Search results for: orphan nuclear receptors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1139

Search results for: orphan nuclear receptors

719 Camptothecin Promotes ROS-Mediated G2/M Phase Cell Cycle Arrest, Resulting from Autophagy-Mediated Cytoprotection

Authors: Rajapaksha Gedara Prasad Tharanga Jayasooriya, Matharage Gayani Dilshara, Yung Hyun Choi, Gi-Young Kim

Abstract:

Camptothecin (CPT) is a quinolone alkaloid which inhibits DNA topoisomerase I that induces cytotoxicity in a variety of cancer cell lines. We previously showed that CPT effectively inhibited invasion of prostate cancer cells and also combined treatment with subtoxic doses of CPT and TNF-related apoptosis-inducing ligand (TRAIL) potentially enhanced apoptosis in a caspase-dependent manner in hepatoma cancer cells. Here, we found that treatment with CPT caused an irreversible cell cycle arrest in the G2/M phase. CPT-induced cell cycle arrest was associated with a decrease in protein levels of cell division cycle 25C (Cdc25C) and increased the level of cyclin B and p21. The CPT-induced decrease in Cdc25C was blocked in the presence of proteasome inhibitor MG132, thus reversed the cell cycle arrest. In addition to that treatment of CPT-increased phosphorylation of Cdc25C was the resulted of activation of checkpoint kinase 2 (Chk2), which was associated with phosphorylation of ataxia telangiectasia-mutated. Interestingly CPT induced G2/M phase of the cell cycle arrest is reactive oxygen species (ROS) dependent where ROS inhibitors NAC and GSH reversed the CPT-induced cell cycle arrest. These results further confirm by using transient knockdown of nuclear factor-erythroid 2-related factor 2 (Nrf2) since it regulates the production of ROS. Our data reveal that treatment of siNrf2 increased the ROS level as well as further increased the CPT induce G2/M phase cell cycle arrest. Our data also indicate CPT-enhanced cell cycle arrest through the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) pathway. Inhibitors of ERK and JNK more decreased the Cdc25C expression and protein expression of p21 and cyclin B. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in G2/M arrest by CPT.

Keywords: camptothecin, cell cycle, checkpoint kinase 2, nuclear factor-erythroid 2-related factor 2, reactive oxygen species

Procedia PDF Downloads 441
718 Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C

Authors: Haiming Wen, Isabella J. Van Rooyen

Abstract:

Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport.

Keywords: TRISO particle, fission product, nuclear fuel, electron microscopy, neutron irradiation

Procedia PDF Downloads 265
717 The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids

Authors: Muhammad Mazhar, Yong Zhu, Likang Qin

Abstract:

Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D.

Keywords: dietary fibers, intestinal microbiota, short-chain fatty acids, fermentation, type 2 diabetes

Procedia PDF Downloads 73
716 Osteoprotegerin and Osteoprotegerin/TRAIL Ratio are Associated with Cardiovascular Dysfunction and Mortality among Patients with Renal Failure

Authors: Marek Kuźniewski, Magdalena B. Kaziuk , Danuta Fedak, Paulina Dumnicka, Ewa Stępień, Beata Kuśnierz-Cabala, Władysław Sułowicz

Abstract:

Background: The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. Methods: OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CaSc) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentration. Cardiovascular and overall mortality data were collected during a 7-years follow-up. Results: OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Conclusions: Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality.

Keywords: osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, receptor activator of nuclear factor kappa-B ligand, hemodialysis, chronic kidney disease, cardiovascular disease

Procedia PDF Downloads 334
715 Exposure to Ionizing Radiation Resulting from the Chernobyl Fallout and Childhood Cardiac Arrhythmia: A Population Based Study

Authors: Geraldine Landon, Enora Clero, Jean-Rene Jourdain

Abstract:

In 2005, the Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France) launched a research program named EPICE (acronym for 'Evaluation of Pathologies potentially Induced by CaEsium') to collect scientific information on non-cancer effects possibly induced by chronic exposures to low doses of ionizing radiation with the view of addressing a question raised by several French NGOs related to health consequences of the Chernobyl nuclear accident in children. The implementation of the program was preceded by a pilot phase to ensure that the project would be feasible and determine the conditions for implementing an epidemiological study on a population of several thousand children. The EPICE program focused on childhood cardiac arrhythmias started in May 2009 for 4 years, in partnership with the Russian Bryansk Diagnostic Center. The purpose of this cross-sectional study was to determine the prevalence of cardiac arrhythmias in the Bryansk oblast (depending on the contamination of the territory and the caesium-137 whole-body burden) and to assess whether caesium-137 was or not a factor associated with the onset of cardiac arrhythmias. To address these questions, a study bringing together 18 152 children aged 2 to 18 years was initiated; each child received three medical examinations (ECG, echocardiography, and caesium-137 whole-body activity measurement) and some of them were given with a 24-hour Holter monitoring and blood tests. The findings of the study, currently submitted to an international journal justifying that no results can be given at this step, allow us to answer clearly to the issue of radiation-induced childhood arrhythmia, a subject that has been debated for many years. Our results will be certainly helpful for health professionals responsible for the monitoring of population exposed to the releases from the Fukushima Dai-ichi nuclear power plant and also useful for future comparative study in children exposed to ionizing radiation in other contexts, such as cancer radiation therapies.

Keywords: Caesium-137, cardiac arrhythmia, Chernobyl, children

Procedia PDF Downloads 245
714 Thermal Instability in Solid under Irradiation

Authors: P. Selyshchev

Abstract:

Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.

Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability

Procedia PDF Downloads 268
713 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 191
712 In vitro Characterization of Mice Bone Microstructural Changes by Low-Field and High-Field Nuclear Magnetic Resonance

Authors: Q. Ni, J. A. Serna, D. Holland, X. Wang

Abstract:

The objective of this study is to develop Nuclear Magnetic Resonance (NMR) techniques to enhance bone related research applied on normal and disuse (Biglycan knockout) mice bone in vitro by using both low-field and high-field NMR simultaneously. It is known that the total amplitude of T₂ relaxation envelopes, measured by the Carr-Purcell-Meiboom-Gill NMR spin echo train (CPMG), is a representation of the liquid phase inside the pores. Therefore, the NMR CPMG magnetization amplitude can be transferred to the volume of water after calibration with the NMR signal amplitude of the known volume of the selected water. In this study, the distribution of mobile water, porosity that can be determined by using low-field (20 MHz) CPMG relaxation technique, and the pore size distributions can be determined by a computational inversion relaxation method. It is also known that the total proton intensity of magnetization from the NMR free induction decay (FID) signal is due to the water present inside the pores (mobile water), the water that has undergone hydration with the bone (bound water), and the protons in the collagen and mineral matter (solid-like protons). Therefore, the components of total mobile and bound water within bone that can be determined by low-field NMR free induction decay technique. Furthermore, the bound water in solid phase (mineral and organic constituents), especially, the dominated component of calcium hydroxyapatite (Ca₁₀(OH)₂(PO₄)₆) can be determined by using high-field (400 MHz) magic angle spinning (MAS) NMR. With MAS technique reducing NMR spectral linewidth inhomogeneous broadening and susceptibility broadening of liquid-solid mix, in particular, we can conduct further research into the ¹H and ³¹P elements and environments of bone materials to identify the locations of bound water such as OH- group within minerals and bone architecture. We hypothesize that with low-field and high-field magic angle spinning NMR can provide a more complete interpretation of water distribution, particularly, in bound water, and these data are important to access bone quality and predict the mechanical behavior of bone.

Keywords: bone, mice bone, NMR, water in bone

Procedia PDF Downloads 176
711 Colour Change and melenophores response in ateleost: Balantiochilous melenopterus (Bleeker) with Certain Chemicals and Drugs

Authors: Trapti Pathak

Abstract:

Fishes can change their body colour according to their surroundings by. They do so by either aggregation or dispersion of melanosomes within the skin. These movements can regulate by means of sympathetic nerves with the help of cytoskeleton. Employing the melanophores on isolated scales of the fingerling of teleost fish, it is attempted to characterise the concerned nerves and the receptors located on melenocytes along with implication of microtubules a part of cytoskeleton in the pigmentary translocation in the fish. The scales from dorso-lateral trunk of the fish represented the sympathetic– neuromelanophore preparations which were stimulated by chemical means, such as adrenergic agonist, antagonist and the microtubule-disrupting drugs such as yuhombine, dopamine, colchicine etc. Adrenaline is an adrenergic agonist which is strongly induced the dorse-dependent concentration of pigment in innervated melanophores while Yohimbine is an adrenergic antagonist which is known to block effectively the α2-adrenoceptors inhibited the action of adrenaline. Colchicine effectively interferes with melanosome aggregating action of adrenaline. From these results it is concluded that the chromatic fibres of adrenergic nature innervate the melanophores and these cells do possess α2-adrenoceptors which mediate the melanosome aggregation and the movements of pigment granules through microtubules means of transport within the cell. These movements of pigment are linked to paling or darkening achieved of teleost fish respectively when they approach to their background.

Keywords: melenophores, agonists, antagonist, colour change

Procedia PDF Downloads 77
710 Depressant Effects of 2-PMPA through Reduction of p-CREB (Ser133) and mGluR5 Level in Prefrontal Cortex of C57BL/6 Mice

Authors: Sang-Sun Yoon, Yea-Hyun Leem, Sangmee Ahn Jo

Abstract:

The N-acetylated-alpha-linked-acidic (NAAG) peptidase inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA) has demonstrated to be neuroprotective against glutamate-mediated neuron degeneration and neurological disorders such as ischemia. Several studies have demonstrated impaired psychiatric function by altered glutamate carboxypeptidase II expression, although 2-PMPA has not yet been studied. Thus, we investigated effect of 2-PMPA on depressive-like phenotype using C57BL/6 mice. Treatment of 2-PMPA (10 mg/kg for 6 days/daily, ip injection) on C57BL/6 naïve mice showed depressive-like symptoms such as decreased social preference, but did not affect the immobility measured by tail suspension test. Reduction of phosphorylated cAMP-responsive element binding (p-CREB) known as a representative marker of depressive-like behavior was observed in layer 1 and piriform cortex subregions of the prefrontal cortex of 2-PMPA-treated mice. The immunoreactivity of metabotropic glutamate receptors 5 (mGluR5) that mediate phosphorylation of CREB was also decreased in layer 1 and piriform cortex subregions of the prefrontal cortex of 2-PMPA injected mice. Thus, our results suggest that dysregulation of the GCPII or NAAG by 2-PMPA treatment is likely to be associated with pathogenesis of depression and further studies are needed to understand whether the reduced NAAG level or enhanced glutamate level in the brain is involved in this response.

Keywords: depression, GCPII, 2-PMPA, p-CREB, mGluR5

Procedia PDF Downloads 266
709 Antigen-Presenting Cell Characteristics of Human γδ T Lymphocytes in Chronic Myeloid Leukemia

Authors: Piamsiri Sawaisorn, Tienrat Tangchaikeeree, Waraporn Chan-On, Chaniya Leepiyasakulchai, Rachanee Udomsangpetch, Suradej Hongeng, Kulachart Jangpatarapongsa

Abstract:

Human Vγ9Vδ2 T lymphocytes are regarded as promising effector cells for cancer immunotherapy since they have the ability to eliminate several tumor cells through non-peptide antigen recognition and non-major histocompatibility complex (MHC) restriction. An issue of recent interest is the capability to activate γδ T cells by use of a group of drugs, such as pamidronate, that cause accumulation of phosphoantigen which is recognized by γδ T cell receptors. Moreover, their antigen presenting cell-like phenotype and function have been confirmed in many clinical trials. In this study, Vγ9Vδ2 T cells derived from normal peripheral blood mononuclear cells were activated with pamidronate and the expanded Vγ9Vδ2 T cells can recognize and kill chronic myeloid leukemia (CML) cells treated with pamidronate through their cytotoxic activity. To support the strong role played by Vγ9Vδ2 T cells against cancer, we provide the evidence that Vγ9Vδ2 T cells activated with CML cell lysate antigen can efficiently express antigen presenting cell (APC) phenotype and function. In conclusion, pamidronate can be used in intentional activation of human Vγ9Vδ2 T cells and can increase the susceptibility of CML cells to cytotoxicity of Vγ9Vδ2 T cells. The activated Vγ9Vδ2 T cells by cancer cells lysate can show their APC characteristics, and so greatly increase the interest in exploring their therapeutic potential in hematologic malignancy.

Keywords: γδ T lymphocytes, antigen-presenting cells, chronic myeloid leukemia, cancer, immunotherapy

Procedia PDF Downloads 186
708 A Mathematical Analysis of a Model in Capillary Formation: The Roles of Endothelial, Pericyte and Macrophages in the Initiation of Angiogenesis

Authors: Serdal Pamuk, Irem Cay

Abstract:

Our model is based on the theory of reinforced random walks coupled with Michealis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived tumor angiogenesis factor (TAF) into proteolytic enzyme which in turn degrade the basal lamina. The model consists of two main parts. First part has seven differential equations (DE’s) in one space dimension over the capillary, whereas the second part has the same number of DE’s in two space dimensions in the extra cellular matrix (ECM). We connect these two parts via some boundary conditions to move the cells into the ECM in order to initiate capillary formation. But, when does this movement begin? To address this question we estimate the thresholds that activate the transport equations in the capillary. We do this by using steady-state analysis of TAF equation under some assumptions. Once these equations are activated endothelial, pericyte and macrophage cells begin to move into the ECM for the initiation of angiogenesis. We do believe that our results play an important role for the mechanisms of cell migration which are crucial for tumor angiogenesis. Furthermore, we estimate the long time tendency of these three cells, and find that they tend to the transition probability functions as time evolves. We provide our numerical solutions which are in good agreement with our theoretical results.

Keywords: angiogenesis, capillary formation, mathematical analysis, steady-state, transition probability function

Procedia PDF Downloads 156
707 Kids and COVID-19: They are Winning with Their Immunity

Authors: Husham Bayazed, Fatimah Yousif

Abstract:

Purpose of Presentation: The infant immune system has a reputation for being weak and underdeveloped when compared to the adult immune system, but the comparison isn’t quite fair. At the start, as the COVID-19 pandemic drags on and evolves, many Pediatricians and kids' parents have been left with renewed questions about the consequences and sequel of infection on children and the steps to be taken if their child has the symptoms of COVID-19 or tests positive. Recent Findings Literature reviews and recent studies revealed that children are better than adults at controlling SARS-CoV-2. There was conflicting evidence on age-related differences in ACE2 expression in the nose and lungs. But scientists who measured the ‘viral load’ in children's upper airways have seen no clear difference between children and adults. Moreover, the hypothesis is that kids might be more exposed to other coronaviruses common cold, with a production of ready protective antibodies to lock on to the pandemic coronavirus. But the evidence suggests that adults also have this immunity too. Strikingly, these ‘cross-reactive’ antibodies don’t offer any special protection. Summary One of the few silver linings of the Covid-19 pandemic is that children are relatively spared. The kid's Innate Immunity is hardly the whole story, the innate immune response against SARS-CoV-2 infection is early initiative calm with low immunological tone to prevent an overactive immunity and with rapidly repair damage to the lungs in contrast to stormy waves in adults. Therefore, Kids are at much lower risk of Covid-19 infection, and they are still winning the battle against Covid-19 with their innate immunity.

Keywords: Covid-19, kids, ACE2 receptors, immunity

Procedia PDF Downloads 97
706 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 410
705 Nanoparticles in Drug Delivery and Therapy of Alzeheimer's Disease

Authors: Nirupama Dixit, Anyaa Mittal, Neeru Sood

Abstract:

Alzheimer’s disease (AD) is a progressive form of dementia, contributing to up to 70% of cases, mostly observed in elderly but is not restricted to old age. The pathophysiology of the disease is characterized by specific pathological changes in brain. The changes (i.e. accumulation of metal ions in brain, formation of extracellular β-amyloid (Aβ) peptide aggregates and tangle of hyper phosphorylated Tau protein inside neurons) damage the neuronal connections irreversibly. The current issues in improvement of life quality of Alzheimer's patient lies in the fact that the diagnosis is made at a late stage of the disease and the medications do not treat the basic causes of Alzheimer's. The targeted delivery of drug through the blood brain barrier (BBB) poses several limitations via traditional approaches for treatment. To overcome these drug delivery limitation, nanoparticles provide a promising solution. This review focuses on current strategies for efficient targeted drug delivery using nanoparticles and improving the quality of therapy provided to the patient. Nanoparticles can be used to encapsulate drug (which is generally hydrophobic) to ensure its passage to brain; they can be conjugated to metal ion chelators to reduce the metal load in neural tissue thus lowering the harmful effects of oxidative damage; can be conjugated with drug and monoclonal antibodies against BBB endogenous receptors. Finally this review covers how the nanoparticles can play a role in diagnosing the disease.

Keywords: Alzheimer's disease, β-amyloid plaques, blood brain barrier, metal chelators, nanoparticles

Procedia PDF Downloads 490
704 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis

Authors: Thanida Sritangthong, Suksun Amornraksa

Abstract:

By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.

Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis

Procedia PDF Downloads 319
703 Ovarian Surface Epithelium Receptors during Pregnancy and Estrus Cycle of Rats with Emphasis on Steroids and Gonadotropins Fluctuation

Authors: Salina Yahya Saddik

Abstract:

The present study is designed to demonstrate the Ovarian Surface Epithelial cells (OSE) Estrogen Receptor α (ERα) and Progesterone Receptor (PR) during pregnancy and estrous cycle in rat. Moreover, determination of the levels of plasma progesterone, estradiol, FSH and LH were also made. The levels of plasma progesterone, estradiol, FSH and LH concentrations were determined on days 7 (n=5), 14 (n=5), and 21(n=5) of pregnancy in three groups of rats and during the estrous cycle (n=5) using ELISA kit. Immunohistochemical method for PR and ERα expression was also made on the ovary. During pregnancy, FSH and LH remained low except at term when LH levels began to increase from 16 ng/ml to 47 ng/ml. Progesterone levels significantly exceeded estradiol values in all pregnant rats with a peak value of 202 ng/ml on day 14. Elevated progesterone levels were associated negatively with LH and estradiol levels during pregnancy. The levels of estradiol surged significantly on day 21. Immunohistochemistry of the ovary showed low levels of OSE cells staining positive for ERα expression. ERα positive cells were absent on day 7 and 14 of pregnancy, only day 21 recorded a very low percentage of immunostaining (0.5%) within the nuclei of OSE cells. On the contrary, immunostaining of PR was not observed within the nuclei of OSE cells in all groups of study. In conclusions, these results may suggest that progesterone effect during pregnancy seems to be overriding the positive effect of estrogens on OSE cells. High progesterone levels may have a direct negative effect on gonadotropin production and thereby it might inhibit events leading to both follicular development and OSE proliferation. Understanding the factors affecting OSE proliferation may help elucidating the mechanism(s) of assisted diseases such as ovarian cancer.

Keywords: ovarian surface, pregnancy, gonadotropins, steroids

Procedia PDF Downloads 314
702 Absence of Malignancy in Oral Epithelial Cells from Individuals Occupationally Exposed to Organic Solvents Working in the Shoe Industry

Authors: B. González-Yebra, B. Flores-Nieto, P. Aguilar-Salinas, M. Preciado Puga, A. L. González Yebra

Abstract:

The monitoring of populations occupationally exposed to organic solvents has been an important issue for several shoe factories for years since the International Agency for Research on Cancer (IARC) has advised on the potential carcinogenic risk of chemicals related to occupations. In order to detect if exposition to organic solvents used in some Mexican shoe factories contributes to oral carcinogenesis, we performed monitoring in three factories. Occupational exposure was determined by using monitors 3M. Organic solvents were assessed by gas chromatography. Then, we recruited 30 shoe workers (30.2 ± 8.4 years) and 10 unexposed subjects (43.3 ± 11.2 years) for the micronuclei (MN) test and immunodetection of some cancer biomarkers (ki-67, p16, caspase-3) in scraped oral epithelial cells. Monitored solvents detected were acetone, benzene, hexane, methyl ethyl ketone, and toluene in acceptable levels according to Official Mexican Norm. We found by MN test higher incidence of nuclear abnormalities (karyorrhexis, pycnosis, karyolysis, condensed chromatin, and macronuclei) in the exposed group than the non-exposed group. On the other hand, we found, a negative expression for Ki-67 and p16 in exfoliated epithelial cells from exposed and non-exposed to organic solvents subjects. Only caspase-3 shown positive patter of expression in 9/30 (30%) exposed subjects, and we detected high karyolysis incidence in caspase-3 subjects (p = 0.021). The absence of expression of proliferation markers p16 and ki-67 and presence of apoptosis marker caspase-3 are indicating the absence of malignancy in oral epithelial cells and low risk for oral cancer. It is a fact that the MN test is a very effective method to detect nuclear abnormalities in exfoliated buccal cells from subjects that have been exposed to organic solvents in the shoe industry. However, in order to improve this tool and predict cancer risk is it is mandatory to implement complementary tests as other biomarkers that can help to detect malignancy in individuals occupationally exposed.

Keywords: biomarkers, oral cancer, organic solvents, shoe industries

Procedia PDF Downloads 136
701 Canthin-6-One Alkaloid Inhibits NF-κB and AP-1 Activity: An Inhibitory Action At Transcriptional Level

Authors: Fadia Gafri, Kathryn Mckintosh, Louise Young, Alan Harvey, Simon Mackay, Andrew Paul, Robin Plevin

Abstract:

Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor found originally to play a key role in regulating inflammation. However considerable evidence links this pathway to the suppression of apoptosis, cellular transformation, proliferation and invasion (Aggarwal et al., 2006). Moreover, recent studies have also linked inflammation to cancer progression making NF-κB overall a promising therapeutic target for drug discovery (Dobrovolskaia & Kozlov, 2005). In this study we examined the effect of the natural product canthin-6-one (SU182) as part of a CRUK small molecule drug discovery programme for effects upon the NF-κB pathway. Initial studies demonstrated that SU182 was found to have good potency against the inhibitory kappa B kinases (IKKs) at 30M in vitro. However, at concentrations up to 30M, SU182 had no effect upon TNFα stimulated loss in cellular IκBα or p65 phosphorylation in the keratinocyte cell line NCTC2544. Nevertheless, 30M SU182 reduced TNF-α / PMA-induced NF-κB-linked luciferase reporter activity to (22.9 ± 5%) and (34.6± 3 %, P<0.001) respectively, suggesting an action downstream of IKK signalling. Indeed, SU182 neither decreased NF-κB-DNA binding as assayed by EMSA nor prevented the translocation of p65 (NF-κB) to the nucleus assessed by immunofluorescence and subcellular fractionation. In addition to the inhibition of transcriptional activity of TNFα-induced NF-κB reporter activity SU182 significantly reduced PMA-induced AP-1-linked luciferase reporter activity to about (48± 9% at 30M, P<0.001) . This mode of inhibition was not sufficient to prevent the activation of NF-κB dependent induction of other proteins such as COX-2 and iNOS, or activated MAP kinases (p38, JNK and ERK1/2) in LPS stimulated RAW 264.7 macrophages. Taken together these data indicate the potential for SU182 to interfere with the transcription factors NF-κB and AP-1 at transcriptional level. However, no potential anti-inflammatory effect was indicated, further investigation for other NF-κB dependent proteins linked to survival are also required to identify the exact mechanism of action.

Keywords: Canthin-6-one, NF-κB, AP-1, phosphorylation, Nuclear translocation, DNA-binding activity, inflammatory proteins.

Procedia PDF Downloads 458
700 Fam111b Gene Dysregulation Contributes to the Malignancy in Fibrosarcoma, Poor Clinical Outcomes in Poiktmp and a Low-cost Method for Its Mutation Screening

Authors: Cenza Rhoda, Falone Sunda, Elvis Kidzeru, Nonhlanhla P. Khumalo, Afolake Arowolo

Abstract:

Introduction: The human FAM111B gene mutations are associated with POIKTMP, a rare multi-organ fibrosing disease. Recent studies also reported the overexpression of FAM111B in specific cancers. However, the role of FAM111B in these pathologies, particularly fibrosarcoma, remains unknown. Materials and Methods: FAM111B RNA expression in some cancer cell lines was assessed in silico and validated in vitro in these cell lines and skin fibroblasts derived from the South African family member affected by POIKTMP with the heterozygous FAM111B gene mutation: NM_198947.4: c.1861T>G (p. Tyr621Asp or Y621D) by qPCR and western blot. The cellular function of FAM111B was also studied in HT1080 using various cell-based functional assays and a simple and cost-effective PCR-RFLP method for genotyping/screening FAM111B gene mutations described. Results: Expression studies showed upregulated FAM111B mRNA and protein in the cancer cells. High FAM111B expression with robust nuclear localization occurred in HT1080. Additionally, expression data and cell-based assays indicated that FAM111B led to the upregulation of cell migration and decreased cell apoptosis and cell proliferation modulation. FAM111B Y621D mutation showed similar effects on cell migration but minimal impact on cell apoptosis. FAM111B mRNA and protein expression were markedly downregulated (p ≤ 0.05) in the patient's skin-derived fibroblasts. Lastly, the PCR-RFLP method successfully genotyped FAM111B Y621D gene mutation. Discussion: FAM111B is a cancer-associated nuclear protein: Its modulation by mutations may enhance cell migration and proliferation and decrease apoptosis, as seen in cancers and POIKTMP/fibrosis, thus representing a viable therapeutic target in these disorders. Furthermore, the PCR-RFLP method could prove a valuable tool for FAM111B mutation validation or screening in resource-constrained laboratories.

Keywords: FAM111B, POIKTMP, cancer, fibrosis, PCR-RFLP

Procedia PDF Downloads 121
699 Observation of a Phase Transition in Adsorbed Hydrogen at 101 Kelvin

Authors: Raina J. Olsen, Andrew K. Gillespie, John W. Taylor, Cristian I. Contescu, Peter Pfeifer, James R. Morris

Abstract:

While adsorbent surfaces such as graphite are known to increase the melting temperature of solid H2, this effect is normally rather small, increasing to 20 Kelvin (K) relative to 14 K in the bulk. An as-yet unidentified phase transition has been observed in a system of H2 adsorbed in a porous, locally graphitic, Saran carbon with sub-nanometer sized pores at temperatures (74-101 K) and pressures ( > 76 bar) well above the critical point of bulk H2 using hydrogen adsorption and neutron scattering experiments. Adsorption data shows a discontinuous pressure jump in the kinetics at 76 bar after nearly an hour of equilibration time, which is identified as an exothermic phase transition. This discontinuity is observed in the 87 K isotherm, but not the 77 K isotherm. At higher pressures, the measured isotherms show greater excess adsorption at 87 K than 77 K. Inelastic neutron scattering measurements also show a striking phase transition, with the amount of high angle scattering (corresponding to large momentum transfer/ large effective mass) increasing by up to a factor of 5 in the novel phase. During the course of the neutron scattering experiment, three of these reversible spectral phase transitions were observed to occur in response to only changes in sample temperature. The novel phase was observed by neutron scattering only at high H2 pressure (123 bar and 187 bar) and temperatures between 74-101 K in the sample of interest, but not at low pressure (30 bar), or in a control activated carbon at 186 bar of H2 pressure. Based on several of the more unusual observations, such as the slow equilibration and the presence of both an upper and lower temperature bound, a reasonable hypothesis is that this phase forms only in the presence of a high concentration of ortho-H2 (nuclear spin S=1). The increase in adsorption with temperature, temperatures which cross the lower temperature bound observed by neutron scattering, indicates that this novel phase is denser. Structural characterization data on the adsorbent shows that it may support a commensurate solid phase denser than those known to exist on graphite at much lower temperatures. Whatever this phase is eventually proven to be, these results show that surfaces can have a more striking effect on hydrogen phases than previously thought.

Keywords: adsorbed phases, hydrogen, neutron scattering, nuclear spin

Procedia PDF Downloads 466
698 Activation of NLRP3 Inflammasomes by Helicobacter pylori Infection in Innate Cellular Model and Its Correlation to IL-1β Production

Authors: Islam Nowisser, Noha Farag, Mohamed El Azizi

Abstract:

Helicobacter pylori is a highly important human pathogen which inhabits about 50% of the population worldwide. Infection with this bacteria is very hard to treat, with high probability of recurrence. H. pylori causes severe gastric diseases, including peptic ulcer, gastritis, and gastric cancer, which has been linked to chronic inflammation. The infection has been reported to be associated with high levels of pro-inflammatory cytokines, especially IL-1β and TNF-α. The aim of the current study is to investigate the molecular mechanisms by which H. pylori activates NLRP3 inflammasome and its contribution to Il-1 β production in an innate cellular model. H. pylori PMSS1 and G27 standard strains, as well as the PMSS1 isogenic mutant strain PMSS1ΔVacA and G27ΔVacA, G27ΔCagA in addition to clinical isolates obtained from biopsy samples from the antrum and corpus mucosa of chronic gastritis patients, were used to establish infection in RAW-264.7 macrophages. The production levels of TNF-α and IL-1β was assessed using ELISA. Since expression of these cytokines is often regulated by the transcription factor complex, nuclear factor-kB (NF-kB), the activation of NF-κB in H. pylori infected cells was also evaluated by luciferase assay. Genomic DNA was extracted from bacterial cultures of H. pylori clinical isolates as well as the standard strains and their corresponding mutants, where they were evaluated for the cagA pathogenicity island and vacA expression. The correlation between these findings and expression of the cagA Pathogenicity Island and vacA in the bacteria was also investigated. The results showed IL-1β, and TNF-α production significantly increased in raw macrophages following H. pylori infection. The cagA+ and vacA+ H. pylori strains induced significant production of IL-1β compared to cagA- and vacA- strains. The activation pattern of NF-κB was correlated in the isolates to their cagA and vacA expression profiles. A similar finding could not be confirmed for TNF-α production. Our study shows the ability of H. pylori to activate NF-kB and induce significant IL-1β production as a possible mechanism for the augmented inflammatory response seen in subjects infected with cagA+ and vacA+ H. pylori strains that would lead to the progression to more severe form of the disease.

Keywords: Helicobacter pylori, IL-1β, inflammatory cytokines, nuclear factor KB, TNF-α

Procedia PDF Downloads 128
697 Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering

Authors: Amina Ben Abla, Sylvie Changotade, Geraldine Rohman, Guilhem Boeuf, Cyrine Dridi, Ahmed Elmarjou, Florence Dufour, Didier Lutomski, Abdellatif Elm’semi

Abstract:

Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial.

Keywords: biomaterials, cellular adhesion, fibronectin, tissue engineering

Procedia PDF Downloads 152
696 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.

Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control

Procedia PDF Downloads 162
695 Computed Tomography Myocardial Perfusion on a Patient with Hypertrophic Cardiomyopathy

Authors: Jitendra Pratap, Daphne Prybyszcuk, Luke Elliott, Arnold Ng

Abstract:

Introduction: Coronary CT angiography is a non-invasive imaging technique for the assessment of coronary artery disease and has high sensitivity and negative predictive value. However, the correlation between the degree of CT coronary stenosis and the significance of hemodynamic obstruction is poor. The assessment of myocardial perfusion has mostly been undertaken by Nuclear Medicine (SPECT), but it is now possible to perform stress myocardial CT perfusion (CTP) scans quickly and effectively using CT scanners with high temporal resolution. Myocardial CTP is in many ways similar to neuro perfusion imaging technique, where radiopaque iodinated contrast is injected intravenously, transits the pulmonary and cardiac structures, and then perfuses through the coronary arteries into the myocardium. On the Siemens Force CT scanner, a myocardial perfusion scan is performed using a dynamic axial acquisition, where the scanner shuffles in and out every 1-3 seconds (heart rate dependent) to be able to cover the heart in the z plane. This is usually performed over 38 seconds. Report: A CT myocardial perfusion scan can be utilised to complement the findings of a CT Coronary Angiogram. Implementing a CT Myocardial Perfusion study as part of a routine CT Coronary Angiogram procedure provides a ‘One Stop Shop’ for diagnosis of coronary artery disease. This case study demonstrates that although the CT Coronary Angiogram was within normal limits, the perfusion scan provided additional, clinically significant information in regards to the haemodynamics within the myocardium of a patient with Hypertrophic Obstructive Cardio Myopathy (HOCM). This negated the need for further diagnostics studies such as cardiac ECHO or Nuclear Medicine Stress tests. Conclusion: CT coronary angiography with adenosine stress myocardial CTP was utilised in this case to specifically exclude coronary artery disease in conjunction with accessing perfusion within the hypertrophic myocardium. Adenosine stress myocardial CTP demonstrated the reduced myocardial blood flow within the hypertrophic myocardium, but the coronary arteries did not show any obstructive disease. A CT coronary angiogram scan protocol that incorporates myocardial perfusion can provide diagnostic information on the haemodynamic significance of any coronary artery stenosis and has the potential to be a “One Stop Shop” for cardiac imaging.

Keywords: CT, cardiac, myocardium, perfusion

Procedia PDF Downloads 132
694 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals

Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova

Abstract:

Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.

Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk

Procedia PDF Downloads 240
693 A Study of Interleukin-1β Genetic Polymorphisms in Gastric Carcinoma and Colorectal Carcinoma in Egyptian Patients

Authors: Mariam Khaled, Noha Farag, Ghada Mohamed Abdel Salam, Khaled Abu-Aisha, Mohamed El-Azizi

Abstract:

Gastric and colorectal cancers are among the most frequent causes of cancer-associated mortalities in Africa. They have been considered as a global public health concern, as nearly one million new cases are reported per year. IL-1β is a pro-inflammatory cytokine-produced by activated macrophages and monocytes- and a member of the IL-1 family. The inactive IL-1β precursor is cleaved and activated by caspase-1 enzyme, which itself is activated by the assembly of intracellular structures defined as NLRP3 (Nod Like receptor P3) inflammasomes. Activated IL-1β stimulates the Interleukin-1 receptor type-1 (IL-1R1), which is responsible for the initiation of a signal transduction pathway leading to cell proliferation. It has been proven that the IL-1β gene is a highly polymorphic gene in which single nucleotide polymorphisms (SNPs) may affect its expression. It has been previously reported that SNPs including base transitions between C and T at positions, -511 (C-T; dbSNP: rs16944) and -31 (C-T; dbSNP: rs1143627), from the transcriptional start site, contribute to the pathogenesis of gastric and colorectal cancers by affecting IL-1β levels. Altered production of IL-1β due to such polymorphisms is suspected to stimulate an amplified inflammatory response and promote Epithelial Mesenchymal Transition leading to malignancy. Allele frequency distribution of the IL-1β-31 and -511 SNPs, in different populations, and their correlation to the incidence of gastric and colorectal cancers, has been intriguing to researchers worldwide. The current study aims to investigate allele distributions of the IL-1β SNPs among gastric and colorectal cancers Egyptian patients. In order to achieve to that, 89 Biopsy and surgical specimens from the antrum and corpus mucosa of chronic gastritis subjects and gastric and colorectal carcinoma patients was collected for DNA extraction followed by restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR). The amplified PCR products of IL-1β-31C > T and IL-1β-511T > C were digested by incubation with the restriction endonuclease enzymes ALu1 and Ava1. Statistical analysis was carried out to determine the allele frequency distribution in the three studied groups. Also, the effect of the IL-1β -31 and -511 SNPs on nuclear factor binding was analyzed using Fluorescence Electrophoretic Mobility Shift Assay (EMSA), preceded by nuclear factor extraction from gastric and colorectal tissue samples and LPS stimulated monocytes. The results of this study showed that a significantly higher percentage of Egyptian gastric cancer patients have a homozygous CC genotype at the IL-1β-31 position and a heterozygous TC genotype at the IL-1β-511 position. Moreover, a significantly higher percentage of the colorectal cancer patients have a homozygous CC genotype at the IL-1β-31 and -511 positions as compared to the control group. In addition, the EMSA results showed that IL-1β-31C/T and IL-1β-511T/C SNPs do not affect nuclear factor binding. Results of this study suggest that the IL-1β-31 C/T and IL-1β-511 T/C may be correlated to the incidence of gastric cancer in Egyptian patients; however, similar findings couldn’t be proven in the colorectal cancer patients group for the IL-1β-511 T/C SNP. This is the first study to investigate IL-1β -31 and -511 SNPs in the Egyptian population.

Keywords: colorectal cancer, Egyptian patients, gastric cancer, interleukin-1β, single nucleotide polymorphisms

Procedia PDF Downloads 140
692 Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria

Authors: Meltem Agar, Maisem Laabei, Hannah Leese, Pedro Estrela

Abstract:

Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water.

Keywords: aptamer, electrochemical sensor, staphylococcus aureus, molecularly imprinted polymer

Procedia PDF Downloads 118
691 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing

Authors: O. Fiquet, P. Lemarignier

Abstract:

Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.

Keywords: nuclear, fuel, CERMET, robocasting

Procedia PDF Downloads 68
690 Condition for Plasma Instability and Stability Approaches

Authors: Ratna Sen

Abstract:

As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations.

Keywords: jello, magnetic field configuration, MHD approximation, energy principle

Procedia PDF Downloads 442