Search results for: regression hypothesis
3960 Predictors of School Drop out among High School Students
Authors: Osman Zorbaz, Selen Demirtas-Zorbaz, Ozlem Ulas
Abstract:
The factors that cause adolescents to drop out school were several. One of the frameworks about school dropout focuses on the contextual factors around the adolescents whereas the other one focuses on individual factors. It can be said that both factors are important equally. In this study, both adolescent’s individual factors (anti-social behaviors, academic success) and contextual factors (parent academic involvement, parent academic support, number of siblings, living with parent) were examined in the term of school dropout. The study sample consisted of 346 high school students in the public schools in Ankara who continued their education in 2015-2016 academic year. One hundred eighty-five the students (53.5%) were girls and 161 (46.5%) were boys. In addition to this 118 of them were in ninth grade, 122 of them in tenth grade and 106 of them were in eleventh grade. Multiple regression and one-way ANOVA statistical methods were used. First, it was examined if the data meet the assumptions and conditions that are required for regression analysis. After controlling the assumptions, regression analysis was conducted. Parent academic involvement, parent academic support, number of siblings, anti-social behaviors, academic success variables were taken into the regression model and it was seen that parent academic involvement (t=-3.023, p < .01), anti-social behaviors (t=7.038, p < .001), and academic success (t=-3.718, p < .001) predicted school dropout whereas parent academic support (t=-1.403, p > .05) and number of siblings (t=-1.908, p > .05) didn’t. The model explained 30% of the variance (R=.557, R2=.300, F5,345=30.626, p < .001). In addition to this the variance, results showed there was no significant difference on high school students school dropout levels according to living with parents or not (F2;345=1.183, p > .05). Results discussed in the light of the literature and suggestion were made. As a result, academic involvement, academic success and anti-social behaviors will be considered as an important factors for preventing school drop-out.Keywords: adolescents, anti-social behavior, parent academic involvement, parent academic support, school dropout
Procedia PDF Downloads 2843959 The Sapir-Whorf Hypothesis and Multicultural Effects on Translators: A Case Study from Chinese Ethnic Minority Literature
Authors: Yuqiao Zhou
Abstract:
The Sapir-Whorf hypothesis (SWH) emphasizes the effect produced by language on people’s minds. According to linguistic relativity, language has evolved over the course of human life on earth, and, in turn, the acquisition of language shapes learners’ thoughts. Despite much attention drawn by SWH, few scholars have attempted to analyse people’s thoughts via their literary works. And yet, the linguistic choices that create a narrative can enable us to examine its writer’s thoughts. Still, less work has been done on the impact of language on the minds of bilingual people. Internationalization has resulted in an increasing number of bilingual and multilingual individuals. In China, where more than one hundred languages are used for communication, most people are bilingual in Mandarin Chinese (the official language of China) and their own dialect. Taking as its corpus the ethnic minority myth of Ge Sa-er Wang by Alai and its English translation by Goldblatt and Lin, this paper aims to analyse the effects of culture on bilingual people’s minds. It will first analyse Alai’s thoughts on using the original version of Ge Sa-er Wang; next, it will examine the thoughts of the two translators by looking at translation choices made in the English version; finally, it will compare the cultural influences evident in the thoughts of Alai, and Goldblatt and Lin. Whereas Alai can speak two Sino-Tibetan languages – Mandarin Chinese and Tibetan – Goldblatt and Lin can speak two languages from different families – Mandarin Chinese (a Sino-Tibetan language) and English (an Indo-European language). The results reveal two systems of thought existing in the translators’ minds; Alai’s text, on the other hand, does not reveal a significant influence from North China, where Mandarin Chinese originated. The findings reveal the inconsistency of a second language’s influence on people’s minds. Notably, they suggest that the more different the two languages are, the greater the influence produced by the second language culture on people’s thoughts. It is hoped that this research will expand the scope of SWH as well as shed light on future translation studies on ethnic minority literature.Keywords: Sapir-Whorf hypothesis, cultural translation, cultural-specific items, Ge Sa-er Wang, ethnic minority literature, Tibet
Procedia PDF Downloads 1123958 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression
Authors: Anne M. Denton, Rahul Gomes, David W. Franzen
Abstract:
High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression
Procedia PDF Downloads 1293957 The Association between Attachment Styles, Satisfaction of Life, Alexithymia, and Psychological Resilience: The Mediational Role of Self-Esteem
Authors: Zahide Tepeli Temiz, Itir Tari Comert
Abstract:
Attachment patterns based on early emotional interactions between infant and primary caregiver continue to be influential in adult life, in terms of mental health and behaviors of individuals. Several studies reveal that infant-caregiver relationships have impressed the affect regulation, coping with stressful and negative situations, general satisfaction of life, and self image in adulthood, besides the attachment styles. The present study aims to examine the relationships between university students’ attachment style and their self-esteem, alexithymic features, satisfaction of life, and level of resilience. In line with this aim, the hypothesis of the prediction of attachment styles (anxious and avoidant) over life satisfaction, self-esteem, alexithymia, and psychological resilience was tested. Additionally, in this study Structural Equational Modeling was conducted to investigate the mediational role of self-esteem in the relationship between attachment styles and alexithymia, life satisfaction, and resilience. This model was examined with path analysis. The sample of the research consists of 425 university students who take education from several region of Turkey. The participants who sign the informed consent completed the Demographic Information Form, Experiences in Close Relationships-Revised, Rosenberg Self-Esteem Scale, The Satisfaction with Life Scale, Toronto Alexithymia Scale, and Resilience Scale for Adults. According to results, anxious, and avoidant dimensions of insecure attachment predicted the self-esteem score and alexithymia in positive direction. On the other hand, these dimensions of attachment predicted life satisfaction in negative direction. The results of linear regression analysis indicated that anxious and avoidant attachment styles didn’t predict the resilience. This result doesn’t support the theory and research indicating the relationship between attachment style and psychological resilience. The results of path analysis revealed the mediational role self esteem in the relation between anxious, and avoidant attachment styles and life satisfaction. In addition, SEM analysis indicated the indirect effect of attachment styles over alexithymia and resilience besides their direct effect. These findings support the hypothesis of this research relation to mediating role of self-esteem. Attachment theorists suggest that early attachment experiences, including supportive and responsive family interactions, have an effect on resilience to harmful situations in adult life, ability to identify, describe, and regulate emotions and also general satisfaction with life. Several studies examining the relationship between attachment styles and life satisfaction, alexithymia, and psychological resilience draw attention to mediational role of self-esteem. Results of this study support the theory of attachment patterns with the mediation of self-image influence the emotional, cognitive, and behavioral regulation of person throughout the adulthood. Therefore, it is thought that any intervention intended for recovery in attachment relationship will increase the self-esteem, life satisfaction, and resilience level, on the one side, decrease the alexithymic features, on the other side.Keywords: alexithymia, anxious attachment, avoidant attachment, life satisfaction, path analysis, resilience, self-esteem, structural equation
Procedia PDF Downloads 1953956 Effect of Transit-Oriented Development on Air Quality in Neighborhoods of Delhi
Authors: Smriti Bhatnagar
Abstract:
This study aims to find if the Transit-oriented planning and development approach benefit the quality of air in neighborhoods of New Delhi. Two methodologies, namely the land use regression analysis and the Transit-oriented development index analysis, are being used to explore this relationship. Land Use Regression Analysis makes use of urban form characteristics as obtained for 33 neighborhoods in Delhi. These comprise road lengths, land use areas, population and household densities, number of amenities and distance between amenities. Regressions are run to establish the relationship between urban form variables and air quality parameters (dependent variables). For the Transit-oriented development index analysis, the Transit-oriented Development index is developed as a composite index comprising 29 urban form indicators. This index is developed by assigning weights to each of the 29 urban form data points. Regressions are run to establish the relationship between the Transit-oriented development index and air quality parameters. The thesis finds that elements of Transit-oriented development if incorporated in planning approach, have a positive effect on air quality. Roads suited for non-motorized transport, well connected civic amenities in neighbourhoods, for instance, have a directly proportional relationship with air quality. Transit-oriented development index, however, is not found to have a consistent relationship with air quality parameters. The reason could this, however, be in the way that the index has been constructed.Keywords: air quality, land use regression, mixed-use planning, transit-oriented development index, New Delhi
Procedia PDF Downloads 2703955 An Empirical Investigation into the Effect of Macroeconomic Policy on Economic Growth in Nigeria
Authors: Rakiya Abba
Abstract:
This paper investigates the effect of the money supply, exchange and interest rate on economic growth in Nigeria through the application of Augmented Dickey-Fuller technique in testing the unit root property of the series and Granger causality test of causation between GDP, money supply, the exchange, and interest rate. The results of unit root suggest that all the variables in the model are stationary at 1, 5 and 10 percent level of significance, and the results of Causality suggest that money supply and exchange granger cause IR, the result further reveals two – way causation existed between M2 and EXR while IR granger cause GDP the null hypothesis is rejected and GDP does not granger cause IR as indicated by their probability values of 0.4805 and confirmed by F-statistics values of 0.75483. The results revealed that M2 and EXR do not granger causes GDP, the null hypothesis is accepted at 75percent 18percent respectively as indicated by their probability values of 0.7472 and 0.1830 respectively; also, GDP does not granger cause M2 and EXR. The Johansen cointegration result indicates that despite GDP does not granger cause M2, IR, and EXR, but there existed 1 cointegrating equation, implying the existence of long-run relationship between GDP, M2 IR, and EXR. A major policy implication of this result is that economic growth is function of and money supply and exchange rate, effective monetary policies should direct on manipulating instruments and importance should be placed on justification for adopting a particular policy be rationalized in order to increase growth in economyKeywords: economic growth, money supply, interest rate, exchange rate, causality
Procedia PDF Downloads 2673954 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model
Authors: Zichun Guo
Abstract:
Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.Keywords: POI, house price, spatial heterogeneity, Guangzhou
Procedia PDF Downloads 553953 ELD79-LGD2006 Transformation Techniques Implementation and Accuracy Comparison in Tripoli Area, Libya
Authors: Jamal A. Gledan, Othman A. Azzeidani
Abstract:
During the last decade, Libya established a new Geodetic Datum called Libyan Geodetic Datum 2006 (LGD 2006) by using GPS, whereas the ground traversing method was used to establish the last Libyan datum which was called the Europe Libyan Datum 79 (ELD79). The current research paper introduces ELD79 to LGD2006 coordinate transformation technique, the accurate comparison of transformation between multiple regression equations and the three-parameters model (Bursa-Wolf). The results had been obtained show that the overall accuracy of stepwise multi regression equations is better than that can be determined by using Bursa-Wolf transformation model.Keywords: geodetic datum, horizontal control points, traditional similarity transformation model, unconventional transformation techniques
Procedia PDF Downloads 3073952 Inconsistent Effects of Landscape Heterogeneity on Animal Diversity in an Agricultural Mosaic: A Multi-Scale and Multi-Taxon Investigation
Authors: Chevonne Reynolds, Robert J. Fletcher, Jr, Celine M. Carneiro, Nicole Jennings, Alison Ke, Michael C. LaScaleia, Mbhekeni B. Lukhele, Mnqobi L. Mamba, Muzi D. Sibiya, James D. Austin, Cebisile N. Magagula, Themba’alilahlwa Mahlaba, Ara Monadjem, Samantha M. Wisely, Robert A. McCleery
Abstract:
A key challenge for the developing world is reconciling biodiversity conservation with the growing demand for food. In these regions, agriculture is typically interspersed among other land-uses creating heterogeneous landscapes. A primary hypothesis for promoting biodiversity in agricultural landscapes is the habitat heterogeneity hypothesis. While there is evidence that landscape heterogeneity positively influences biodiversity, the application of this hypothesis is hindered by a need to determine which components of landscape heterogeneity drive these effects and at what spatial scale(s). Additionally, whether diverse taxonomic groups are similarly affected is central for determining the applicability of this hypothesis as a general conservation strategy in agricultural mosaics. Two major components of landscape heterogeneity are compositional and configurational heterogeneity. Disentangling the roles of each component is important for biodiversity conservation because each represents different mechanisms underpinning variation in biodiversity. We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an extensive agricultural mosaic in north-eastern Swaziland. We then tested how bird, dung beetle, ant and meso-carnivore diversity responded to compositional and configurational heterogeneity across six different spatial scales. To determine if a general trend could be observed across multiple taxa, we also tested which component and spatial scale was most influential across all taxonomic groups combined, Compositional, not configurational, heterogeneity explained diversity in each taxonomic group, with the exception of meso-carnivores. Bird and ant diversity was positively correlated with compositional heterogeneity at fine spatial scales < 1000 m, whilst dung beetle diversity was negatively correlated to compositional heterogeneity at broader spatial scales > 1500 m. Importantly, because of these contrasting effects across taxa, there was no effect of either component of heterogeneity on the combined taxonomic diversity at any spatial scale. The contrasting responses across taxonomic groups exemplify the difficulty in implementing effective conservation strategies that meet the requirements of diverse taxa. To promote diverse communities across a range of taxa, conservation strategies must be multi-scaled and may involve different strategies at varying scales to offset the contrasting influences of compositional heterogeneity. A diversity of strategies are likely key to conserving biodiversity in agricultural mosaics, and we have demonstrated that a landscape management strategy that only manages for heterogeneity at one particular scale will likely fall short of management objectives.Keywords: agriculture, biodiversity, composition, configuration, heterogeneity
Procedia PDF Downloads 2623951 The Impact of Public Open Space System on Housing Price in Chicago
Authors: Si Chen, Le Zhang, Xian He
Abstract:
The research explored the influences of public open space system on housing price through hedonic models, in order to support better open space plans and economic policies. We have three initial hypotheses: 1) public open space system has an overall positive influence on surrounding housing prices. 2) Different public open space types have different levels of influence on motivating surrounding housing prices. 3) Walking and driving accessibilities from property to public open spaces have different statistical relation with housing prices. Cook County, Illinois, was chosen to be a study area since data availability, sufficient open space types, and long-term open space preservation strategies. We considered the housing attributes, driving and walking accessibility scores from houses to nearby public open spaces, and driving accessibility scores to hospitals as influential features and used real housing sales price in 2010 as a dependent variable in the built hedonic model. Through ordinary least squares (OLS) regression analysis, General Moran’s I analysis and geographically weighted regression analysis, we observed the statistical relations between public open spaces and housing sale prices in the three built hedonic models and confirmed all three hypotheses.Keywords: hedonic model, public open space, housing sale price, regression analysis, accessibility score
Procedia PDF Downloads 1333950 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults
Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu
Abstract:
The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method
Procedia PDF Downloads 4493949 Relations between Psychological Adjustment and Perceived Parental, Teacher and Best Friend Acceptance among Bangladeshi Adolescents
Authors: Tariqul Islam, Shaheen Mollah
Abstract:
The study's main objective is to assess the relationship between psychological adjustment and parental acceptance-rejection, teacher acceptance-rejection, and best friend acceptance-rejection among secondary school students. This study was conducted on a sample of 300 (6th through 10th-grade students) recruited from over ten schools in Dhaka. While the schools were selected purposively, the respondents within each school were selected conveniently. The collected data were analyzed using Pearson product-moment correlation, hierarchical regression, and simultaneous regression analysis. The results showed that psychological adjustment is positively correlated with paternal, maternal, teacher, and best friend acceptance. The paternal acceptance was significantly connected with maternal acceptance. The teacher and best friend acceptance are correlated substantially with paternal and maternal acceptance. The hierarchical multiple regressions indicated that maternal, paternal, teacher, and best friend acceptance-rejection contributed significantly to students' psychological adjustment. The results revealed substantial independent contributions of maternal, paternal, teacher, and best friend acceptance on the students' psychological adjustment. The simultaneous regression analysis indicates that the maternal and best friend acceptances (but not paternal acceptance) were significant predictors of psychological adjustments. It showed that 41.7% variability in psychological adjustment could be explained by paternal, maternal, and best friend acceptance. The findings of the present study are exciting. They may contribute to developing insight in parents and best friends for behaving properly with their offspring and friend, respectively, for better psychological adjustment.Keywords: adjustment, parenting, rejection, acceptance
Procedia PDF Downloads 1453948 Relationship between Interest, Attitude and Academic Performance among N.C.E Primary Education Studies of College of Education, Azare Bauchi State
Authors: Fatima Ibrahim
Abstract:
The Study assessed the relationship between interest, attitude and academic performance among N.C.E Primary Education Studies of College of Education, Azare Bauchi State. Stratified random sampling was used to select 234 respondents from N.C.E 100, 200 and 300 levels students with the total population of 552. Structured Questionnaire and students academic records were used for data collection. Four scale format was used for the respondents to indicate their degree of satisfaction on a four point scale. Four null hypothesis were formulated from research questions at tested at 0.05 level of significance. The data collected from the study were analyzed using descriptive statistics, pearson product moment correlation coefficient and independent test. The result of tested Null hypotheses revealed that: there was significant relationship between student’s interest and their academic performance since calculated p value of 0.000 is less than the 0.05 alpha level of significance at a correlation index level of .986 hence the Null hypothesis was rejected. There was significant relationship between student’s attitude and their academic performance in the study of P.E.S. Findings also revealed that majority of the students were interested in the study of P.E.S which helped them perform well. It was concluded that significant relationship exists between students interest, attitudinal academic performance among P.E.S students in College of Education Azare.Keywords: Attitude, Academic Performance, College of Education Azare, Interest, Students
Procedia PDF Downloads 2193947 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2313946 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.Keywords: palm oil, fatty acid, NIRS, regression
Procedia PDF Downloads 5063945 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing
Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar
Abstract:
The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.Keywords: hyperspectral, NDNI, nitrogen concentration, regression value
Procedia PDF Downloads 2953944 A Multinomial Logistic Regression Analysis of Factors Influencing Couples' Fertility Preferences in Kenya
Authors: Naomi W. Maina
Abstract:
Fertility preference is a subject of great significance in developing countries. Studies reveal that the preferences of fertility are actually significant in determining the society’s fertility levels because the fertility behavior of the future has a high likelihood of falling under the effect of currently observed fertility inclinations. The objective of this study was to establish the factors associated with fertility preference amongst couples in Kenya by fitting a multinomial logistic regression model against 5,265 couple data obtained from Kenya demographic health survey 2014. Results revealed that the type of place of residence, the region of residence, age and spousal age gap significantly influence desire for additional children among couples in Kenya. There was the notable high likelihood of couples living in rural settlements having similar fertility preference compared to those living in urban settlements. Moreover, geographical disparities such as in northern Kenya revealed significant differences in a couples desire to have additional children compared to Nairobi. The odds of a couple’s desire for additional children were further observed to vary dependent on either the wife or husbands age and to a large extent the spousal age gap. Evidenced from the study, was the fact that as spousal age gap increases, the desire for more children amongst couples decreases. Insights derived from this study would be attractive to demographers, health practitioners, policymakers, and non-governmental organizations implementing fertility related interventions in Kenya among other stakeholders. Moreover, with the adoption of devolution, there is a clear need for adoption of population policies that are County specific as opposed to a national population policy as is the current practice in Kenya. Additionally, researchers or students who have little understanding in the application of multinomial logistic regression, both theoretical understanding and practical analysis in SPSS as well as application on real datasets, will find this article useful.Keywords: couples' desire, fertility, fertility preference, multinomial regression analysis
Procedia PDF Downloads 1813943 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights
Authors: Nelson Bii, Christopher Ouma, John Odhiambo
Abstract:
Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths
Procedia PDF Downloads 1373942 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 973941 Errors and Misconceptions for Students with Mathematical Learning Disabilities: Quest for Suitable Teaching Strategy
Authors: A. K. Tsafe
Abstract:
The study investigates the efficacy of Special Mathematics Teaching Strategy (SMTS) as against Conventional Mathematics Teaching Strategy (CMTS) in teaching students identified with Mathematics Learning Disabilities (MLDs) – dyslexia, Down syndrome, dyscalculia, etc., in some junior secondary schools around Sokoto metropolis. Errors and misconceptions in learning Mathematics displayed by these categories of students were observed. Theory of variation was used to provide a prism for viewing the MLDs from theoretical perspective. Experimental research design was used, involving pretest-posttest non-randomized approach. Pretest was administered to the intact class taught using CMTS before the class was split into experimental and control groups. Experimental group of the students – those identified with MLDs was taught with SMTS and later mean performance of students taught using the two strategies was sought to find if there was any significant difference between the performances of the students. A null hypothesis was tested at α = 0.05 level of significance. T-test was used to establish the difference between the mean performances of the two tests. The null hypothesis was rejected. Hence, the performance of students, identified with MLDs taught using SMTS was found to be better than their earlier performance taught using CMTS. The study, therefore, recommends amongst other things that teachers should be encouraged to use SMTS in teaching mathematics especially when students are found to be suffering from MLDs and exhibiting errors and misconceptions in the process of learning mathematics.Keywords: disabilities, errors, learning, misconceptions
Procedia PDF Downloads 963940 Critical Factors Influencing Effective Communication Among Stakeholders on Construction Project Delivery in Jigawa State, Nigeria
Authors: Shazali Abdulahi
Abstract:
Project planning is the first phase in project life cycle which relates to the use of schedules such as Gantt charts to plan and subsequently report the project progress within the project environment. Likewise, project execution is the third phase in project lifecycle, is the phase where the work of the project must get done correctly and it’s the longest phase in the project lifecycle therefore, they must be effectively communicated, now today Communication has become the crucial element of every organization. During construction project delivery, information needs to be accurately and timely communicating among project stakeholders in order to realize the project objective. Effective communication among stakeholders during construction project delivery is one of the major factors that impact construction project delivery. Therefore, the aim of the research work is to examine the critical factors influencing effective communication among stakeholders on construction project delivery from the perspective of construction professionals (Architects, Builders, Quantity surveyors, and Civil engineers). A quantitative approach was adopted. This entailed the used of structured questionnaire to one (108) construction professionals in public and private organization within dutse metropolis. Frequency, mean, ranking and multiple linear regression using SPSS vision 25 software were used to analyses the data. The results show that Leadership, Trust, Communication tools, Communication skills, Stakeholders involvement, Cultural differences, and Communication technology were the most critical factors influencing effective communication among stakeholders on construction project delivery. The hypothesis revealed that, effective communication among stakeholders has significant effects on construction project delivery. This research work will profit the construction stakeholders in construction industry, by providing adequate knowledge regarding the factors influencing effective communication among stakeholders, so that necessary steps to be taken to improve project performance. Also, it will provide knowledge about the appropriate strategies to employ in order to improve communication among stakeholders.Keywords: effetive communication, ineffective communication, stakeholders, project delivery
Procedia PDF Downloads 513939 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters
Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi
Abstract:
A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation
Procedia PDF Downloads 5403938 Stature and Gender Estimation Using Foot Measurements in South Indian Population
Authors: Jagadish Rao Padubidri, Mehak Bhandary, Sowmya J. Rao
Abstract:
Introduction: The significance of the human foot and its measurements in identifying an individual has been proved a lot of times by different studies in different geographical areas and its association to the stature and gender of the individual has been justified by many researches. In our study we have used different foot measurements including the length, width, malleol height and navicular height for establishing its association to stature and gender and to find out its accuracy. The purpose of this study is to show the relation of foot measurements with stature and gender, and to derive Multiple and Logistic regression equations for stature and gender estimation in South Indian population. Materials and Methods: The subjects for this study were 200 South Indian students out of which 100 were females and 100 were males, aged between 18 to 24 years. The data for the present study included the stature, foot length, foot breath, foot malleol height, foot navicular height of both right and left foot. Descriptive statistics, T-test and Pearson correlation coefficients were derived between stature, gender and foot measurements. The stature was estimated from right and left foot measurements for both male and female South Indian population using multiple regression analysis and logistic regression analysis for gender estimation. Results: The means, standard deviation, stature, right and left foot measurements and T-test in male population were higher than in females. LFL (Left foot length) is more than RFL (Right Foot length) in male groups, but in female groups the length of both foot are almost equal [RFL=226.6, LFL=227.1]. There is not much of difference in means of RFW (Right foot width) and LFW (Left foot width) in both the genders. Significant difference were seen in mean values of malleol and navicular height of right and left feet in male gender. No such difference was seen in female subjects. Conclusions: The study has successfully demonstrated the correlation of foot length in stature estimation in all the three study groups in both right and left foot. Next in parameters are Foot width and malleol height in estimating stature among male and female groups. Navicular height of both right and left foot showed poor relationship with stature estimation in both male and female groups. Multiple regression equations for both right and left foot measurements to estimate stature were derived with standard error ranging from 11-12 cm in males and 10-11 cm in females. The SEE was 5.8 when both male and female groups were pooled together. The logistic regression model which was derived to determine gender showed 85% accuracy and 92.5% accuracy using right and left foot measurements respectively. We believe that stature and gender can be estimated with foot measurements in South Indian population.Keywords: foot length, gender, stature, South Indian
Procedia PDF Downloads 3353937 Uncovering the Relationship between EFL Students' Self-Concept and Their Willingness to Communicate in Language Classes
Authors: Seyedeh Khadijeh Amirian, Seyed Mohammad Reza Amirian, Narges Hekmati
Abstract:
The current study aims at examining the relationship between English as a foreign language (EFL) students' self-concept and their willingness to communicate (WTC) in EFL classes. To this effect, two questionnaires, namely 'Willingness to Communicate' (MacIntyre et al., 2001) and 'Self-Concept Scale' (Liu and Wang, 2005), were distributed among 174 (45 males and 129 females) Iranian EFL university students. Correlation and regression analyses were conducted to examine the relationship between the two variables. The results indicated that there was a significantly positive correlation between EFL students' self-concept and their WTC in EFL classes (p < .0.05). Moreover, regression analyses indicated that self-concept has a significantly positive influence on students’ WTC in language classes (B= .302, p < .0.05) and explains .302 percent of the variance in the dependent variable (WTC). The results are discussed with regards to the individual differences in educational contexts, and implications are offered.Keywords: EFL students, language classes, willingness to communicate, self-concept
Procedia PDF Downloads 1263936 The Influence of Interest, Beliefs, and Identity with Mathematics on Achievement
Authors: Asma Alzahrani, Elizabeth Stojanovski
Abstract:
This study investigated factors that influence mathematics achievement based on a sample of ninth-grade students (N = 21,444) from the High School Longitudinal Study of 2009 (HSLS09). Key aspects studied included efficacy in mathematics, interest and enjoyment of mathematics, identity with mathematics and future utility beliefs and how these influence mathematics achievement. The predictability of mathematics achievement based on these factors was assessed using correlation coefficients and multiple linear regression. Spearman rank correlations and multiple regression analyses indicated positive and statistically significant relationships between the explanatory variables: mathematics efficacy, identity with mathematics, interest in and future utility beliefs with the response variable, achievement in mathematics.Keywords: Mathematics achievement, math efficacy, mathematics interest, factors influence
Procedia PDF Downloads 1503935 Determinants of Free Independent Traveler Tourist Expenditures in Israel: Quantile Regression Model
Authors: Shlomit Hon-Snir, Sharon Teitler-Regev, Anabel Lifszyc Friedlander
Abstract:
Tourism, one of the world's largest and fastest growing industries, exerts a major economic influence. The number of international tourists is growing every year, and the relative portion of independent (FIT) tourists is growing as well. The characteristics of independent tourists differ from those of tourists who travel in organized trips. The purpose of the research is to identify the factors that affect the individual tourist's expenses in Israel: total expenses, expenses per day, expenses per tourist, expenses per day per tourist, accommodation expenses, dining expenses and transportation expenses. Most of the research analyzed the total expenses using OLS regression. The determinants influencing expenses were divided into four groups: budget constraints, socio-demographic data, psychological characteristics and travel-related characteristics. Since the effect of each variable may change over different levels of total expenses the quantile regression (QR) theory will be applied. The current research will use data collected by the Israeli Ministry of Tourism in 2015 from individual independent tourists at the end of their visit to Israel. Preliminary results show that: At lower levels of expense, only income has a (positive) effect on total expenses, while at higher levels of expense, both income and length of stay have (positive) effects. -The effect of income on total expenses is higher for higher levels of expenses than for lower level of expenses. -The number of sites visited during the trip has a (negative) effect on tourist accommodation expenses only for tourists with a high level of total expenses. Due to the increasing share of independent tourism in Israel and around the world and due to the importance of tourism to Israel, it is very important to understand the factors that influence the expenses and behavior of independent tourists. Understanding the factors that affect independent tourists' expenses in Israel can help Israeli policymakers in their promotional efforts to attract tourism to Israel.Keywords: independent tourist, quantile regression theory, tourism expenses, tourism
Procedia PDF Downloads 2743934 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms
Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen
Abstract:
Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.Keywords: decision support, computed tomography, coronary artery, machine learning
Procedia PDF Downloads 2283933 Debt Relief for Emerging Economies: An Empirical Investigation
Authors: Hummad Ch. Umar
Abstract:
Most of the developing economies, including Pakistan, are confronted with high level of external debt which is adversely affecting their economic performance. The hypothesis of debt overhang is often used to assess the negative relationship between foreign debt and the economic growth of the indebted country. As first objective of the present study, this hypothesis is tested by using Pooled OLS (POLS), Generalized Method of Moment (GMM), Random Effect (RE), and Fixed effect (FE) techniques. As second objective, the study uses the concept of debt Laffer Curve to determine the eligibility condition of the indebted countries for the relief programs. According to this approach, countries lying on the right side of the Laffer Curve are stated to be trapped in the strong debt overhang making them unable to come out of the vicious circle of low growth and high foreign debt. The empirical analysis confirms that only two countries out of twenty two completely fulfill the conditions of being eligible for the debt relief. All other countries continue to face debt burden of different magnitudes. The study further confirms that the debt relief alone is not sufficient for overcoming the debt problem. Instead, sound economic policies and conducive investment decisions are required to lay the foundations of long-term growth and development. Debt relief should be the option for only those countries that meet a minimum measurable criterion of good governance, economic freedom, and consistency of policies.Keywords: external debt, debt burden, debt overhang, debt laffer curve, debt relief, investment decisions
Procedia PDF Downloads 3263932 Wearable Devices Could Reduce the Risk of Injury in Parasomnias Phenotypes
Authors: Vivian Correa
Abstract:
Hypothesis There are typical patterns - phenotypes - of sleep behaviors by age and biological sex groups of parasomnia patients where wearable devices could avoid injuries. Materials and methods We analyzed public video records on sleep-related behaviors likely representing parasomnias, looking for phenotypes in different groups. We searched public internet databases using the keywords “sleepwalking”, “sleep eating,” “sleep sex”, and “aggression in sleep” in six languages. Poor-quality vide-records and those showing apparently faked sleep behaviors were excluded. We classified the videos into estimated sex and age (children, adults, elderly) groups; scored the activity types by a self-made scoring scale; and applied binary logistic regression for analyzing the association between sleep behaviors versus the groups by STATA package providing 95% confidence interval and the probability of statistical significance. Results 224 videos (102 women) were analyzed. The odds of sleepwalking and related dangerous behaviors were lower in the elderly than in adults (P<0.025). Females performed complex risky behaviors during sleepwalking more often than males (P<0.012). Elderly people presented emotional behaviors less frequently than adults (P<0.004), and females showed them twice often as males. Elderly males had 40-fold odds compared to adults and children to perform aggressive movements and 70-fold odds of complex movements in the bed compared to adults. Conclusion Unlike other groups, the high chances of adults being sleepwalkers and elderly males performing intense and violent movements in bed showed us the importance of developing wearable parasomnia devices to prevent injuries.Keywords: parasomnia, wearable devices, sleepwalking, RBD
Procedia PDF Downloads 1113931 The Disruptive Effect of COVID-19 on the Informativeness of Dividend Increases: Some Evidence from Johannesburg Stock Exchange-Listed Companies
Authors: Faustina Masocha
Abstract:
This study sought to determine if the Covid-19 pandemic played a disruptive role in the signalling effect of dividend increases for the Top 40 companies listed on the Johannesburg Stock Exchange. With the use of Event Study Methodologies, it was found that dividend increases that were announced in the 2018 and 2019 financial years resulted in Cumulative Abnormal Returns (CARs) that were significantly different from zero, as confirmed by a p-value of 0,0300. This resulted in the conclusion that, under normal circumstances, dividend increases follow the precepts outlined in signalling theories which indicate that the announcement of dividend increases sent positive signals about the expected financial performance of a company. To prove the notion that Covid-19 plays a disruptive role on the signalling hypothesis, it was found from both parametric and non-parametric tests of significance that CARs related to dividend increases that were announced during the 2020 and 2021 financial years, when the Covid-19 pandemic was at its peak, were not significantly different from zero. Therefore, although the dividend increases still resulted in some CARs, such CARs were not statistically different from zero to confirm the signalling hypothesis. A p-value of 0.9830 from parametric t-tests and a p-value of 0.8971 from the Wilcoxon signed-rank test were used as a gauge that led to the conclusion that Covid-19 plays a disruptive effect on the signalling process of dividend increases.Keywords: cumulative abnormal returns, dividend increases, event study methodology, signalling
Procedia PDF Downloads 120