1200 ppmv, i.e., 5 g/m³ of air) has been studied. Also, the conversion rate was monitored under different relative humidity and different flow rates (respiratory flow - standards: ISO / DIS 8996 and NF EN 14387 + A1). In order to understand the efficacity of pollutant neutralization by PFR, a kinetic model based on the Langmuir–Hinshelwood (L–H) approach and taking into account the mass transfer step was developed. This allows us to determine the adsorption and kinetic degradation constants with no influence of mass transfer. The obtained results confirm that this small configuration of reactor presents an extremely promising way for the use of photocatalysis for treatment to deal with highly contaminated environments containing real chemical warfare agents. Also, they can give birth to an individual protection device (an autonomous cartridge for a gas mask).

Keywords: photocatalysis, photocatalytic filtering reactor, diethylsulfide, chemical warfare agents

Procedia PDF Downloads 90
11708 Experimental Study of a Solar Still with Four Glass Cover

Authors: Zakaria Haddad, Azzedine Nahoui, Mohamed Salmi, Ali Djagham

Abstract:

Solar distillation is an effective and practical method for the production of drinking water in arid and semi-arid areas; however, this production is very limited. The aim of this work is to increase the latter by means of single slope solar still with four glass cover without augmenting volume and surface of a conventional solar still, using local materials and simple design. The equipment was tested under the climatic condition of Msila city (35°70′ N, 4°54′ E), Algeria. Performance of the use of four glass cover was studied, and exhaustive data were collected, analyzed, and presented. To show the effectiveness of the system, its performance was compared with that of the conventional solar still. The experimental study shows that the production of the proposed system achieves 5.3 l/m²/day and 5.8 l/m²/day respectively for the months of April and May, with an increase of 10% and 17% compared to the conventional solar still.

Keywords: drinking water, four glass cover, production, solar distillation

Procedia PDF Downloads 122
11707 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey

Authors: D. I. George Amalarethinam, A. Emima

Abstract:

Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.

Keywords: classification technique, data mining, EDM methods, prediction methods

Procedia PDF Downloads 107
11706 Reliability Analysis of Geometric Performance of Onboard Satellite Sensors: A Study on Location Accuracy

Authors: Ch. Sridevi, A. Chalapathi Rao, P. Srinivasulu

Abstract:

The location accuracy of data products is a critical parameter in assessing the geometric performance of satellite sensors. This study focuses on reliability analysis of onboard sensors to evaluate their performance in terms of location accuracy performance over time. The analysis utilizes field failure data and employs the weibull distribution to determine the reliability and in turn to understand the improvements or degradations over a period of time. The analysis begins by scrutinizing the location accuracy error which is the root mean square (RMS) error of differences between ground control point coordinates observed on the product and the map and identifying the failure data with reference to time. A significant challenge in this study is to thoroughly analyze the possibility of an infant mortality phase in the data. To address this, the Weibull distribution is utilized to determine if the data exhibits an infant stage or if it has transitioned into the operational phase. The shape parameter beta plays a crucial role in identifying this stage. Additionally, determining the exact start of the operational phase and the end of the infant stage poses another challenge as it is crucial to eliminate residual infant mortality or wear-out from the model, as it can significantly increase the total failure rate. To address this, an approach utilizing the well-established statistical Laplace test is applied to infer the behavior of sensors and to accurately ascertain the duration of different phases in the lifetime and the time required for stabilization. This approach also helps in understanding if the bathtub curve model, which accounts for the different phases in the lifetime of a product, is appropriate for the data and whether the thresholds for the infant period and wear-out phase are accurately estimated by validating the data in individual phases with Weibull distribution curve fitting analysis. Once the operational phase is determined, reliability is assessed using Weibull analysis. This analysis not only provides insights into the reliability of individual sensors with regards to location accuracy over the required period of time, but also establishes a model that can be applied to automate similar analyses for various sensors and parameters using field failure data. Furthermore, the identification of the best-performing sensor through this analysis serves as a benchmark for future missions and designs, ensuring continuous improvement in sensor performance and reliability. Overall, this study provides a methodology to accurately determine the duration of different phases in the life data of individual sensors. It enables an assessment of the time required for stabilization and provides insights into the reliability during the operational phase and the commencement of the wear-out phase. By employing this methodology, designers can make informed decisions regarding sensor performance with regards to location accuracy, contributing to enhanced accuracy in satellite-based applications.

Keywords: bathtub curve, geometric performance, Laplace test, location accuracy, reliability analysis, Weibull analysis

Procedia PDF Downloads 59
11705 Reactive Fabrics for Chemical Warfare Agent Decomposition Using Particle Crystallization

Authors: Myungkyu Park, Minkun Kim, Sunghoon Kim, Samgon Ryu

Abstract:

Recently, research for reactive fabrics which have the characteristics of CWA (Chemical Warfare Agent) decomposition is being performed actively. The performance level of decomposition for CWA decomposition in various environmental condition is one of the critical factors in applicability as protective materials for NBC (Nuclear, Biological, and Chemical) protective clothing. In this study, results of performance test for CWA decomposition by reactive fabric made of electrospinning web and reactive particle are presented. Currently, the MOF (metal organic framework) type of UiO-66-NH₂ is frequently being studied as material for decomposing CWA especially blister agent HD [Bis(2-chloroethyl) sulfide]. When we test decomposition rate with electrospinning web made of PVB (Polyvinyl Butiral) polymer and UiO-66-NH₂ particle, we can get very high protective performance than the case other particles are applied. Furthermore, if the repellant surface fabric is added on reactive material as the component of protective fabric, the performance of layer by layered reactive fabric could be approached to the level of current NBC protective fabric for HD decomposition rate. Reactive fabric we used in this study is manufactured by electrospinning process of polymer which contains the reactive particle of UiO-66-NH₂, and we performed crystalizing process once again on that polymer fiber web in solvent systems as a second step for manufacturing reactive fabric. Three kinds of polymer materials are used in this process, but PVB was most suitable as an electrospinning fiber polymer considering the shape of product. The density of particle on fiber web and HD decomposition rate is enhanced by secondary crystallization compared with the results which are not processed. The amount of HD penetration by 24hr AVLAG (Aerosol Vapor Liquid Assessment Group) swatch test through the reactive fabrics with secondary crystallization and without crystallization is 24 and 146μg/cm² respectively. Even though all of the reactive fiber webs for this test are combined with repellant surface layer at outer side of swatch, the effects of secondary crystallization of particle for the reactive fiber web are remarkable.

Keywords: CWA, Chemical Warfare Agent, gas decomposition, particle growth, protective clothing, reactive fabric, swatch test

Procedia PDF Downloads 279
11704 Proposition of an Integrative Model for Assessing the Effectiveness of the Performance Management System

Authors: Mariana L. de Araújo, Pedro P. M. Menezes

Abstract:

Research on strategic human resource management (SHRM) has made progress in the last few decades, showing a relationship between policies and practices of human resource management (HRM) and improving organizational results. That's because demonstrating the effectiveness of any HRM or other organizational practice, which means the extent that this can operate as a tool to achieve organizational performance, is a complex and arduous task to execute. Even today, there isn't consensus about "effectiveness," and the tools to measure the effectiveness are disconnected and not convincing. It is not different from the performance management system (PMS) effectiveness. A disproportionate focus on specific criteria adopted and an accumulation of studies that don't relate to the others, which damages the development of the field. Therefore, it aimed to evaluate the effectiveness of the PMS through models, dimensions, criteria, and measures. The objective of this study is to propose a theoretical-integrative model for evaluating PMS based on the literature in the PMS field. So, the PRISMA protocol was applied to carry out a systematic review, resulting in 57 studies. After performing the content analysis, we identified six dimensions: learning, societal impact, reaction, financial results, operational results and transfer, and 22 categories. In this way, a theoretical-integrative model for assessing the effectiveness of PMS was proposed based on the findings of this study, in which it was possible to confirm that the effectiveness construct is somewhat complex when viewing that most of the reviewed studies considered multiple dimensions in their assessment. In addition, we identified that the most immediate and proximal results of PMS are the most adopted by the studies; conversely, the studies adopted less distal outcomes to assess the effectiveness of PMS. Another finding of this research is that the reviewed studies predominantly analyze from the individual or psychological perspective, even when it comes to criteria whose phenomena are at an organizational level. Therefore, this study converges with a trend recently identified when referring to a process of "psychologization" in which GP studies, in general, have demonstrated macro results of the GP system from an individual perspective. Therefore, given the identification of a methodological pattern, the predominant influence of individual and psychological aspects in studies on HRM in administration is highlighted, demonstrated by the reflection on the practically absolute way of measuring the effectiveness of PMS from perceptual and subjective measures. Therefore, based on the recognition of the patterns identified, the model proposed to promote studies on the subject more broadly and profoundly to broaden and deepen the perspective of the field of management's interests so that the evaluation of the effectiveness of PMS can promote inputs on the impact of the PMS system in organizational performance. Finally, the findings encourage reflections on assessing the effectiveness of PMS through the theoretical-integrative model developed so that the field can promote new theoretical and practical perspectives.

Keywords: performance management, strategic human resource management, effectiveness, organizational performance

Procedia PDF Downloads 105
11703 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design

Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad

Abstract:

In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.

Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method

Procedia PDF Downloads 227
11702 Prime Ministers of Malaysia Musicals: Political Performances Trend in Istana Budaya (2007-2012)

Authors: Abdul Walid Ali

Abstract:

The trend of publishing political musicals in Istana Budaya has been popular since 2007 when Malaysia celebrated its 50th anniversary of independence. Istana Budaya has at least one musical of any politician since then. Normally, the politicians are former Prime Ministers and renowned ministers prior to Malaysia's independence in 1957. The first performance in Istana Budaya which represented a politician as a theme was Muzikal Cheng Lock (2007) followed by Muzikal Tun Abdul Razak (2009), Muzikal Tun Mahathir (2010), and Muzikal Tun Mahathir 2 (2011). In 2012, Lawak Ke Der has changed the trend with comic performance and put an end to politician musical. Tun Siti Hasmah the Musical (2012) is not listed in the research because she did not hold any position as a minister. This qualitative research focuses on musicals of political figures as a theme. Some factors of making this type of performance are analyzed based on Istana Budaya’s decisions during that time in Malaysia between 2007 and 2011. This research aims to document these musical themed performances in Istana Budaya for further research in the future. Political performances are listed and analyzed from 2007 to 2012 based on reports and previous research. The declination of audiences in 2012 and a new theme in theatre performances in Istana Budaya are important factors for the downfall of the political theatres' theme.

Keywords: musical, politician, Istana Budaya, theatre

Procedia PDF Downloads 172
11701 Mental Illness on Youtube: Exploring Identity Performance in the Virtual Space

Authors: P. Saee, Baiju Gopal

Abstract:

YouTube has seen a surge in the recent years in the number of creators opening up about their mental illness on the video-sharing platform. In documenting their mental health, YouTubers perform an identity of their mental illness in the online world. Identity performance is a theory under identity research that has been readily applied to illness narratives and internet studies. Furthermore, in India, suffering from mental illnesses is regarded with stigma, making the act of taking mental health from a personal to a public space on YouTube a phenomenon worth exploring. Thus, the aim of this paper is to analyse the mental illness narratives of Indian YouTubers for understanding its performance in the virtual world. For this purpose, thematic narrative analysis on the interviews of four Indian YouTubers was conducted. This data was synthesized with analysis of the videos the YouTubers had uploaded on their channel sharing about their mental illness. The narratives of the participants shed light on two significant presentations that they engage in: (a) the identity of a survivor/fighter and (b) the identity of a silent sufferer. Further, the participants used metaphors to describe their illness, thereby co-constructing a corresponding identity based on their particular metaphors. Lastly, the process of bringing mental illness from back stage to front stage on YouTube involves a shift in the audience, from being rejecting and invalidating in real life to being supportive and encouraging in the virtual space. Limitations and implications for future research were outlined.

Keywords: cyber-psychology, internet, media, mental health, mental illness, technology

Procedia PDF Downloads 162
11700 Study Variation of Blade Angle on the Performance of the Undershot Waterwheel on the Pico Scale

Authors: Warjito, Kevin Geraldo, Budiarso, Muhammad Mizan, Rafi Adhi Pranata, Farhan Rizqi Syahnakri

Abstract:

According to data from 2021, the number of households in Indonesia that have access to on-grid electricity is claimed to have reached 99.28%, which means that around 0.7% of Indonesia's population (1.95 million people) still have no proper access to electricity and 38.1% of it comes from remote areas in Nusa Tenggara Timur. Remote areas are classified as areas with a small population of 30 to 60 families, have limited infrastructure, have scarce access to electricity and clean water, have a relatively weak economy, are behind in access to technological innovation, and earn a living mostly as farmers or fishermen. These people still need electricity but can’t afford the high cost of electricity from national on-grid sources. To overcome this, it is proposed that a hydroelectric power plant driven by a pico-hydro turbine with an undershot water wheel will be a suitable pico-hydro turbine technology because of the design, materials and installation of the turbine that is believed to be easier (i.e., operational and maintenance) and cheaper (i.e., investment and operating costs) than any other type. The comparative study of the angle of the undershot water wheel blades will be discussed comprehensively. This study will look into the best variation of curved blades on an undershot water wheel that produces maximum hydraulic efficiency. In this study, the blade angles were varied by 180 ̊, 160 ̊, and 140 ̊. Two methods of analysis will be used, which are analytical and numerical methods. The analytical method will be based on calculations of the amount of torque and rotational speed of the turbine, which is used to obtain the input and output power of the turbine. Whereas the numerical method will use the ANSYS application to simulate the flow during the collision with the designed turbine blades. It can be concluded, based on the analytical and numerical methods, that the best angle for the blade is 140 ̊, with an efficiency of 43.52% for the analytical method and 37.15% for the numerical method.

Keywords: pico hydro, undershot waterwheel, blade angle, computational fluid dynamics

Procedia PDF Downloads 65
11699 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 499
11698 Stealth Laser Dicing Process Improvement via Shuffled Frog Leaping Algorithm

Authors: Pongchanun Luangpaiboon, Wanwisa Sarasang

Abstract:

In this paper, a performance of shuffled frog leaping algorithm was investigated on the stealth laser dicing process. Effect of problem on the performance of the algorithm was based on the tolerance of meandering data. From the customer specification it could be less than five microns with the target of zero microns. Currently, the meandering levels are unsatisfactory when compared to the customer specification. Firstly, the two-level factorial design was applied to preliminary study the statistically significant effects of five process variables. In this study one influential process variable is integer. From the experimental results, the new operating condition from the algorithm was superior when compared to the current manufacturing condition.

Keywords: stealth laser dicing process, meandering, meta-heuristics, shuffled frog leaping algorithm

Procedia PDF Downloads 327
11697 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 199
11696 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs

Authors: Regina A. Tayong, Reza Barati

Abstract:

A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.

Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation

Procedia PDF Downloads 113
11695 Which Tempo On The Bench Press Maximizes 1 Rep Max Growth?

Authors: Aiden Wang, Joseph Marino

Abstract:

In this study, we investigated the impact of different tempo variations on 1-repetition maximum (1RM) growth, focusing on the eccentric, isometric, and concentric phases of the lift. Through a 6-week longitudinal study involving 20 individuals with 1-5 years of barbell training experience, we compared the effects of various tempo schemes on bench press performance. Our results revealed that subjects who performed a tempo bench press with a 3-second eccentric phase, 3-second isometric phase, and explosive concentric phase on a weekly basis experienced the most significant increases in 1RM. Notably, this tempo also led to improved technique and stability during the exercise. Our findings provide valuable insights for strength trainers and coaches seeking to optimize bench press performance and overcome strength plateaus effectively.

Keywords: exercise science, powerlifting, barbell, interventionist, longitudinal study

Procedia PDF Downloads 7