Search results for: voice activity detection
9515 Electromyographic Analysis of Trunk Muscle Activity of Healthy Individuals While Catching a Ball on Three Different Seating Surfaces
Authors: Hanan H. ALQahtani, Karen Jones
Abstract:
Catching a ball during sitting is a functional exercise commonly used in rehabilitation to enhance trunk muscle activity. To progress this exercise, physiotherapists incorporate a Swiss ball or change seat height. However, no study has assessed the effect of different seating surfaces on trunk muscle activity while catching a ball. Objective: To investigate the effect of catching a ball during sitting on a Swiss ball, a low seat and a high seat on trunk muscle activity. Method: A repeated-measures, counterbalanced design was used. A total of 26 healthy participants (15 female and 11 male) performed three repetitions of catching a ball on each seating surface. Using surface electromyography (sEMG), the activity of the bilateral transversus abdominis/internal oblique (TrA/IO), rectus abdominis (RA), erector spinae (ES) and lumbar multifidus (MF) was recorded. Trunk muscle activity was normalized using maximum voluntary isometric contraction and analyzed. Statistical significance was set at p ≤ .05. Results: No significant differences were observed in the activity of RA, TrA/IO, ES or MF between a low seat and a Swiss ball. However, the activity of the right and left ES on a low seat was significantly greater than on a high seat (p = .017 and p = .017, respectively). Conversely, the activity of the right and left RA on a high seat was significantly greater than on a low seat (p = .007 and p = .004, respectively). Conclusion: This study suggests that replacing a low seat with a Swiss ball while catching a ball is insufficient to increase trunk muscle activity, whereas changing the seat height could induce different trunk muscle activities. However, research conducted on patients is needed before translating these results into clinical settings.Keywords: catching, electromyography, seating, trunk
Procedia PDF Downloads 2909514 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori
Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh
Abstract:
An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)
Procedia PDF Downloads 2669513 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 69512 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 4949511 Development of a Computer Vision System for the Blind and Visually Impaired Person
Authors: Rodrigo C. Belleza, Jr., Roselyn A. Maaño, Karl Patrick E. Camota, Darwin Kim Q. Bulawan
Abstract:
Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may result from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.Keywords: algorithms, blind, computer vision, embedded systems, image analysis
Procedia PDF Downloads 3189510 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents
Authors: M. Ouassaf, S. Belaid
Abstract:
A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR
Procedia PDF Downloads 1569509 Clustering Color Space, Time Interest Points for Moving Objects
Authors: Insaf Bellamine, Hamid Tairi
Abstract:
Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering
Procedia PDF Downloads 3789508 Antioxidant Activity and Chemical Constituents of Leaf Essential Oils of Pseuduvaria Monticola and Pseuduvaria Macrophylla (Annonaceae)
Authors: Hairin Taha, P. Narrima, M. A. Hapipah, A. M. Mustafa
Abstract:
The chemical constituents and antioxidant activity of the leaf essential oils of Pseuduvaria monticola and Pseuduvaria macrophylla from the Annonaceae family were investigated. GC-TOFMS analyses identified 46 compounds from Pseuduvaria monticola and 11 compounds from Pseuduvaria macrophylla. The major constituents in the leaf essential oil of Pseuduvaria monticola were a-cadinol (13.0%), calamenene-cis (6.9%), alfa copaene (4%), and epizonarene (3.8%), while in the leaf essential oil of Pseuduvaria macrophylla were caryophyllene oxide (29.7%) and elimicin (28%). The antioxidant activity of both the essential oils were determined using the 2,2'-diphenyl-1-picrylhydrazyl assay (DPPH). The present study suggests that both essential oils demonstrated good antioxidant activity.Keywords: Pseuduvaria monticola, Pseuduvaria macrophylla, leaf essential oils, GC-MSTOF, antioxidant activity
Procedia PDF Downloads 3819507 Timely Detection and Identification of Abnormalities for Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.Keywords: detection, monitoring, identification, measurement data, multivariate techniques
Procedia PDF Downloads 2369506 Synthesis and Evaluation of Anti-Cancer Activity on Human Breast Cancer Cell Line MFC7 of Some Novel Thiazolidino (3,2-b)-1, 2,4-Triazole-5(6H)-one Derivatives
Authors: Kamta P. Namdeo
Abstract:
Novel thiazolidino-(3,2-b)-1, 2,4-triazole-5(6H)-one derivatives were synthesized, and anticancer activity was studied on human breast cancer cell line MFC7. It showed a significant decrease in cell viability with reference to the standard. The findings suggest that nitro-substituted compound showed best anticancer activity and activity was due to the triazole and thiazolidinone hetero nucleus present in the structure.Keywords: anti-cancer, adriamycine, thiazolidinone, 1, 2, 4-triazole, thiazolidino-triazolone
Procedia PDF Downloads 3759505 Static Balance in the Elderly: Comparison Between Elderly Performing Physical Activity and Fine Motor Coordination Activity
Authors: Andreia Guimaraes Farnese, Mateus Fernandes Reu Urban, Leandro Procopio, Renato Zangaro, Regiane Albertini
Abstract:
Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and activity practitioner group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls.Keywords: balance, barapodometer, coordination, elderly
Procedia PDF Downloads 1689504 A Framework for Automated Nuclear Waste Classification
Authors: Seonaid Hume, Gordon Dobie, Graeme West
Abstract:
Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.Keywords: nuclear decommissioning, radiation detection, object detection, waste classification
Procedia PDF Downloads 2009503 Antioxidant Activity and Correlation of Free Phenolic Content with the DPPH Radical Scavenging and Reducing Power Activity of Date Palm (Phoenix dactylifera L.) from Algeria
Authors: Cheyma Bensaci, Mokhtar Saidi, Zineb Ghiaba
Abstract:
The first objective of this study is to determine the phenolic contents and antioxidant capacities of three different varieties of date palm (Phoenix dactylifera L.) fruit (DPF) from Algeria were using three different solvents. As for the second objective is to find the correlation of phenolic contents with the both DPPH radical scavenging and reducing power activity. These results showed that date had strongly scavenging activity on DPPH .The IC50 value for DPPH radical scavenging activity was 0.15 mg/ml in acetone/H2O extract from Gh. And also, acetone/H2O extract from Gh showed the best AEAC value for reducing power was 8,48 mM. The results also showed that there are a positive correlation, so confined values between 0.153 and 0.972.Keywords: phoenix dactylifera, antioxidant activity, correlation, reducing power
Procedia PDF Downloads 3809502 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 2169501 The Effect of The Speaker's Speaking Style as A Factor of Understanding and Comfort of The Listener
Authors: Made Rahayu Putri Saron, Mochamad Nizar Palefi Ma’ady
Abstract:
Communication skills are important in everyday life, communication can be done verbally in the form of oral or written and nonverbal in the form of expressions or body movements. Good communication should be able to provide information clearly, and there is feedback from the speaker and listener. However, it is often found that the information conveyed is not clear, and there is no feedback from the listeners, so it cannot be ensured that the communication is effective and understandable. The speaker's understanding of the topic is one of the supporting factors for the listener to be able to accept the meaning of the conversation. However, based on the results of the literature review, it found that the influence factors of person speaking style are as follows: (i) environmental conditions; (ii) voice, articulation, and accent; (iii) gender; (iv) personality; (v) speech disorders (Dysarthria); when speaking also have an important influence on speaker’s speaking style. It can be concluded the factors that support understanding and comfort of the listener are dependent on the nature of the speaker (environmental conditions, voice, gender, personality) or also it the speaker have speech disorders.Keywords: listener, public speaking, speaking style, understanding, and comfortable factor
Procedia PDF Downloads 1669500 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)
Procedia PDF Downloads 4359499 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4189498 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 2009497 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1229496 Effect of Drying Condition on the Wheat Germ Stability Using Fluidized-Bed Dryer
Authors: J. M. Hung, J. S. Chan, M. I. Kuo, D. S. Chan, C. P. Lu
Abstract:
Wheat germ is a by-product obtained from wheat milling and it contains highly concentrated nutrients. Due to highly lipase and lipoxygenase activities, wheat germ products can easily turn into rancid flavor and cause a short life. The objective of this study is to control moisture content and retard lipid hydrolysis by fluidized-bed drying. The raw wheat germ of 2 kg was dried with a vertical batch fluidized bed with the following varying conditions, inlet air temperature of 50, 80 and 120°C, inlet air velocity of 3.62 m/s. The experiment was designed to obtain a final product at around 40°C with water activity of 0.3 ± 0.1. Changes in the moisture content, water activity, enzyme activity of dried wheat germ during storage were measured. Results showed the fluidized-bed drying was found to reduce moisture content, water activity and lipase activity of raw wheat germ. After drying wheat germ, moisture content and water activity were between 5.8% to 7.2% and 0.28 to 0.40 respectively during 12 weeks of storage. The variation range of water activity indicated to retard lipid oxidation. All drying treatments displayed inactivation of lipase, except for drying condition of 50°C which showed relative high enzyme activity. During storage, lipase activity increased slowly during the first 6 weeks of storage and reached a plateau for another 6 weeks. As a result, using a fluidized-bed dryer was found to be effective drying technique in improving storage stability of wheat germ.Keywords: wheat germ, fluidized-bed dryer, storage, lipase, stability
Procedia PDF Downloads 2739495 Medical Advances in Diagnosing Neurological and Genetic Disorders
Authors: Simon B. N. Thompson
Abstract:
Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning
Procedia PDF Downloads 3869494 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 1519493 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 419492 Trusting Smart Speakers: Analysing the Different Levels of Trust between Technologies
Authors: Alec Wells, Aminu Bello Usman, Justin McKeown
Abstract:
The growing usage of smart speakers raises many privacy and trust concerns compared to other technologies such as smart phones and computers. In this study, a proxy measure of trust is used to gauge users’ opinions on three different technologies based on an empirical study, and to understand which technology most people are most likely to trust. The collected data were analysed using the Kruskal-Wallis H test to determine the statistical differences between the users’ trust level of the three technologies: smart speaker, computer and smart phone. The findings of the study revealed that despite the wide acceptance, ease of use and reputation of smart speakers, people find it difficult to trust smart speakers with their sensitive information via the Direct Voice Input (DVI) and would prefer to use a keyboard or touchscreen offered by computers and smart phones. Findings from this study can inform future work on users’ trust in technology based on perceived ease of use, reputation, perceived credibility and risk of using technologies via DVI.Keywords: direct voice input, risk, security, technology, trust
Procedia PDF Downloads 1919491 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine
Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin
Abstract:
TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties
Procedia PDF Downloads 5009490 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance
Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na
Abstract:
Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA
Procedia PDF Downloads 3209489 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 3679488 Antioxidative Maillard Reaction Products Derived from Gelatin Hydrolysate of Unicorn Leatherjacket Skin
Authors: Supatra Karnjanapratum, Soottawat Benjakul
Abstract:
Gelatin hydrolysate, especially from marine resource, has been known to possess antioxidative activity. Nevertheless, the activity is still lower in comparison with the commercially available antioxidant. Maillard reactions can be use to increase antioxidative activity of gelatin hydrolysate, in which the numerous amino group could be involved in glycation. In the present study, gelatin hydrolysate (GH) from unicorn leatherjacket skin prepared using glycyl endopeptidase with prior autolysis assisted process was used for preparation of Maillard reaction products (MRPs) under dry condition. The impacts of different factors including, types of saccharides, GH to saccharide ratio, incubation temperatures, relative humidity (RH) and times on antioxidative activity of MRPs were investigated. MRPs prepared using the mixture of GH and galactose showed the highest antioxidative activity as determined by both ABTS radical scavenging activity and ferric reducing antioxidant power during heating (0-48 h) at 60 °C with 65% RH, compared with those derived from other saccharide tested. GH to galactose ratio at 2:1 (w/w) yielded the MRPs with the highest antioxidative activity, followed by the ratios of 1:1 and 1:2, respectively. When the effects of incubation temperatures (50, 60, 70 °C) and RH (55, 65, 75%) were examined, the highest browning index and the absorbance at 280 nm were found at 70 °C, regardless of RH. The pH and free amino group content of MRPs were decreased with the concomitant increase in antioxidative activity as the reaction time increased. Antioxidative activity of MRPs generally increased with increasing temperature and the highest antioxidative activity was found when RH of 55% was used. Based on electrophoresis of MRP, the polymerization along with the formation of high molecular weight material was observed. The optimal condition for preparing antioxidative MRPs was heating the mixture of GH and galactose (2:1) at 70 °C and 55% RH for 36 h. Therefore, antioxidative activity of GH was improved by Maillard reaction and the resulting MRP could be used as natural antioxidant in food products.Keywords: antioxidative activity, gelatin hydrolysate, maillard reaction, unicorn leatherjacket
Procedia PDF Downloads 2489487 Enrichment of the Antioxidant Activity of Decaffeinated Assam Green Tea by Herbal Plant: A Synergistic Effect
Authors: Abhijit Das, Runu Chakraborty
Abstract:
Tea is the most widely consumed beverage aside from water; it is grown in about 30 countries with a per capita worldwide consumption of approximately 0.12 liter per year. Green tea is of growing importance with its antioxidant contents associated with its health benefits. The various extraction methods can influence the polyphenol concentrations of green tea. The purpose of the study was to quantify the polyphenols, flavonoid and antioxidant activity of both caffeinated and decaffeinated form of tea manufactured commercially in Assam, North Eastern part of India. The results display that phenolic/flavonoid content well correlated with antioxidant activity which was performed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric reducing ability of plasma) assay. After decaffeination there is a decrease in the polyphenols concentration which also affects the antioxidant activity of green tea. For the enrichment of antioxidant activity of decaffeinated tea a herbal plant extract is used which shows a synergistic effect between green tea and herbal plant phenolic compounds.Keywords: antioxidant activity, decaffeination, green tea, flavonoid content, phenolic content, plant extract
Procedia PDF Downloads 3479486 Effects of COVID-19 Confinement on Physical Activity and Screen Time in Spanish Children
Authors: Maria Medrano, Cristina Cadenas-Sanchez, Maddi Oses, Lide Arenaza, Maria Amasene, Idoia Labayen
Abstract:
The COVID-19 outbreak began in December 2019 in China and was rapidly expanded globally. Emergency measures, such as social distance or home confinement, were adopted by many country governments to prevent its transmission. In Spain, one of the most affected countries, the schools were closed, and one of the most severe mandatory home confinement was established for children from 14th March to 26th April 2020. The hypothesis of this study was that the measures adopted during the COVID-19 pandemic may have negatively affected physical activity and screen time of children. However, few studies have examined the effects of COVID-19 pandemic on lifestyle behaviours. Thus, the aim of the current work was to analyse the effects of the COVID-19 confinement on physical activity and screen time in Spanish children. For the current purpose, a total of 113 children and adolescents (12.0 ± 2.6 yr., 51.3% boys, 24.0% with overweight/obesity according to the World Obesity Federation) of the MUGI project were included in the analyses. Physical activity and screen time were longitudinally assessed by 'The Youth Activity Profile' questionnaire (YAP). Differences in physical activity and screen time before and during the confinement were assessed by dependent t-test. Before the confinement, 60% did not meet physical activity recommendations ( ≥ 60/min/day of moderate to vigorous physical activity), and 61% used screens ≥ 2 h/day. During the COVID-19 confinement, children decreased their physical activity levels (-91 ± 55 min/day, p < 0.001) and increased screen time ( ± 2.6 h/day, p < 0.001). The prevalence of children that worsened physical activity and screen time during the COVID-19 confinement were 95.2% and 69.8%, respectively. The current study evidence the negative effects of the COVID-19 confinement on physical activity and screen time in Spanish children. These findings should be taken into account to develop and implement future public health strategies for preserving children's lifestyle behaviours and health during and after the COVID-19 pandemic.Keywords: COVID-19, lifestyle changes, paediatric, physical activity, screen time
Procedia PDF Downloads 129