Search results for: supply chain optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6671

Search results for: supply chain optimization

6251 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia

Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei

Abstract:

Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.

Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration

Procedia PDF Downloads 191
6250 Adoption of Electronic Logistics Management Information System for Life-Saving Maternal, Neonatal and Child Health Medicines: A Bangladesh Perspective

Authors: Mohammad Julhas Sujan, Md. Ferdous Alam

Abstract:

Maternal, neonatal, and child health (MNCH) holds one of the prime focuses in Bangladesh’s national healthcare system. To save the lives of mothers and children, knowing the stock of MNCH medicines in different healthcare facilities and when to replenish them are essential. A robust information system not only facilitates efficient management of the essential MNCH medicines but also helps effective allocation of scarce resources. In Bangladesh, Supply chain management of the 25-essential life-saving medicines are currently tracked and monitored via an electronic logistics management information system (eLMIS). Our aim was to conduct a cross-sectional study with a year (2020) worth of data from 24 districts of Bangladesh to evaluate how eLMIS is helping the Government and other stakeholders in efficient supply chain management. Data were collected from 4711 healthcare facilities ranging from primary to secondary levels within a district. About 90% (4143) are community clinics which are considered primary health care facilities in Bangladesh. After eLMIS implementation, the average reporting rate across the districts has been increased (> 97%). The month of stock (MOS) of zinc is an average 6 months compared to Inj. Magnesium Sulphate which will take 2.5 years to consume according to the current average monthly consumption (AMC). Due to first approaching expiry, Tab. Misoprostol, 7.1% Chlorhexidine and Inj. Oxytocin may become unusable. Moreover, Inj. Oxytocin is temperature sensitive and may reduce its efficacy if it is stocked for a longer period. In contrast, Zinc should be sufficiently stocked to prevent sporadic stockouts. To understand how data are collected, transmitted, processed, and aggregated for MNCH medicines in a faster and timely manner, an electronic logistics management information system (eLMIS) is necessary. We recommend the use of such a system in developing countries like Bangladesh for efficient supply chain management of essential MNCH medicines.

Keywords: adaption, eLMIS, MNCH, live-saving medicines

Procedia PDF Downloads 162
6249 Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer

Authors: Choy Sonny Yip Hong

Abstract:

This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products.

Keywords: additive manufacturing, 3D printing, eggshell PLA polymer, design innovation, carbon footprint reduction, supply chain optimization, collaborative potential

Procedia PDF Downloads 74
6248 The Relationships between Sustainable Supply Chain Management Practices, Digital Transformation, and Enterprise Performance in Vietnam

Authors: Thi Phuong Pham

Abstract:

This paper explores the intricate relationships between Sustainable Supply Chain Management (SSCM) practices, digital transformation (DT), and enterprise performance within the context of Vietnam. Over the past two decades, there has been a paradigm shift in supply chain management, with sustainability gaining prominence due to increasing concerns about climate change, labor practices, and the environmental impact of business operations. In the ever-evolving realm of global business, sustainability and digital transformation (DT) intersecting dynamics have become pivotal catalysts for organizational success. This research investigates how integrating SSCM with DT can enhance enterprise performance, a subject of significant relevance as Vietnam undergoes rapid economic growth and digital transformation. The primary objectives of this research are twofold: (1) to examine the effects of SSCM practices on enterprise performance in three critical aspects: economic, environmental, and social performance in Vietnam and (2) to explore the mediating role of DT in this relationship. By analyzing these dynamics, the study aims to provide valuable insights for policymakers and the academic community regarding the potential benefits of aligning SSCM principles with digital technologies. To achieve these objectives, the research employs a robust mixed-method approach. The research begins with a comprehensive literature review to establish a theoretical framework that underpins the empirical analysis. Data collection was conducted through a structured survey targeting Vietnamese enterprises, with the survey instrument designed to measure SSCM practices, DT, and enterprise performance using a five-point Likert scale. The reliability and validity of the survey were ensured by pre-testing with industry practitioners and refining the questionnaire based on their feedback. For data analysis, structural equation modeling (SEM) was employed to quantify the direct effects of SSCM on enterprise performance, while mediation analysis using the PROCESS Macro 4.0 in SPSS was conducted to assess the mediating role of DT. The findings reveal that SSCM practices positively influence enterprise performance by enhancing operational efficiency, reducing costs, and improving sustainability metrics. Furthermore, DT acts as a significant mediator, amplifying the positive impacts of SSCM practices through improved data management, enhanced communication, and more agile supply chain processes. These results underscore the critical role of DT in maximizing the benefits of SSCM practices, particularly in a developing economy like Vietnam. This research contributes to the existing body of knowledge by highlighting the synergistic effects of SSCM and DT on enterprise performance. It offers practical implications for businesses that enhance their sustainability and digital capabilities, providing a roadmap for integrating these two pivotal aspects to achieve competitive advantage. The study's insights can also inform governmental policies designed to foster sustainable economic growth and digital innovation in Vietnam.

Keywords: sustainable supply chain management, digital transformation, enterprise performance, Vietnam

Procedia PDF Downloads 25
6247 Combating Supplier-Copycatting With Intellectual Property Agreements

Authors: Hubert Pun

Abstract:

When a manufacturer outsources the production of a product, it distributes its intellectual property (IP) into a supply chain that it may not be able to fully control. An IP agreement between a manufacturer and its suppliers is a popular solution to address the challenge of supplier-copycatting. The goal of this paper is to examine the impact of copycatting, from both the supplier and third-party firms, and the effectiveness of an IP agreement. Specifically, we use a game-theoretic approach to examine a system where a manufacturer outsources to a supplier. The supplier and a third-party firm decide whether or not to enter the market with copycat products while the manufacturer selects the level of marketing investment. The manufacturer can reduce the threat of supplier-copycatting by signing an IP agreement. We find that the manufacturer can be worse off from signing an IP agreement with its supplier, even if the IP agreement is costless and perfectly enforceable. We show that a manufacturer can deter copycat products through vertical integration and IP agreements and we outline the instances where each method is preferred. Furthermore, we find that the manufacturer may choose not to invest in quality improvements as a copycat deterrence strategy. We show that the supplier can benefit from the manufacturer’s decision to sign an IP agreement and that the supplier and the consumers can benefit from government regulations against copycat products. Our paper demonstrates the strengths and limitations of various copycat deterrence strategies when a supplier and third-party may produce copycat products.

Keywords: coopetitive supply chain, copycat, government regulation, intellectual property

Procedia PDF Downloads 184
6246 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 243
6245 Leveraging Information for Building Supply Chain Competitiveness

Authors: Deepika Joshi

Abstract:

Operations in automotive industry rely greatly on information shared between Supply Chain (SC) partners. This leads to efficient and effective management of SC activity. Automotive sector in India is growing at 14.2 percent per annum and has huge economic importance. We find that no study has been carried out on the role of information sharing in SC management of Indian automotive manufacturers. Considering this research gap, the present study is planned to establish the significance of information sharing in Indian auto-component supply chain activity. An empirical research was conducted for large scale auto component manufacturers from India. Twenty four Supply Chain Performance Indicators (SCPIs) were collected from existing literature. These elements belong to eight diverse but internally related areas of SC management viz., demand management, cost, technology, delivery, quality, flexibility, buyer-supplier relationship, and operational factors. A pair-wise comparison and an open ended questionnaire were designed using these twenty four SCPIs. The questionnaire was then administered among managerial level employees of twenty-five auto-component manufacturing firms. Analytic Network Process (ANP) technique was used to analyze the response of pair-wise questionnaire. Finally, twenty-five priority indexes are developed, one for each respondent. These were averaged to generate an industry specific priority index. The open-ended questions depicted strategies related to information sharing between buyers and suppliers and their influence on supply chain performance. Results show that the impact of information sharing on certain performance indicators is relatively greater than their corresponding variables. For example, flexibility, delivery, demand and cost related elements have massive impact on information sharing. Technology is relatively less influenced by information sharing but it immensely influence the quality of information shared. Responses obtained from managers reveal that timely and accurate information sharing lowers the cost, increases flexibility and on-time delivery of auto parts, therefore, enhancing the competitiveness of Indian automotive industry. Any flaw in dissemination of information can disturb the cycle time of both the parties and thus increases the opportunity cost. Due to supplier’s involvement in decisions related to design of auto parts, quality conformance is found to improve, leading to reduction in rejection rate. Similarly, mutual commitment to share right information at right time between all levels of SC enhances trust level. SC partners share information to perform comprehensive quality planning to ingrain total quality management. This study contributes to operations management literature which faces scarcity of empirical examination on this subject. It views information sharing as a building block which firms can promote and evolve to leverage the operational capability of all SC members. It will provide insights for Indian managers and researchers as every market is unique and suppliers and buyers are driven by local laws, industry status and future vision. While major emphasis in this paper is given to SC operations happening between domestic partners, placing more focus on international SC can bring in distinguished results.

Keywords: Indian auto component industry, information sharing, operations management, supply chain performance indicators

Procedia PDF Downloads 550
6244 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 93
6243 Future Outlook and Current Situation for Security of Gas Supply in Eastern Baltic Region

Authors: Ando Leppiman, Kati Kõrbe Kaare, Ott Koppel

Abstract:

The growing demand for gas has rekindled a debate on gas security of supply due to supply interruptions, increasing gas prices, transportation and distribution bottlenecks and a growing reliance on imports over longer distances. Security of supply is defined mostly as an infrastructure package to satisfy N-1 criteria. In case of Estonia, Finland, Latvia, and Lithuania all the gas infrastructure is built to supply natural gas only from one single supplier, Russia. In 2012, almost 100% of natural gas to the Eastern Baltic Region was supplied by Gazprom. under such circumstances infrastructure N-1 criteria does not guarantee security of supply. In the Eastern Baltic Region, the assessment of risk of gas supply disruption has been worked out by applying the method of risk scenarios. There are various risks to be tackled in Eastern Baltic States in terms of improving security of supply, such as single supplier risk, physical infrastructure risk, regulatory gap, fair price, and competition. The objective of this paper is to evaluate the energy security of the Eastern Baltic Region within the framework of the European Union’s policies and to make recommendations on how to better guarantee the energy security of the region.

Keywords: security of supply, supply routes for natural gas, energy balance, diversified supply options, common regulative package

Procedia PDF Downloads 262
6242 Investigating Perception of Iranian Organizations on Internet of Things Solutions and Applications

Authors: Changiz Valmohammadi

Abstract:

The main purpose of this study is to explore the perception of Iranian experts and executive managers of sample organizations on the benefits and barriers of Internet of Things (IoT) solutions implementation. Based on the review of the related literature and web sites, benefits and barriers of successful implementation to IoT solutions were identified. Through a self-administered questionnaire which was collected from 67 Iranian organizations the ranking and importance of benefits and barriers of IoT solutions implementation were determined based on the perception of the experts of the surveyed organizations. Analysis of data and the obtained results revealed that “improved customer experience” and “Supply chain optimization and responsiveness” are the most important benefits that the survey organizations expect to reap as a result of IoT solutions implementation. Also,” Integration challenges" and “cannot find right suppliers” were ranked as the most challenging barriers to IoT solutions implementation.

Keywords: internet of things (IoT), exploratory study, benefits, barriers, Iran

Procedia PDF Downloads 520
6241 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection

Procedia PDF Downloads 199
6240 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 110
6239 Time Driven Activity Based Costing Capability to Improve Logistics Performance: Application in Manufacturing Context

Authors: Siham Rahoui, Amr Mahfouz, Amr Arisha

Abstract:

In a highly competitive environment characterised by uncertainty and disruptions, such as the recent COVID-19 outbreak, supply chains (SC) face the challenge of maintaining their cost at minimum levels while continuing to provide customers with high-quality products and services. More importantly, businesses in such an economic context strive to maintain survival by keeping the cost of undertaken activities (such as logistics) low and in-house. To do so, managers need to understand the costs associated with different products and services in order to have a clear vision of the SC performance, maintain profitability levels, and make strategic decisions. In this context, SC literature explored different costing models that sought to determine the costs of undertaking supply chain-related activities. While some cost accounting techniques have been extensively explored in the SC context, more contributions are needed to explore the potential of time driven activity-based costing (TDABC). More specifically, more applications are needed in the manufacturing context of the SC, where the debate is ongoing. The aim of the study is to assess the capability of the technique to assess the operational performance of the logistics function. Through a case study methodology applied to a manufacturing company operating in the automotive industry, TDABC evaluates the efficiency of the current configuration and its logistics processes. The study shows that monitoring the process efficiency and cost efficiency leads to strategic decisions that contributed to improve the overall efficiency of the logistics processes.

Keywords: efficiency, operational performance, supply chain costing, time driven activity based costing

Procedia PDF Downloads 168
6238 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun

Abstract:

Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.

Keywords: information entropy, structural optimization, truss structure, whale algorithm

Procedia PDF Downloads 250
6237 Mapping the Core Processes and Identifying Actors along with Their Roles, Functions and Linkages in Trout Value Chain in Kashmir, India

Authors: Stanzin Gawa, Nalini Ranjan Kumar, Gohar Bilal Wani, Vinay Maruti Hatte, A. Vinay

Abstract:

Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario) are the two species of trout which were once introduced by British in waters of Kashmir has well adapted to favorable climatic conditions. Cold water fisheries are one of the emerging sectors in Kashmir valley and trout holds an important place Jammu and Kashmir fisheries. Realizing the immense potential of trout culture in Kashmir region, the state fisheries department started privatizing trout culture under the centrally funded scheme of RKVY in which they provide 80 percent subsidy for raceway construction and supply of feed and seed for the first year since 2009-10 and at present there are 362 private trout farms. To cater the growing demand for trout in the valley, it is important to understand the bottlenecks faced in the propagation of trout culture. Value chain analysis provides a generic framework to understand the various activities and processes, mapping and studying linkages is first step that needs to be done in any value chain analysis. In Kashmir, it is found that trout hatcheries play a crucial role in insuring the continuous supply of trout seed in valley. Feed is most limiting factor in trout culture and the farmer has to incur high cost in payment and in the transportation of feed from the feed mill to farm. Lack of aqua clinic in the Kashmir valley needs to be addressed. Brood stock maintenance, breeding and seed production, technical assistance to private farmer, extension services have to be strengthened and there is need to development healthier environment for new entrepreneurs. It was found that trout farmers do not avail credit facility as there is no well define credit scheme for fisheries in the state. The study showed weak institutional linkages. Research and development should focus more on applied science rather than basic science.

Keywords: trout, Kashmir, value chain, linkages, culture

Procedia PDF Downloads 403
6236 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata

Authors: Ramin Javadzadeh

Abstract:

The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.

Keywords: cellular automata, cellular learning automata, local search, optimization, particle swarm optimization

Procedia PDF Downloads 609
6235 The Role of Supply Chain Agility in Improving Manufacturing Resilience

Authors: Maryam Ziaee

Abstract:

This research proposes a new approach and provides an opportunity for manufacturing companies to produce large amounts of products that meet their prospective customers’ tastes, needs, and expectations and simultaneously enable manufacturers to increase their profit. Mass customization is the production of products or services to meet each individual customer’s desires to the greatest possible extent in high quantities and at reasonable prices. This process takes place at different levels such as the customization of goods’ design, assembly, sale, and delivery status, and classifies in several categories. The main focus of this study is on one class of mass customization, called optional customization, in which companies try to provide their customers with as many options as possible to customize their products. These options could range from the design phase to the manufacturing phase, or even methods of delivery. Mass customization values customers’ tastes, but it is only one side of clients’ satisfaction; on the other side is companies’ fast responsiveness delivery. It brings the concept of agility, which is the ability of a company to respond rapidly to changes in volatile markets in terms of volume and variety. Indeed, mass customization is not effectively feasible without integrating the concept of agility. To gain the customers’ satisfaction, the companies need to be quick in responding to their customers’ demands, thus highlighting the significance of agility. This research offers a different method that successfully integrates mass customization and fast production in manufacturing industries. This research is built upon the hypothesis that the success key to being agile in mass customization is to forecast demand, cooperate with suppliers, and control inventory. Therefore, the significance of the supply chain (SC) is more pertinent when it comes to this stage. Since SC behavior is dynamic and its behavior changes constantly, companies have to apply one of the predicting techniques to identify the changes associated with SC behavior to be able to respond properly to any unwelcome events. System dynamics utilized in this research is a simulation approach to provide a mathematical model among different variables to understand, control, and forecast SC behavior. The final stage is delayed differentiation, the production strategy considered in this research. In this approach, the main platform of products is produced and stocked and when the company receives an order from a customer, a specific customized feature is assigned to this platform and the customized products will be created. The main research question is to what extent applying system dynamics for the prediction of SC behavior improves the agility of mass customization. This research is built upon a qualitative approach to bring about richer, deeper, and more revealing results. The data is collected through interviews and is analyzed through NVivo software. This proposed model offers numerous benefits such as reduction in the number of product inventories and their storage costs, improvement in the resilience of companies’ responses to their clients’ needs and tastes, the increase of profits, and the optimization of productivity with the minimum level of lost sales.

Keywords: agility, manufacturing, resilience, supply chain

Procedia PDF Downloads 91
6234 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: non-stationary stochastic optimization, oscillating water, temporal variability, wave energy

Procedia PDF Downloads 373
6233 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: discrete set, linear combinatorial optimization, multi-objective optimization, Pareto solutions, partial permutation set, structural graph

Procedia PDF Downloads 168
6232 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 201
6231 Comparison of Sourcing Process in Supply Chain Operation References Model and Business Information Systems

Authors: Batuhan Kocaoglu

Abstract:

Although using powerful systems like ERP (Enterprise Resource Planning), companies still cannot benchmark their processes and measure their process performance easily based on predefined SCOR (Supply Chain Operation References) terms. The purpose of this research is to identify common and corresponding processes to present a conceptual model to model and measure the purchasing process of an organization. The main steps for the research study are: Literature review related to 'procure to pay' process in ERP system; Literature review related to 'sourcing' process in SCOR model; To develop a conceptual model integrating 'sourcing' of SCOR model and 'procure to pay' of ERP model. In this study, we examined the similarities and differences between these two models. The proposed framework is based on the assumptions that are drawn from (1) the body of literature, (2) the authors’ experience by working in the field of enterprise and logistics information systems. The modeling framework provides a structured and systematic way to model and decompose necessary information from conceptual representation to process element specification. This conceptual model will help the organizations to make quality purchasing system measurement instruments and tools. And offered adaptation issues for ERP systems and SCOR model will provide a more benchmarkable and worldwide standard business process.

Keywords: SCOR, ERP, procure to pay, sourcing, reference model

Procedia PDF Downloads 363
6230 Conceptual Study on 4PL and Activities in Turkey

Authors: Berna Kalkan, Kenan Aydin

Abstract:

Companies give importance customer satisfaction to compete the developing and changing market. This is possible when customer reaches the right product, right quality, place, time and cost. In this regard, the extension of logistics services has played active role on formation and development of the different logistics services concept. The concept of logistics services has played important role involved in the healing of economic indicators today. Companies can use logistics providers, thus have competitive advantage and low cost, reducing time, tobe flexibility. In recent years, Fourth Party Logistics (4PL) has emerged as a new concept that includes relationship between suppliers and firms in outsourcing. 4PL provider is an integrator that offers comprehensive supply chain solutions with the technology, resources and capabilities that it possesses. Also, 4PL has attracted as a popular research topic attention in the recent past. In this paper, logistics outsourcing and 4PL concepts are analyzed and a literature review on 4PL activities is given. Also, the previous studies in literature and the approaches that are used in previous studies in literature is presented by analysing on 4PL activities. In this context, a field study will be applied to 4PL providers and service buyer in Turkey. If necessary, results related to this study will be shared in scientific areas.

Keywords: fourth party logistics, literature review, outsourcing, supply chain management

Procedia PDF Downloads 178
6229 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 172
6228 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model

Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki

Abstract:

As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.

Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China

Procedia PDF Downloads 288
6227 Co-Evolutionary Fruit Fly Optimization Algorithm and Firefly Algorithm for Solving Unconstrained Optimization Problems

Authors: R. M. Rizk-Allah

Abstract:

This paper presents co-evolutionary fruit fly optimization algorithm based on firefly algorithm (CFOA-FA) for solving unconstrained optimization problems. The proposed algorithm integrates the merits of fruit fly optimization algorithm (FOA), firefly algorithm (FA) and elite strategy to refine the performance of classical FOA. Moreover, co-evolutionary mechanism is performed by applying FA procedures to ensure the diversity of the swarm. Finally, the proposed algorithm CFOA- FA is tested on several benchmark problems from the usual literature and the numerical results have demonstrated the superiority of the proposed algorithm for finding the global optimal solution.

Keywords: firefly algorithm, fruit fly optimization algorithm, unconstrained optimization problems

Procedia PDF Downloads 537
6226 Enhancing Rural Agricultural Value Chains through Electric Mobility Services in Ethiopia

Authors: Clemens Pizzinini, Philipp Rosner, David Ziegler, Markus Lienkamp

Abstract:

Transportation is a constitutional part of most supply and value chains in modern economies. Smallholder farmers in rural Ethiopia face severe challenges along their supply and value chains. In particular, suitable, affordable, and available transport services are in high demand. To develop a context-specific technical solutions, a problem-to-solution methodology based on the interaction with technology is developed. With this approach, we fill the gap between proven transportation assessment frameworks and general user-centered techniques. Central to our approach is an electric test vehicle that is implemented in rural supply and value chains for research, development, and testing. Based on our objective and the derived methodological requirements, a set of existing methods is selected. Local partners are integrated into an organizational framework that executes major parts of this research endeavour in the Arsi Zone, Oromia Region, Ethiopia.

Keywords: agricultural value chain, participatory methods, agile methods, sub-Saharan Africa, Ethiopia, electric vehicle, transport service

Procedia PDF Downloads 76
6225 Supply and Marketing of Floriculture in Ethiopia

Authors: Assefa Mitike Janko, Gosa Alemu

Abstract:

The review of supply and marketing of floriculture in Ethiopia was conducted to analyses the production potential and to know the marketing share of the country. The data was collected from secondary and primary. Ethiopia has been operating in the floriculture industry for over 20 years. As is the case in many developing countries, the major export items of Ethiopia are dominated by few agricultural products that earn very small amounts in the international market. Moreover, most of the exports are destined to only few countries. Given the highly capital intensive nature of production and processing, rose farming is not a smallholder activity. It is also important to note the extremely tightly controlled time dimension of the logistics process, given the product attributes desired and the fragility and perishability of the roses. Another characteristic of the Ethiopian floriculture sector is the lack of domestically produced inputs that flower producers can access. The export volume and value of cut-flowers accounts for a small proportion of the total exports of Ethiopia. In recent years the sector is showing improvements in terms of the quality and quantity of exports to the international market.

Keywords: roses, production, value chain, floriculture, supply

Procedia PDF Downloads 380
6224 Artificial Intelligence Techniques for Enhancing Supply Chain Resilience: A Systematic Literature Review, Holistic Framework, and Future Research

Authors: Adane Kassa Shikur

Abstract:

Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions, resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents in the different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To close this research gap, this study conducts a systematic literature review of 106 peer-reviewed articles by curating, synthesizing, and consolidating up-to-date literature and presents the state-of-the-art development from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to approach SCRes holistically. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.

Keywords: ANNs, risk, Bauesian networks, vulnerability, resilience

Procedia PDF Downloads 101
6223 Technological Innovations as a Potential Vehicle for Supply Chain Integration on Basic Metal Industries

Authors: Alie Wube Dametew, Frank Ebinger

Abstract:

This study investigated the roles of technological innovation on basic metal industries and then developed technological innovation framework for enhancing sustainable competitive advantage in the basic metal industries. The previous research work indicates that technological innovation has critical impact in promoting local industries to improve their performance and achieve sustainable competitive environments. The filed observation, questioner and expert interview result from basic metal industries indicate that the technological capability of local industries to invention, adoption, modification, improving and use a given innovative technology is very poor. As the result, this poor technological innovation was occurred due to improper innovation and technology transfer framework, non-collaborative operating environment between foreign and local industries, very weak national technology policies, problems research and innovation centers, the common miss points on basic metal industry innovation systems were investigated in this study. One of the conclusions of the article is that, through using the developed technological innovation framework in this study, basic metal industries improve innovation process and support an innovative culture for sector capabilities and achieve sustainable competitive advantage.

Keywords: technological innovation, competitive advantage, sustainable, basic metal industry, conceptual model, sustainability, supply chain integration

Procedia PDF Downloads 246
6222 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 209