Search results for: plasma cholinesterase level
13120 Urbanization Level and Tempo (Speed) in Tigray Regional State, Ethiopia
Authors: Fikre Belay Tekulu
Abstract:
Background and objective: The study attempts to determine the level and tempo or speed of urbanization in the Tigray regional state based on census data from 1994 to 2013 in Ethiopia. Methods: The study examined the level and tempo of urbanization based on the 1994 and 2007 censuses as well as the 2013 CSA projection data. Findings: The level of urbanization at the regional level was found in 1994, 2007, and 2020 at 14.9%, 21.7%, and 27.7 % respectively. Whereas the level of urbanization varies among the zones of the region, the higher level of urbanization was recorded in the Eastern zone, followed by the Western, Southern Zone and Central zone of Tigray. The tempo or speed of urbanization was determined to be 0.49 percent per year at the regional level, with the Eastern area of Tigray showing the greatest tempo or speed of urbanization. Conclusions: Unbalanced urbanization among the zones results in socio-economic challenges. The study recommended several policy interventions aimed at judicious urbanization suitable for sustainable development.Keywords: urbanization, census, tempo or speed, urbanization level, Tigray
Procedia PDF Downloads 3313119 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor
Authors: Narasamma Nippatlapallia
Abstract:
Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as đđ». radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors đđ». , đđđ â , đ . , đ3, đ»2đ2, đ». are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct đ .đ» Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination
Procedia PDF Downloads 2913118 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application
Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi
Abstract:
Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer
Procedia PDF Downloads 1713117 Exchange Bias in Ceramics: From Polyol Made CoFeâOâ-core@CoO-Shell NPs to Nanostructured Ceramics
Authors: N. Flores-Martinez, G. Franceschin, T. Gaudisson, J.-M. Greneche, R. Valenzuela-Monjaras, S. Ammar
Abstract:
Tailoring bulk materials keeping their nanoscale properties is the daydream of material scientists. But especially in magnetism, this single desire can revolutionize our everyday life. Now, thanks to the methods of synthesis, based on the combination of colloidal chemistry (CC) to flash sintering (FS), customizing magnets becomes each time more 'easy', 'cheap' and 'clean'. Although by CC we can obtain straightway nanopowders with good magnetic featuring, like exchange bias (EB) phenomenon, it does not result so attractive for applications. Since a solid material is simple to manipulate and integrate in a device, many consolidation methods have been tested aiming to keep the nanopowders characteristics after consolidation. Unfortunately, the lack of structural crystalline arrangement and the grain growth worsen the magnetic properties. In this work, we exhibit, for the first-time authorâs best knowledge, the EB in sintered ceramics, starting from CoFeâOâ-core@CoO-shell NPs obtained by CC. Despite the fact that EB field is about 28 mT in ceramics and it is not yet considered for applications, this work opens an alternative in the permanent magnets fabrication through a FS method, the spark plasma sintering, starting from CC synthesized nanopowders.Keywords: core-shell nanoparticles, exchange bias, nanostructured ceramics, spark plasma sintering
Procedia PDF Downloads 14813116 Ultrasound as an Aid to Predict the Onset of Leaking in Dengue Haemorrhagic Fever: Experience of a Dengue Treatment Facility in South Asia
Authors: Hasn Perera, Is Almeida, Hnk Perera, Mzf Mohammed, Ade Silva, H. Wijesinghe, Ajal Fernando
Abstract:
Introduction: Dengue is a major Public Health burden of two clinical entities, Dengue Fever & Dengue Haemorrhagic Fever (DHF). The vast majority of dengue deaths occur in DHF patients, where the diagnosis hinges on the presence of fluid leakage. Limited Ultrasound Scans (USS) of chest and abdomen are used widely at Centre for Clinical Management of Dengue & Dengue Haemorrhagic Fever (CCMDDHF), as the primary method for detecting fluid leaking in DHF. This study analyses the relationship between haematological and USS findings at the onset of leaking and to further determine the usefulness of ultrasound in diagnosing DHF. Methods: A prospective analysis of 80 serologically confirmed dengue patients initially admitted to a General Medical and Paediatric wards who were subsequently transferred to the CCMDDHF from March to September 2017 were analysed. In addition to repeated blood counts and capillary haematocritsâ, serial USS were done to detect the onset fluid leaking by three competent and experienced doctors at CCMDDHF. Results: 80 patients (male: female: 38:42) with a mean age of 20 years (SD ±16.8, range 3-74) were evaluated. Dropping of platelet counts below 100,000 and haematocrit rise towards 20% started 4±1.3 day of fever with a mean platelet value of 69x103(range17-98x103). Gallbladder wall thickening was the commonest (98.7%) USS finding followed by fluid in hepato-renal pouch (95%), pelvic fluid (58.7%), right-sided pleural effusion (35%), bilateral effusions (7.5%). USS evidence of plasma leakage was detected in 11.25 %( n=9) of DHF cases from 1 day before significant haematocrit rise was noted. 35 (43.7%) patients with lowering platelets and haematocrit rise showed no objective evidence of plasma leaking on ultrasound scan. Conclusion: This outbreak underscores the importance of USS as a useful, sensitive and cost-effective tool for early diagnosis of suspected DHF cases, facilitating the tracking of progress of leaking and management of epidemics.Keywords: dengue, ultrasound, plasma leaking, South Asia
Procedia PDF Downloads 23413115 Correlation of Serum Apelin Level with Coronary Calcium Score in Patients with Suspected Coronary Artery Disease
Authors: M. Zeitoun, K. Abdallah, M. Rashwan
Abstract:
Introduction: A growing body of evidence indicates that apelin, a relatively recent member of the adipokines family, has a potential anti-atherogenic effect. An association between low serum apelin state and coronary artery disease (CAD) was previously reported; however, the relationship between apelin and the atherosclerotic burden was unclear. Objectives: Our aim was to explore the correlation of serum apelin level with coronary calcium score (CCS) as a quantitative marker of coronary atherosclerosis. Methods: This observational cross-sectional study enrolled 100 consecutive subjects referred for cardiac multi-detector computed tomography (MDCT) for assessment of CAD (mean age 54 ± 9.7 years, 51 male and 49 females). Clinical parameters, glycemic and lipid profile, high sensitivity CRP (hsCRP), homeostasis model assessment of insulin resistance (HOMA-IR), serum creatinine and complete blood count were assessed. Serum apelin levels were determined using a commercially available Enzyme Immunoassay (EIA) Kit. High-resolution non-contrast CT images were acquired by a 64-raw MDCT and CCS was calculated using the Agatston scoring method. Results: Forty-three percent of the studied subjects had positive coronary artery calcification (CAC). The mean CCS was 79 ± 196.5 Agatston units. Subjects with detectable CAC had significantly higher fasting plasma glucose, HbA1c, and WBCs count than subjects without detectable CAC (p < 0.05). Most importantly, subjects with detectable CAC had significantly lower serum apelin level than subjects without CAC (1.3 ± 0.4 ng/ml vs. 2.8 ± 0.6 ng/ml, p < 0.001). In addition, there was a statistically significant inverse correlation between serum apelin levels and CCS (r = 0.591, p < 0.001); on multivariate analysis this correlation was found to be independent of traditional cardiovascular risk factors and hs-CRP. Conclusion:To the best of our knowledge, this is the first report of an independent association between apelin and CCS in patients with suspected CAD. Apelin emerges as a possible novel biomarker for CAD, but this result remains to be proved prospectively.Keywords: HbA1c, apelin, adipokines, coronary calcium score (CCS), coronary artery disease (CAD)
Procedia PDF Downloads 34113114 The Study of Solar Activity during Sun Eclipse and Its Relation to Earthquake
Authors: Hanieh Sadat Jannesari. Rahelehossadat Abtahi, Kourosh Bamzadeh, Alireza Nadimi
Abstract:
The earthquake is one of the most devastating natural hazards, in which hundreds of thousands have lost their lives as a result of it. So far, experts have tried to use precursors to identify the earthquake before it occurs in order to alert and save people, a part of which relates to solar activity and earthquakes. The purpose of this article is to investigate solar activity during the solar eclipse as a precursor to pre-earthquake awareness. Information from this article is derived from the Influences and USGS Daily Data Center. During solar activity, electric interactions between the solar wind and the celestial bodies are formed, and then gravitational lenses are formed. If, during this event, there is also an eclipse, the dispersed waves in space (in accordance with the theory of general relativity of Einstein) in contact with plasma-gravitational lenses in space will move in a straight line toward the earth. In addition to forming the focal point, these gravitational lenses reflect the source image either at their focal length or farther away. The image reflected in the earth by ionized particles in the form of energy transmission lines can cause material collapse and earthquakes. In this study, the correlation between solar winds and the celestial bodies during the solar eclipse is about 76% of the location of large earthquakes.Keywords: earthquake, plasma-gravitational lens, solar eclipse, solar spots
Procedia PDF Downloads 2613113 Characterization of Nanostructured and Conventional TiAlN and AlCrN Coated ASTM-SA213-T-11 Boiler Steel
Authors: Vikas Chawla, Buta Singh Sidhu, Amita Rani, Amit Handa
Abstract:
The main objective of the present work is microstructural and mechanical characterization of the conventional and nanostructured TiAlN and AlCrN coatings deposited on T-11 boiler steel. In case of conventional coatings, Al-Cr and Ti-Al metallic powders were deposited using plasma spray process followed by gas nitriding of the surface which was done in the lab with optimized parameters after conducting several trials on plasma-sprayed coated specimens. The physical vapor deposition process (PAPVD) was employed for depositing nanostructured TiAlN and AlCrN coatings. The field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray analysis (EDAX) attachment, X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) analysis and the X-Ray mapping analysis techniques have been used to study surface and cross-sectional morphology of the coatings. The surface roughness and micro-hardness were also measured. A good adhesion of the conventional thick TiAlN and AlCrN coatings was found. The coatings under study are recommended for the applications to super-heater and re-heater tubes of the boilers based upon the outcomes of the research work.Keywords: nanostructure, physical vapour deposition, oxides, thin films, electron microscopy
Procedia PDF Downloads 14013112 Therapeutic Drug Monitoring by Dried Blood Spot and LC-MS/MS: Novel Application to Carbamazepine and Its Metabolite in Paediatric Population
Authors: Giancarlo La Marca, Engy Shokry, Fabio Villanelli
Abstract:
Epilepsy is one of the most common neurological disorders, with an estimated prevalence of 50 million people worldwide. Twenty five percent of the epilepsy population is represented in children under the age of 15 years. For antiepileptic drugs (AED), there is a poor correlation between plasma concentration and dose especially in children. This was attributed to greater pharmacokinetic variability than adults. Hence, therapeutic drug monitoring (TDM) is recommended in controlling toxicity while drug exposure is maintained. Carbamazepine (CBZ) is a first-line AED and the drug of first choice in trigeminal neuralgia. CBZ is metabolised in the liver into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent. This develops the need for an assay able to monitor the levels of both CBZ and CBZE. The aim of the present study was to develop and validate a LC-MS/MS method for simultaneous quantification of CBZ and CBZE in dried blood spots (DBS). DBS technique overcomes many logistical problems, ethical issues and technical challenges faced by classical plasma sampling. LC-MS/MS has been regarded as superior technique over immunoassays and HPLC/UV methods owing to its better specificity and sensitivity, lack of interference or matrix effects. Our method combines advantages of DBS technique and LC-MS/MS in clinical practice. The extraction process was done using methanol-water-formic acid (80:20:0.1, v/v/v). The chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50 mL/min. The method was linear over the range 1-40 mg/L and 0.25-20 mg/L for CBZ and CBZE respectively. The limit of quantification was 1.00 mg/L and 0.25 mg/L for CBZ and CBZE, respectively. Intra-day and inter-day assay precisions were found to be less than 6.5% and 11.8%. An evaluation of DBS technique was performed, including effect of extraction solvent, spot homogeneity and stability in DBS. Results from a comparison with the plasma assay are also presented. The novelty of the present work lies in being the first to quantify CBZ and its metabolite from only one 3.2 mm DBS disc finger-prick sample (3.3-3.4 ”l blood) by LC-MS/MS in a 10 min. chromatographic run.Keywords: carbamazepine, carbamazepine-10, 11-epoxide, dried blood spots, LC-MS/MS, therapeutic drug monitoring
Procedia PDF Downloads 41713111 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids
Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout
Abstract:
Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/ÎŒm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/ÎŒm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1ÎŒA/cm2 is found to be 3.5, 2.3 and 2 V/ÎŒm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 ”A/cm2 is drawn at an applied field of 4.1 V/ÎŒm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1”A/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/”m) compared to pristine SnS2 (4.8 V/”m) nanosheets. The field enhancement factor ÎČ (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.Keywords: graphene, layered material, field emission, plasma, doping
Procedia PDF Downloads 36113110 Generation and Diagnostics of Atmospheric Pressure Dielectric Barrier Discharge in Argon/Air
Authors: R. Shrestha, D. P. Subedi, R. B. Tyata, C. S. Wong,
Abstract:
In this paper, a technique for the determination of electron temperatures and electron densities in atmospheric pressure Argon/air discharge by the analysis of optical emission spectra (OES) is reported. The discharge was produced using a high voltage (0-20) kV power supply operating at a frequency of 27 kHz in parallel electrode system, with glass as dielectric. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. Optical emission spectra in the range of (300nm-850nm) were recorded for the discharge with different inter electrode gap keeping electric field constant. Electron temperature (Te) and electron density (ne) are estimated from electrical and optical methods. Electron density was calculated using power balance method. The optical methods are related with line intensity ratio from the relative intensities of Ar-I and Ar-II lines in Argon plasma. The electron density calculated by using line intensity ratio method was compared with the electron density calculated by stark broadening method. The effect of dielectric thickness on plasma parameters (Te and ne) have also been studied and found that Te and ne increases as thickness of dielectric decrease for same inter electrode distance and applied voltage.Keywords: electron density, electron temperature, optical emission spectra,
Procedia PDF Downloads 49613109 The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells
Authors: Jeongyeon Park, Yeo Jun Yoon, Jiyoung Seo, In Seok Moon, Hae Jun Lee, Kiwon Song
Abstract:
Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 â/â and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs.Keywords: cold atmospheric pressure plasma, apoptosis, proliferation, cancer cells, adult stem cells
Procedia PDF Downloads 28213108 Differences in Cognitive Functioning over the Course of Chemotherapy in Patients Suffering from Multiple Myeloma and the Possibility to Predict Their Cognitive State on the Basis of Biological Factors
Authors: Magdalena Bury-Kaminska, Aneta Szudy-Szczyrek, Aleksandra Nowaczynska, Olga Jankowska-Lecka, Marek Hus, Klaudia Kot
Abstract:
Introduction: The aim of the research was to determine the changes in cognitive functioning in patients with plasma cell myeloma by comparing patientsâ state before the treatment and during chemotherapy as well as to determine the biological factors that can be used to predict patientsâ cognitive state. Methods: The patients underwent the research procedure twice: before chemotherapy and after 4-6 treatment cycles. A psychological test and measurement of the following biological variables were carried out: TNF-α (tumor necrosis factor), IL-6 (interleukin 6), IL-10 (interleukin 10), BDNF (brain-derived neurotrophic factor). The following research methods were implemented: the Montreal Cognitive Assessment (MoCA), Battery of Tests for Assessing Cognitive Functions PU1, experimental and clinical trials based on the Choynowskiâs Memory Scale, Stroop Color-Word Interference Test (SCWT), depression measurement questionnaire. Results: The analysis of the research showed better cognitive functions of patients during chemotherapy in comparison to the phase before it. Moreover, neurotrophin BDNF allows to predict the level of selected cognitive functions (semantic fluency and execution control) already at the diagnosis stage. After 4-6 cycles, it is also possible to draw conclusions concerning the extent of working memory based on the level of BDNF. Cytokine TNF-α allows us to predict the level of letter fluency during anti-cancer treatment. Conclusions: It is possible to presume that BDNF has a protective influence on patientsâ cognitive functions and working memory and that cytokine TNF-α co-occurs with a diminished execution control and better material grouping in terms of phonological fluency. Acknowledgment: This work was funded by the National Science Center in Poland [grant no. 2017/27/N/HS6/02057.Keywords: chemobrain, cognitive impairment, nonâcentral nervous system cancers, hematologic diseases
Procedia PDF Downloads 15213107 Flood Control Structures in the River Göta Ălv to Protect Gothenburg City (Sweden) during the 21st Century: Preliminary Evaluation
Authors: M. Irannezhad, E. H. N. Gashti, U. Moback, B. KlĂžve
Abstract:
Climate change because of increases in concentration level of greenhouse gases emissions to the atmosphere will result in mean sea level rise about +1 m by 2100. To prevent coastal floods resulted from the sea level rising, different flood control structures have been built, e.g. the Thames barrier on the Thames River in London (UK), with acceptable protection levels at least so far. Gothenburg located on the southwest coast of Sweden, with the River Göta Àlv running through it, is one of vulnerable cities to the accelerated rises in mean sea level. Developing a water level model by MATLAB, we evaluated using a sea barrage in the Göta Àlv River as the flood control structure for protecting the Gothenburg city during this century. Considering three operational scenarios for two barriers in upstream and downstream, the highest sea level was estimated to + 2.95 m above the current mean sea level by 2100. To verify flood protection against such high sea levels, both barriers have to be closed. To prevent high water level in the River Göta Àlv reservoir, the barriers would be open when the sea level is low. The suggested flood control structures would successfully protect the city from flooding events during this century.Keywords: climate change, flood control structures, gothenburg, sea level rising, water level mode
Procedia PDF Downloads 35513106 Impact of Climate Change on Water Level and Properties of Gorgan Bay in the Southern Caspian Sea
Authors: Siamak Jamshidi
Abstract:
The Caspian Sea is the Earth's largest inland body of water. One of the most important issues related to the sea is water level changes. For measuring and recording Caspian Sea water level, there are at least three gauges and radar equipment in Anzali, Nowshahr and Amirabad Ports along the southern boundary of the Caspian Sea. It seems that evaporation, hotter surface air temperature, and in general climate change is the main reasons for its water level fluctuations. Gorgan Bay in the eastern part of the southern boundary of the Caspian Sea is one of the areas under the effect of water level fluctuation. Based on the results of field measurements near the Gorgan Bay mouth temperature ranged between 24°Câ28°C and salinity was about 13.5 PSU in midsummer while temperature changed between 10-11.5°C and salinity mostly was 15-16.5 PSU in mid-winter. The decrease of Caspian Sea water level and rivers outflow are the two most important factors for the increase in water salinity of the Gorgan Bay. Results of field observations showed that, due to atmospheric factors, climate changes and decreasing of precipitation over the southern basin of the Caspian Sea during last decades, the water level of bay was reduced around 0.5 m.Keywords: Caspian Sea, Gorgan Bay, water level fluctuation, climate changes
Procedia PDF Downloads 17013105 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering
Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola
Abstract:
Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+ÎČ) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials
Procedia PDF Downloads 7113104 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing
Authors: Daniel Phifer, Anna Prokhodtseva
Abstract:
DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell
Procedia PDF Downloads 20613103 From Manipulation to Citizen Control: A Case Study Revealing the Level of Participation in the Citizen Participatory Audit
Authors: Mark Jason E. Arca, Jay Vee R. Linatoc, Rex Francis N. Lupango, Michael Joe A. Ramirez
Abstract:
Participation promises an avenue for citizens to take part in governance, but it does not necessarily mean effective participation. The proper integration of participants in the decision-making process should be properly addressed to ensure effectiveness. This study explores the integration of the participants in the decision-making process to reveal the level of participation in the Solid Waste Management audit done by the Citizen Participatory Audit (CPA), a program under the supervision of the Commission on Audit. Specifically, this study will use the experience of participation to identify emerging themes that will help reveal the level of participation through the integrated ladder of participation. The researchers used key informant interviews to gather necessary data from the actors of the program. The findings revealed that the level of participation present in the CPA is at the Placation level, a level below the programâs targeted level of participation. The study also allowed the researchers to reveal facilitating factors in the program that contributed to a better understanding of the practice of participation.Keywords: citizen participation, culture of participation, ladder of participation, level of participation
Procedia PDF Downloads 41113102 Recombination Center Levels in Gold and Platinum Doped N-Type Silicon
Authors: Nam Chol Yu, Kyong Il Chu
Abstract:
Using DLTS measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25eV(A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54eV(B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.Keywords: recombination center level, lifetime, carrier lifetime control, gold, platinum, silicon
Procedia PDF Downloads 15513101 Structure of Consciousness According to Deep Systemic Constellations
Authors: Dmitry Ustinov, Olga Lobareva
Abstract:
The method of Deep Systemic Constellations is based on a phenomenological approach. Using the phenomenon of substitutive perception it was established that the human consciousness has a hierarchical structure, where deeper levels govern more superficial ones (reactive level, energy or ancestral level, spiritual level, magical level, and deeper levels of consciousness). Every human possesses a depth of consciousness to the spiritual level, however deeper levels of consciousness are not found for every person. It was found that the spiritual level of consciousness is not homogeneous and has its own internal hierarchy of sublevels (the level of formation of spiritual values, the level of the 'inner observer', the level of the 'path', the level of 'God', etc.). The depth of the spiritual level of a person defines the paradigm of all his internal processes and the main motives of the movement through life. At any level of consciousness disturbances can occur. Disturbances at a deeper level cause disturbances at more superficial levels and are manifested in the daily life of a person in feelings, behavioral patterns, psychosomatics, etc. Without removing the deepest source of a disturbance it is impossible to completely correct its manifestation in the actual moment. Thus a destructive pattern of feeling and behavior in the actual moment can exist because of a disturbance, for example, at the spiritual level of a person (although in most cases the source is at the energy level). Psychological work with superficial levels without removing a source of disturbance cannot fully solve the problem. The method of Deep Systemic Constellations allows one to work effectively with the source of the problem located at any depth. The methodology has confirmed its effectiveness in working with more than a thousand people.Keywords: constellations, spiritual psychology, structure of consciousness, transpersonal psychology
Procedia PDF Downloads 24913100 Investigation Studies of WNbMoVTa and WNbMoVTaCrâ.â Al Refractory High Entropy Alloys as Plasma-Facing Materials
Authors: Burçak Boztemur, Yue Xu, Laima Luo, M. LĂŒtfi ĂveçoÄlu, Duygu AÄaoÄulları
Abstract:
Tungsten (W) is used chiefly as plasma-facing material. However, it has some problems, such as brittleness after plasma exposure. High-entropy alloys (RHEAs) are a new opportunity for this deficiency. So, the neutron shielding behavior of WNbMoVTa and WNbMoVTaCrâ.â Al compositions were examined against Heâș irradiation in this study. The mechanical and irradiation properties of the WNbMoVTa base composition were investigated by adding the Al and Cr elements. The mechanical alloying (MA) for 6 hours was applied to obtain RHEA powders. According to the X-ray diffraction (XRD) method, the body-centered cubic (BCC) phase and NbTa phase with a small amount of WC impurity that comes from vials and balls were determined after 6 h MA. Also, RHEA powders were consolidated with the spark plasma sintering (SPS) method (1500 ÂșC, 30 MPa, and 10 min). After the SPS method, (Nb,Ta)C and WâCâ.ââ phases were obtained with the decomposition of WC and stearic acid that is added during MA based on XRD results. Also, the BCC phase was obtained for both samples. While the AlâOâ phase with a small intensity was seen for the WNbMoVTaCrâ.â Al sample, the TaâVOâ phase was determined for the base sample. These phases were observed as three different regions according to scanning electron microscopy (SEM). All elements were distributed homogeneously on the white region by measuring an electron probe micro-analyzer (EPMA) coupled with a wavelength dispersive spectroscope (WDS). Also, the grey region of the WNbMoVTa sample was rich in Ta, V, and O elements. However, the amount of Al and O elements was higher for the grey region of the WNbMoVTaCrâ.â Al sample. The high amount of Nb, Ta, and C elements were determined for both samples. Archimedesâ densities that were measured with alcohol media were closer to the theoretical densities of RHEAs. These values were important for the microhardness and irradiation resistance of compositions. While the Vickers microhardness value of the WNbMoVTa sample was measured as ~11 GPa, this value increased to nearly 13 GPa with the WNbMoVTaCrâ.â Al sample. These values were compatible with the wear behavior. The wear volume loss was decreased to 0.16Ă10â»âŽ from 1.25Ă10â»âŽ mmÂł by the addition of Al and Cr elements to the WNbMoVTa. The Heâș irradiation was conducted on the samples to observe surface damage. After irradiation, the XRD patterns were shifted to the left because of defects and dislocations. Heâș ions were infused under the surface, so they created the lattice expansion. The peak shifting of the WNbMoVTaCrâ.â Al sample was less than the WNbMoVTa base sample, thanks to less impact. A small amount of fuzz was observed for the base sample. This structure was removed and transformed into a wavy structure with the addition of Cr and Al elements. Also, the deformation hardening was actualized after irradiation. A lower amount of hardening was obtained with the WNbMoVTaCrâ.â Al sample based on the changing microhardness values. The surface deformation was decreased in the WNbMoVTaCrâ.â Al sample.Keywords: refractory high entropy alloy, microhardness, wear resistance, Heâș irradiation
Procedia PDF Downloads 6513099 Rapides-Des-Ăles Main Spillway - Rehabilitation
Authors: Maryam Kamali Nezhad
Abstract:
As part of the project to rehabilitate the main spillway ("main") of the Rapides-des-Ăles development in 2019, it was noted that there is a difference between the water level of the intake gauge and the level measured at the main spillway. The Rapides-des-Ăles Generating Station is a Hydro-QuĂ©bec hydroelectric generating station and dam located on the Ottawa River in the Abitibi-TĂ©miscamingue administrative region of QuĂ©bec. This plant, with an installed capacity of 176 MW, was commissioned in 1966. During the start-up meeting held at the site in May 2019, it was noticed that the water level upstream of the main spillway was considerably higher than the water level at the powerhouse intake. Measurements showed that the level was 229.46 m, whereas the normal operating level (NOL) and the critical maximum level (CML) used in the design were 228.60 m and 229.51 m, respectively. Considering that the water level had almost reached the maximum critical level of the structure despite a flood with a recurrence period of about 100 years, the work was suspended while the project was being decided. This is the first time since the Rapides des Ăźles project was commissioned that a significant difference in elevation between the water level at the powerhouse (intake) and the main spillway has been observed. Following this observation, the contractor's work was suspended. The objective of this study is to identify the reason(s) for this problem and find solutions. Then determine the new upstream levels at the main spillway at which the safety of the structure is ensured and then adjust the engineering of the main spillway in the rehabilitation project accordingly.Keywords: spillway, rehabilitation, water level, powerhouse, normal operating level, critical maximum level, safety of the structure
Procedia PDF Downloads 7313098 Three-Level Converters Back-To-Back DC Bus Control for Torque Ripple Reduction of Induction Motor
Authors: T. Abdelkrim, K. Benamrane, B. Bezza, Aeh Benkhelifa, A. Borni
Abstract:
This paper proposes a regulation method of back-to-back connected three-level converters in order to reduce the torque ripple in induction motor. First part is dedicated to the presentation of the feedback control of three-level PWM rectifier. In the second part, three-level NPC voltage source inverter balancing DC bus algorithm is presented. A theoretical analysis with a complete simulation of the system is presented to prove the excellent performance of the proposed technique.Keywords: back-to-back connection, feedback control, neutral-point balance, three-level converter, torque ripple
Procedia PDF Downloads 49613097 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD
Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer
Abstract:
Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film
Procedia PDF Downloads 29213096 Azaridachta Indica (Neem) Seed Oil Effect in Experimental Arthritis â Biochemical Parameters Assessment
Authors: Sasan Khademnematolahi, Kevine Kamga Silihe, KatarĂna PruĆŸinskĂĄ, Martina Chrastina, Elisabeth Louise Ndjengue Mindang, FrantiĆĄek DrĂĄfi, KatarĂna BauerovĂĄ
Abstract:
Background: In ethnomedicine, plant parts and compounds are traditionally utilized to treat many disorders. Azadirachta indica, known as Neem, has been traditionally used in medicinal practices. Neem has various pharmaceutical activities, such as antioxidant and anti-inflammatory, due to the content of bioactive compounds like nimbolide, azadirachtin, and gedunin.Through its effect on pathological inflammatory processes, supplementation with it could alleviate the symptoms of rheumatoid arthritis (RA). Methods: This research aimed to assess Neem seed oil's impact on rats with adjuvant arthritis. Three doses in monotherapy and two in combination with methotrexate (MTX) have been studied and their effect was compared. Neem p.o. doses of 100, 200, and 300 mg/kg and MTX p.o. doses of 0.3 mg/kg were examined. After clinical parameters assessment, biochemical analysis was performed in plasma. Results: During the acute phase of the experimental arthritis (Day21), levels of MMP-9, MCP-1 and cytokines IL-1beta and IL-17A were measured. The positive results of inflammatory mediators evaluation in plasma encourage additional analysis also in related tissues to prove if Neem seed oil can be used as an adjuvant therapy for RA. Conclusion: In this study, the combination therapy of Neem with MTX was most effective from all therapies investigated.Keywords: adjuvant, neem, methotrexate, arthritis
Procedia PDF Downloads 4613095 Relationship Between Insulin Resistance and Some Coagulation and Fibrinolytic Parameters in Subjects With Metabolic Syndrome
Authors: Amany Ragab, Nashwa Khairat Abousamra, Omayma Saleh, Asmaa Higazy
Abstract:
Insulin resistance syndrome has been shown to be associated with many coagulation and fibrinolytic proteins and these associations suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders. This study was conducted to determine the levels of some of the haemostatic parameters in subjects having metabolic syndrome and to correlate these values with the anthropometric and metabolic variables associated with this syndrome. The study included 46 obese non diabetic subjects of whom 28 subjects(group1) fulfilled the ATP III criteria of the metabolic syndrome and 18 subjects (group2) did not have metabolic syndrome as well as 14 lean subjects (group 3) of matched age and sex as a control group. Clinical and laboratory evaluation of the study groups stressed on anthropometric measurements (weight, height, body mass index, waist circumference, and sagittal abdominal diameter), blood pressure, and laboratory measurements of fasting plasma glucose, fasting insulin, serum lipids, tissue plasminogen activator (t-PA), antithrombin III activity (ATIII), protein C and von Willebrand factor (vWf) antigen. There was significant increase in the concentrations of t-PA and vWf antigens in subjects having metabolic syndrome (group 1) in comparison to the other groups while there were non-significant changes in the levels of protein C antigen and AT III activity. Both t-PA and vWf showed significant correlation with HOMA-IR as a measure of insulin sensitivity. The t-PA showed also significant correlation with most of the variables of metabolic syndrome including waist circumference, BMI, systolic blood pressure, fasting plasma glucose, fasting insulin, and HDL cholesterol. On the other hand, vWf showed significant correlations with fasting plasma glucose, fasting insulin and sagital abdominal diameter, with non-significant correlations with the other variables. Haemostatic and fibrinolytic parameters should be included in the features and characterization of the insulin resistance syndrome. t-PA and vWf antigens concentrations were increased in subjects with metabolic syndrome and correlated with the HOMA-IR measure of insulin sensitivity. Taking into consideration that both t-PA and vWf are mainly released from vascular endothelium, these findings could be an indicator of endothelial dysfunction in that group of subjects.Keywords: insulin resistance, obesity, metabolic syndrome, coagulation
Procedia PDF Downloads 13713094 Blockchain Solutions for IoT Challenges: Overview
Authors: Amir Ali Fatoorchi
Abstract:
Regardless of the advantage of LoT devices, they have limitations like storage, compute, and security problems. In recent years, a lot of Blockchain-based research in IoT published and presented. In this paper, we present the Security issues of LoT. IoT has three levels of security issues: Low-level, Intermediate-level, and High-level. We survey and compare blockchain-based solutions for high-level security issues and show how the underlying technology of bitcoin and Ethereum could solve IoT problems.Keywords: Blockchain, security, data security, IoT
Procedia PDF Downloads 21013093 Examination of Contaminations in Fabricated Cadmium Selenide Quantum Dots Using Laser Induced Plasma Spectroscopy
Authors: Walid Tawfik, W. Askam Farooq, Sultan F. Alqhtani
Abstract:
Quantum dots (QDots) are nanometer-sized crystals, less than 10 nm, comprise a semiconductor or metallic materials and contain from 100 - 100,000 atoms in each crystal. QDots play an important role in many applications; light emitting devices (LEDs), solar cells, drug delivery, and optical computers. In the current research, a fundamental wavelength of Nd:YAG laser was applied to analyse the impurities in homemade cadmium selenide (CdSe) QDots through laser-induced plasma (LIPS) technique. The CdSe QDots were fabricated by using hot-solution decomposition method where a mixture of Cd precursor and trioctylphosphine oxide (TOPO) is prepared at concentrations of TOPO under controlled temperatures 200-350ÂșC. By applying laser energy of 15 mJ, at frequency 10 Hz, and delay time 500 ns, LIPS spectra of CdSe QDots samples were observed. The qualitative LIPS analysis for CdSe QDs revealed that the sample contains Cd, Te, Se, H, P, Ar, O, Ni, C, Al and He impurities. These observed results gave precise details of the impurities present in the QDs sample. These impurities are important for future work at which controlling the impurity contents in the QDs samples may improve the physical, optical and electrical properties of the QDs used for solar cell application.Keywords: cadmium selenide, TOPO, LIPS spectroscopy, quantum dots
Procedia PDF Downloads 14213092 Musical Tesla Coil with Faraday Box Controlled by a GNU Radio
Authors: Jairo Vega, Fabian Chamba, Jordy Urgiles
Abstract:
In this work, the implementation of a Matlabcontrolled Musical Tesla Coil and external audio signals was presented. First, the audio signal was obtained from a mobile device and processed in Matlab to modify it, adding noise or other desired effects. Then, the processed signal was passed through a preamplifier to increase its amplitude to a level suitable for further amplification through a power amplifier, which was part of the current driver circuit of the Tesla coil. To get the Tesla coil to generate music, a circuit capable of modulating and generating the audio signal by manipulating electrical discharges was used. To visualize and listen to these discharges, a small Faraday cage was built to attenuate the external electric fields. Finally, the implementation of the musical Tesla coil was concluded. However, it was observed that the audio signal volume was very low, and the components used heated up quickly. Due to these limitations, it was determined that the project could not be connected to power for long periods of time.Keywords: Tesla coil, plasma, electrical signals, GNU Radio
Procedia PDF Downloads 9713091 Proprotein Convertase Subtilisin/Kexin Type 9 Enhances Arterial Medial Calcification in a Uremic Rat Model of Chronic Kidney Disease
Authors: Maria Giovanna Lupo, Marina Camera, Marcello Rattazzi, Nicola Ferri
Abstract:
A complex interplay among chronic kidney disease, lipid metabolism and aortic calcification has been recognized starting from results of many clinical and experimental studies. Here we investigated the influence of kidney function on PCSK9 levels, both in uremic rats and in clinical observation study, and its potential direct action on cultured smooth muscle cells (SMCs) calcification. In a cohort of 594 subjects enrolled in a single centre, observational, cross-sectional and longitudinal study, a negative association between GFR and plasma PCSK9 was found. Atherosclerotic cardiovascular disease (ASCVD), as co-morbidity, further increased PCSK9 plasma levels. Diet-induced uremic condition in rats, induced aortic calcification and increased total cholesterol and PCSK9 levels in plasma, livers and kidneys. Immunohistochemical analysis confirmed PCSK9 expression in aortic SMCs. SMCs overexpressing PCSK9 (SMCsPCSK9), cultured for 7-days in a pro-calcification environment (2.0mM or 2.4mM inorganic phosphate, Pi) showed a significantly higher extracellular calcium (Ca2+) deposition compared to mocked SMCs. Under the same experimental conditions, the addition of exogenous recombinant PCSK9 did not increase the extracellular calcification of SMCs. By flow cytometry analysis we showed that SMCsPCSK9, in response to 2.4mM Pi, released higher number of extracellular vesicles (EVs) positive for three tetraspanin molecules, such as CD63, CD9, and CD81. EVs derived from SMCsPCSK9 tended to be more enriched in calcium and alkaline phosphatase (ALPL), compared to EVs from mocks SMCs. In conclusion, our study reveals a direct role of PCSK9 on vascular calcification induced by higher inorganic phosphate levels associated to CKD condition. This effect appears to be mediated by a positive effect of endogenous PCSK9 on the release of EVs containing Ca2+ and ALP, which facilitate the deposition inorganic calcium phosphate crystals.Keywords: PCSK9, calcification, extracellular vesicles, chronic kidney disease
Procedia PDF Downloads 114