Search results for: validation studies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12534

Search results for: validation studies

12114 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 29
12113 A Survey of Discrete Facility Location Problems

Authors: Z. Ulukan, E. Demircioğlu,

Abstract:

Facility location is a complex real-world problem which needs a strategic management decision. This paper provides a general review on studies, efforts and developments in Facility Location Problems which are classical optimization problems having a wide-spread applications in various areas such as transportation, distribution, production, supply chain decisions and telecommunication. Our goal is not to review all variants of different studies in FLPs or to describe very detailed computational techniques and solution approaches, but rather to provide a broad overview of major location problems that have been studied, indicating how they are formulated and what are proposed by researchers to tackle the problem. A brief, elucidative table based on a grouping according to “General Problem Type” and “Methods Proposed” used in the studies is also presented at the end of the work.

Keywords: discrete location problems, exact methods, heuristic algorithms, single source capacitated facility location problems

Procedia PDF Downloads 474
12112 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 122
12111 How to Improve Immersiveness in Virtual Reality Through Advanced Sense of Presence: A Literature Review

Authors: Bochen Jia, Francesco Zhu

Abstract:

People are constantly surprised at how real and immersive virtual reality (VR) is, even though the technology is still rudimentary, and we are only scratching the surface of its possibilities. Therefore, this literature review built a body of knowledge of existing technology that can be used to improve immersiveness in VR. For this paper, "Sense of Presence (SoP)" was chosen as the terminology to describe immersiveness in VR. Eight studies that tested VR technologies were identified. Many other studies were included to back up the incentives behind these technologies. VR technologies include vibration, airflow, thermal components, EMS, and quadcopters. Study results from selected papers were analyzed, compared, and generally positive. Seven studies had positive results, and only one had negative results. Vibration is the most effective option to improve SoP.

Keywords: virtual reality, sense of presence, self-awareness, literature review

Procedia PDF Downloads 131
12110 Pre-service Social Studies Teachers Readiness in Promoting 21st Century Learning: Evidence from a Ghanaian University

Authors: Joseph Bentil

Abstract:

Successful acquisition of 21st-century competencies needed by students to navigate through the ever-changing world requires that they are taught and molded by 21st-century teachers with the needed professional competencies. Accordingly, this study sought to understand the readiness and how efficacious pre-service Social Studies specialism students are towards the implementation of the Common Core Social Studies Curriculum in the Junior High Schools in Ghana. Theory of Experience served as the theoretical lens for the study. Working within the pragmatist paradigm, this study utilized the cross-sectional descriptive survey design with a mixed method approach where, through census sampling technique, all the 120 pre-service Social Studies specialism students were sampled for the study. A structured questionnaire and an interview guide were the instruments employed for data collection. Descriptive statistics (mean, standard deviation and inferential statistics like independent samples t-test, one-way between groups ANOVA and Pearson Product Moment Correlation) were employed in the analysis the research questions and hypotheses with the aid of version 28 of SPSS while the qualitative data was analyzed using thematic analysis. The findings discovered that pre-service Social Studies teachers were highly ready and efficacious towards implementing the Common Core Junior High School Social Studies curriculum. However, male pre-service teachers were highly efficacious and ready than their female counterparts. Besides, it was disclosed that pre-service teachers within the 31-40 years age bracket were found to be highly efficacious and ready than their colleagues with 20-30 and below 20 years age bracket respectively. The findings further revealed that there was a moderate and statistically significant positive relationship between pre-service teachers’ readiness and efficacy in implementing the Common Core Social Studies curriculum. Therefore, the study recommended that interventional programmes aimed at raising the readiness and efficacy beliefs of pre-service teachers should be targeted towards female preservice teachers and those below 20 years age bracket for successful implementation and realization of the competencies enshrined in the common core social Studies curriculum.

Keywords: pre-service, readiness, social studies, teachers

Procedia PDF Downloads 85
12109 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 362
12108 Coffee Consumption and Glucose Metabolism: a Systematic Review of Clinical Trials

Authors: Caio E. G. Reis, Jose G. Dórea, Teresa H. M. da Costa

Abstract:

Objective: Epidemiological data shows an inverse association of coffee consumption with risk of type 2 diabetes mellitus. However, the clinical effects of coffee consumption on the glucose metabolism biomarkers remain controversial. Thus, this paper reviews clinical trials that evaluated the effects of coffee consumption on glucose metabolism. Research Design and Methods: We identified studies published until December 2014 by searching electronic databases and reference lists. We included randomized clinical trials which the intervention group received caffeinated and/or decaffeinated coffee and the control group received water or placebo treatments and measured biomarkers of glucose metabolism. The Jadad Score was applied to evaluate the quality of the studies whereas studies that scored ≥ 3 points were considered for the analyses. Results: Seven clinical trials (total of 237 subjects) were analyzed involving adult healthy, overweight and diabetic subjects. The studies were divided in short-term (1 to 3h) and long-term (2 to 16 weeks) duration. The results for short-term studies showed that caffeinated coffee consumption may increase the area under the curve for glucose response, while for long-term studies caffeinated coffee may improve the glycemic metabolism by reducing the glucose curve and increasing insulin response. These results seem to show that the benefits of coffee consumption occur in the long-term as has been shown in the reduction of type 2 diabetes mellitus risk in epidemiological studies. Nevertheless, until the relationship between long-term coffee consumption and type 2 diabetes mellitus is better understood and any mechanism involved identified, it is premature to make claims about coffee preventing type 2 diabetes mellitus. Conclusion: The findings suggest that caffeinated coffee may impairs glucose metabolism in short-term but in the long-term the studies indicate reduction of type 2 diabetes mellitus risk. More clinical trials with comparable methodology are needed to unravel this paradox.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 467
12107 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 389
12106 Condensation of Moist Air in Heat Exchanger Using CFD

Authors: Jan Barak, Karel Frana, Joerg Stiller

Abstract:

This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and post processing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work.

Keywords: condensation, exchanger, experiment, validation

Procedia PDF Downloads 403
12105 Fibromyalgia and Personality: A Review of the Different Personality Types Identified

Authors: Lize Tibiriçá, Ronnie Lee, Samantha Behbahani

Abstract:

Fibromyalgia (FM) is a musculoskeletal disorder affecting men and women of different ages and cultures. The cause of this disorder is unknown; however, studies suggest an etiology that involves biological and psychosocial factors. Few studies have shown that a personality type such as neuroticism is associated with chronic pain conditions. Past research has explored whether patients with FM present with a specific personality trait. However, studies have used different methods (i.e. Minnesota Multiphasic Personality Inventory (MMPI), Sociotropy and Autonomy Scale (SAS) and Dysfunctional Attitude Scale (DAS), Tridimensional Personality Questionnaire or Temperament and Character Inventory (TCI), Karolinska scale of personality, Big Five Inventory or NEO Personality Inventory) to explore the connection between FM and a personality type. They have identified personality types that present similar characteristics but vary in the name (i.e. high harm avoidance and low novelty seeking, psychasthenia/muscular tension/somatic anxiety, neuroticism). Although Zuckerman-Kuhlman Personality Questionnaire and the Big Five Inventory differ in terms of content and structure, both of them identify neuroticism as the personality type of FM patients, and the former also identifies these patients as having a low sociability personality trait. Previous research also shows a trend of sociotropic personality style with FM patients that also suffer from Major Depressive Disorder. Participants in these studies were, for the most part, adult female and researchers have recognized that as a limitation and whether their findings can be generalized to men and younger patients with FM. Furthermore, most studies reviewed were conducted in Europe (i.e. Spain) and had a cross-sectional design. Future research should replicate past studies in different countries and consider conducting a longitudinal study. Although it is suspected that FM course is modulated by FM patients’ personality, it is not known whether individuals with similar personalities will develop FM. This review sought to explain the differences and similarities between the personality types identified. Limitations in the studies reviewed were addressed, and considerations for future research and treatment were discussed.

Keywords: chronic pain, fibromyalgia, neuroticism, personality type

Procedia PDF Downloads 324
12104 Comparison of Two Home Sleep Monitors Designed for Self-Use

Authors: Emily Wood, James K. Westphal, Itamar Lerner

Abstract:

Background: Polysomnography (PSG) recordings are regularly used in research and clinical settings to study sleep and sleep-related disorders. Typical PSG studies are conducted in professional laboratories and performed by qualified researchers. However, the number of sleep labs worldwide is disproportionate to the increasing number of individuals with sleep disorders like sleep apnea and insomnia. Consequently, there is a growing need to supply cheaper yet reliable means to measure sleep, preferably autonomously by subjects in their own home. Over the last decade, a variety of devices for self-monitoring of sleep became available in the market; however, very few have been directly validated against PSG to demonstrate their ability to perform reliable automatic sleep scoring. Two popular mobile EEG-based systems that have published validation results, the DREEM 3 headband and the Z-Machine, have never been directly compared one to the other by independent researchers. The current study aimed to compare the performance of DREEM 3 and the Z-Machine to help investigators and clinicians decide which of these devices may be more suitable for their studies. Methods: 26 participants have completed the study for credit or monetary compensation. Exclusion criteria included any history of sleep, neurological or psychiatric disorders. Eligible participants arrived at the lab in the afternoon and received the two devices. They then spent two consecutive nights monitoring their sleep at home. Participants were also asked to keep a sleep log, indicating the time they fell asleep, woke up, and the number of awakenings occurring during the night. Data from both devices, including detailed sleep hypnograms in 30-second epochs (differentiating Wake, combined N1/N2, N3; and Rapid Eye Movement sleep), were extracted and aligned upon retrieval. For analysis, the number of awakenings each night was defined as four or more consecutive wake epochs between sleep onset and termination. Total sleep time (TST) and the number of awakenings were compared to subjects’ sleep logs to measure consistency with the subjective reports. In addition, the sleep scores from each device were compared epoch-by-epoch to calculate the agreement between the two devices using Cohen’s Kappa. All analysis was performed using Matlab 2021b and SPSS 27. Results/Conclusion: Subjects consistently reported longer times spent asleep than the time reported by each device (M= 448 minutes for sleep logs compared to M= 406 and M= 345 minutes for the DREEM and Z-Machine, respectively; both ps<0.05). Linear correlations between the sleep log and each device were higher for the DREEM than the Z-Machine for both TST and the number of awakenings, and, likewise, the mean absolute bias between the sleep logs and each device was higher for the Z-Machine for both TST (p<0.001) and awakenings (p<0.04). There was some indication that these effects were stronger for the second night compared to the first night. Epoch-by-epoch comparisons showed that the main discrepancies between the devices were for detecting N2 and REM sleep, while N3 had a high agreement. Overall, the DREEM headband seems superior for reliably scoring sleep at home.

Keywords: DREEM, EEG, seep monitoring, Z-machine

Procedia PDF Downloads 107
12103 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 20
12102 Studies on Lucrative Design of a Waste Heat Recovery System for Air Conditioners

Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith

Abstract:

In this paper, studies have been carried out for an in-house design of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Theoretical studies have been carried to optimizing the flow rate for getting maximum output with a minimum size of the heater. Critical diameter, wall thickness, and total length of the water pipeline have been estimated from the conventional heat transfer model. Several combinations of pipeline shapes viz., spiral, coil, zigzag wound through the radiator has been attempted and accordingly shape has been optimized using heat transfer analyses. The initial condition is declared based on the water flow rate and temperature. Through the parametric analytical studies we have conjectured that water flow rate, temperature difference between incoming water and radiator skin temperature, pipe material, radiator material, geometry of the water pipe viz., length, diameter, and wall thickness are having bearing on the lucrative design of a waste heat recovery system for air conditioners. Results generated through the numerical studies have been validated using an in-house waste heat recovery system for air conditioners.

Keywords: air conditioner design, energy conversion system, radiator design for energy recovery systems, waste heat recovery system

Procedia PDF Downloads 357
12101 An Empirical Study for the Data-Driven Digital Transformation of the Indian Telecommunication Service Providers

Authors: S. Jigna, K. Nanda Kumar, T. Anna

Abstract:

Being a major contributor to the Indian economy and a critical facilitator for the country’s digital India vision, the Indian telecommunications industry is also a major source of employment for the country. Since the last few years, the Indian telecommunication service providers (TSPs), however, are facing business challenges related to increasing competition, losses, debts, and decreasing revenue. The strategic use of digital technologies for a successful digital transformation has the potential to equip organizations to meet these business challenges. Despite an increased focus on digital transformation, the telecom service providers globally, including Indian TSPs, have seen limited success so far. The purpose of this research was thus to identify the factors that are critical for the digital transformation and to what extent they influence the successful digital transformation of the Indian TSPs. The literature review of more than 300 digital transformation-related articles, mostly from 2013-2019, demonstrated a lack of an empirical model consisting of factors for the successful digital transformation of the TSPs. This study theorizes a research framework grounded in multiple theories, and a research model consisting of 7 constructs that may be influencing business success during the digital transformation of the organization was proposed. The questionnaire survey of senior managers in the Indian telecommunications industry was seeking to validate the research model. Based on 294 survey responses, the validation of the Structural equation model using the statistical tool ADANCO 2.1.1 was found to be robust. Results indicate that Digital Capabilities, Digital Strategy, and Corporate Level Data Strategy in that order has a strong influence on the successful Business Performance, followed by IT Function Transformation, Digital Innovation, and Transformation Management respectively. Even though Digital Organization did not have a direct significance on Business Performance outcomes, it had a strong influence on IT Function Transformation, thus affecting the Business Performance outcomes indirectly. Amongst numerous practical and theoretical contributions of the study, the main contribution for the Indian TSPs is a validated reference for prioritizing the transformation initiatives in their strategic roadmap. Also, the main contribution to the theory is the possibility to use the research framework artifact of the present research for quantitative validation in different industries and geographies.

Keywords: corporate level data strategy, digital capabilities, digital innovation, digital strategy

Procedia PDF Downloads 130
12100 Review and Suggestions of the Similarity between Employee and Its Workplace

Authors: Gi Ryung Song, Kyoung Seok Kim

Abstract:

This study reviewed the literature that focused on similarity of various characteristics such as values, personality, or demographics between employee and other elements in its organization for example employee with leader, job, and organization. We divided a body of this study into two parts and organized and demonstrated recent studies in first part. Three issues appeared in this part, which are statistical ways of measuring similarity, supervisor-subordinate similarity, and person-organization fit with person-job fit. In the latter part, based on the three issues of recent studies, we suggested three propositions about points that the recent studies missed or the studies did not orient. First proposition argued about the direction of similarity, which could also be interpreted as there is causal relation between employee and its workplace environments. Second, we suggested a consideration of eliminating common variance buried in one’s characteristics or its profiles. Third proposition was about the similarity of extra role behavior between individual and organization, and we treated this organization’s level of extra role behavior as a kind of its culture. In doing so, similarity of individual’s extra role behavior and organization’s has the meaning that individual’s congruence against their organization culture.

Keywords: similarity, person-organization fit, supervisor-subordinate similarity, literature review

Procedia PDF Downloads 285
12099 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
12098 Tracing the Concept of Equivalence in Translation Theories from the Linguistics Oriented Era to Present

Authors: Fatma Ülkü Kavruk

Abstract:

The comparison of the old and new approaches reveals that the concept of equivalence has been interpreted and categorized in different ways by different scholars throughout the history. The aim of this study is to trace the concept of equivalence in translation theories from the linguistics-oriented era to present, referring to various translation scholars and to provide a critical evaluation of the nature and applicability of the concept of equivalence in today’s world of translation studies. Within the study, various interpretations of equivalence proposed by international scholars in translation studies are to be presented. In order to find out the reflections of these scholars’ approaches to the Turkish scholars’ research, the interpretations of equivalence by various Turkish scholars are to be examined. At the end of the paper, the applicability of the concept of equivalence in real life is to be discussed in light of these approaches.

Keywords: translation studies, equivalence, translation theories, evaluation

Procedia PDF Downloads 495
12097 PYTHEIA: A Scale for Assessing Rehabilitation and Assistive Robotics

Authors: Yiannis Koumpouros, Effie Papageorgiou, Alexandra Karavasili, Foteini Koureta

Abstract:

The objective of the present study was to develop a scale called PYTHEIA. The PYTHEIA is a self-reported measure for the assessment of rehabilitation and assistive robotics and other assistive technology devices. The development of PYTHEIA faced the absence of a valid instrument that can be used to evaluate the assistive robotic devices both as a whole, as well as any of their individual components or functionalities implemented. According to the results presented, PYTHEIA is a valid and reliable scale able to be applied to different target groups for the subjective evaluation of various assistive technology devices.

Keywords: rehabilitation, assistive technology, assistive robots, rehabilitation robots, scale, psychometric test, assessment, validation, user satisfaction

Procedia PDF Downloads 312
12096 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 320
12095 Board Structure, Composition, and Firm Performance: A Theoretical and Empirical Review

Authors: Suleiman Ahmed Badayi

Abstract:

Corporate governance literature is very wide and involves several empirical studies conducted on the relationship between board structure, composition and firm performance. The separation of ownership and control in organizations were aimed at reducing the losses suffered by the investors in the event of financial scandals. This paper reviewed the theoretical and empirical literature on the relationship between board composition and its impact on firm performance. The findings from the studies provide different results while some are of the view that board structure is related to firm performance, many empirical studies indicates no relationship. However, others found a U-shape relationship between firm performance and board structure. Therefore, this study argued that board structure is not much significant to determine the financial performance of a firm.

Keywords: board structure, composition, firm performance, corporate governance

Procedia PDF Downloads 569
12094 Validation of the Formula for Air Attenuation Coefficient for Acoustic Scale Models

Authors: Katarzyna Baruch, Agata Szelag, Aleksandra Majchrzak, Tadeusz Kamisinski

Abstract:

Methodology of measurement of sound absorption coefficient in scaled models is based on the ISO 354 standard. The measurement is realised indirectly - the coefficient is calculated from the reverberation time of an empty chamber as well as a chamber with an inserted sample. It is crucial to maintain the atmospheric conditions stable during both measurements. Possible differences may be amended basing on the formulas for atmospheric attenuation coefficient α given in ISO 9613-1. Model studies require scaling particular factors in compliance with specified characteristic numbers. For absorption coefficient measurement, these are for example: frequency range or the value of attenuation coefficient m. Thanks to the possibilities of modern electroacoustic transducers, it is no longer a problem to scale the frequencies which have to be proportionally higher. However, it may be problematic to reduce values of the attenuation coefficient. It is practically obtained by drying the air down to a defined relative humidity. Despite the change of frequency range and relative humidity of the air, ISO 9613-1 standard still allows the calculation of the amendment for little differences of the atmospheric conditions in the chamber during measurements. The paper discusses a number of theoretical analyses and experimental measurements performed in order to obtain consistency between the values of attenuation coefficient calculated from the formulas given in the standard and by measurement. The authors performed measurements of reverberation time in a chamber made in a 1/8 scale in a corresponding frequency range, i.e. 800 Hz - 40 kHz and in different values of the relative air humidity (40% 5%). Based on the measurements, empirical values of attenuation coefficient were calculated and compared with theoretical ones. In general, the values correspond with each other, but for high frequencies and low values of relative air humidity the differences are significant. Those discrepancies may directly influence the values of measured sound absorption coefficient and cause errors. Therefore, the authors made an effort to determine an amendment minimizing described inaccuracy.

Keywords: air absorption correction, attenuation coefficient, dimensional analysis, model study, scaled modelling

Procedia PDF Downloads 421
12093 The Impact of School Education, Islamic Studies in Specific on the Student Identity Development

Authors: Lina Khashogji

Abstract:

This study highlights on analysing the educational experience of female Saudi Arabian students in private schools in Islamic studies subjects. Exploring how school environment, teachers’ authority and textbooks could influence the level of individuality. Considering the complex interaction between religious is social and political power in Saudi Arabia. The study draws on phenomenology as a guiding theoretical framework using multi methods. It includes a vertical/horizontal individualism measurement tool “survey” used on 120 students of two age groups (9-12) and (13-15). Semi-structured interviews with eight school teachers, observational notes in the classroom, and textbook analysis. The study links the interactions between the student mind, the teacher, the classroom and the curriculum.

Keywords: education, individualism, identity development, Islamic studies, Saudi Arabia

Procedia PDF Downloads 348
12092 Design, Development and Evaluation of a Portable Recording System to Capture Dynamic Presentations using the Teacher´s Tablet PC

Authors: Enrique Barra, Abel Carril, Aldo Gordillo, Joaquin Salvachua, Juan Quemada

Abstract:

Computers and multimedia equipment have improved a lot in the last years. They have reduced costs and size while at the same time has increased their capabilities. These improvements allowed us to design and implement a portable recording system that also integrates the teacher´s tablet PC to capture what he/she writes on the slides and all that happens in it. This paper explains this system in detail and the validation of the recordings that we did after using it to record all the lectures of a course in our university called “Communications Software”. The results show that pupils used the recordings for different purposes and consider them useful for a variety of things, especially after missing a lecture.

Keywords: recording system, capture dynamic presentations, lecture recording

Procedia PDF Downloads 370
12091 Cell-Based and Exosome Treatments for Hair Restoration

Authors: Armin Khaghani Boroujeni, Leila Dehghani, Parham Talebi Boroujeni, Sahar Rostamian, Ali Asilian

Abstract:

Background: Hair loss is a common complaint observed in both genders. Androgenetic alopecia is known pattern for hair loss. To assess new regenerative strategies (PRP, A-SC-BT, conditioned media, exosome-based treatments) compared to conventional therapies for hair loss or hair regeneration, an updated review was undertaken. To address this issue, we carried out this systematic review to comprehensively evaluate the efficacy of cell-based therapies on hair loss. Methods: The available online databases, including ISI Web of Science, Scopus, and PubMed, were searched systematically up to February 2022. The quality assessment of included studies was done using the Cochrane Collaboration's tool. Results: As a result, a total of 90 studies involving 2345 participants were included in the present study. The enrolled studies were conducted between 2010 and 2022. The subjects’ mean age ranged from 19 to 55.11 years old. Approaches using platelet rich plasma (PRP) provide a beneficial impact on hair regrowth. However, other cell-based therapies, including stem cell transplant, stem cell-derived conditioned medium, and stem cell-derived exosomes, revealed conflicting evidence. Conclusion: However, cell-based therapies for hair loss are still in their infancy, and more robust clinical studies are needed to better evaluate their mechanisms of action, efficacy, safety, benefits, and limitations. In this review, we provide the resources to the latest clinical studies and a more detailed description of the latest clinical studies concerning cell-based therapies in hair loss.

Keywords: cell-based therapy, exosome, hair restoration, systematic review

Procedia PDF Downloads 76
12090 Systematic Review of Functional Analysis in Brazil

Authors: Felipe Magalhaes Lemos

Abstract:

Functional behavior analysis is a procedure that has been studied for several decades by behavior analysts. In Brazil, we still have few studies in the area, so it was decided to carry out a systematic review of the articles published in the area by Brazilians. A search was done on the following scientific article registration sites: PsycINFO, ERIC, ISI Web of Science, Virtual Health Library. The research includes (a) peer-reviewed studies that (b) have been carried out in Brazil containing (c) functional assessment as a pre-treatment through (d) experimental procedures, direct or indirect observation and measurement of behavior problems (e) demonstrating a relationship between environmental events and behavior. During the review, 234 papers were found; however, only 9 were included in the final analysis. Of the 9 articles extracted, only 2 presented functional analysis procedures with manipulation of environmental variables, while the other 7 presented different procedures for a descriptive behavior assessment. Only the two studies using "functional analysis" used graphs to demonstrate the prevalent function of the behavior. Other studies described procedures and did not make clear the causal relationship between environment and behavior. There is still confusion in Brazil regarding the terms "functional analysis", "descriptive assessment" and "contingency analysis," which are generally treated in the same way. This study shows that few articles are published with a focus on functional analysis in Brazil.

Keywords: behavior, contingency, descriptive assessment, functional analysis

Procedia PDF Downloads 146
12089 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 229
12088 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 87
12087 Characterization of Plunging Water Jets in Crossflows: Experimental and Numerical Studies

Authors: Mina Esmi Jahromi, Mehdi Khiadani

Abstract:

Plunging water jets discharging into turbulent crossflows are capable of providing efficient air water interfacial area, which is desirable for the process of mass transfer. Although several studies have been dedicated to the air entrainment by water jets impinging into stagnant water, very few studies have focused on the water jets in crossflows. This study investigates development of the two-phase flow as a result of the jet impingements into crossflows by means of image processing technique and CFD simulations. Investigations are also conducted on the oxygen transfer and a correlation is established between the aeration properties and the oxygenation capacity of water jets in crossflows. This study helps the optimal design and the effective operation of the industrial and the environmental equipment incorporating water jets in crossflows.

Keywords: air entrainment, CFD simulation, image processing, jet in crossflow, oxygen transfer, two-phase flow

Procedia PDF Downloads 238
12086 Development of Disability Studies in Post-Transformational Central and East European Countries from the 80s until Present

Authors: Klaudia Muca

Abstract:

Disability studies as an international movement are still developing, especially in the Central and East European young democratic countries. It is crucial to recognize in what manner this development might lead to create a sustainable social environment. Thanks to disability studies the process of introducing disability studies and its main ideas might become as effective as in the 90s in the USA or other Western countries. In the Central and East Europe lack of activism in favor of the disabled in the early stages of democratic transition (i.e. the 80s and 90s) caused misrepresentation of the disabled and their experience in present political and social sphere of life. People with disabilities were made to hold a minor position in society due to political changes that introduced in fact non-equal democracy. The results of this study indicate that activism in favor of people with disabilities and works of art created by the disabled are tools that influence present disability politics. That suggests that young European democracies need to modify their current political path in order to establish more equal social policies.

Keywords: democratic transformation, disability as minority, misrepresentation of experience, non-equal democracy, sustainability

Procedia PDF Downloads 190
12085 The Use of Phototherapy with Unusual Case Studies in Counselling

Authors: Briar Schulz

Abstract:

The use of phototherapy within the counselling room offers significant advantages in extending far beyond typical "talk therapy" avenues. The benefits of using this approach are numerous and include: efficiency in recalling pertinent information in addition to utilizing a visual lens that often captures opulent detail that can be eluded in traditional dialogue. The goal of this presentation is to provide conference attendees with an opportunity to understand the therapeutic benefits and creative possibilities of incorporating photography into the clinical counselling process. This includes practical strategies for using in specific case studies, where studies of phototherapy have previously been limited. Ethical considerations and limitations to the process will also be addressed. Attendees will observe the benefits of using phototherapy with six longitudinal case studies including: a 30 year old female, with anorexia nervosa; a 22 year old self-harming individual with obsessive compulsive disorder; a 24 year old client with developmental delays, and bipolar disorder; a 14 year old client with Autism; and two clients with rare medical conditions struggling with depression and anxiety, one 21 years old and the other 16 years old. Aspects of each case will be linked to various theoretical modalities to highlight the efficiency and benefits of phototherapy in drawing important clinical conclusions. Furthermore, the use of phototherapy within these clinical areas remains a relatively unexplored area of the literature, and possibilities for future research will be highlighted. Finally, conference attendees will have the opportunity to try various phototherapy strategies within the interactive portion of this presentation. .

Keywords: Atypical, Case studies, Phototherapy, Photovoice

Procedia PDF Downloads 149