Search results for: maximum pitch angle
5076 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing
Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar
Abstract:
The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.Keywords: hyperspectral, NDNI, nitrogen concentration, regression value
Procedia PDF Downloads 2955075 Analysis of Simply Supported Beams Using Elastic Beam Theory
Authors: M. K. Dce
Abstract:
The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span.Keywords: beam, UDL, bending moment, deflection, elastic beam theory
Procedia PDF Downloads 3895074 Water-Repellent Coating Based on Thermoplastic Polyurethane, Silica Nanoparticles and Graphene Nanoplatelets
Authors: S. Naderizadeh, A. Athanassiou, I. S. Bayer
Abstract:
This work describes a layer-by-layer spraying method to produce a non-wetting coating, based on thermoplastic polyurethane (TPU) and silica nanoparticles (Si-NPs). The main purpose of this work was to transform a hydrophilic polymer to superhydrophobic coating. The contact angle of pure TPU was measured about 77˚ ± 2, and water droplets did not roll away upon tilting even at 90°. But after applying a layer of Si-NPs on top of this, not only the contact angle increased to 165˚ ± 2, but also water droplets can roll away even below 5˚ tilting. The most important restriction in this study was the weak interfacial adhesion between polymer and nanoparticles, which had a bad effect on durability of the coatings. To overcome this problem, we used a very thin layer of graphene nanoplatelets (GNPs) as an interlayer between TPU and Si-NPs layers, followed by thermal treatment at 150˚C. The sample’s morphology and topography were characterized by scanning electron microscopy (SEM), EDX analysis and atomic force microscopy (AFM). It was observed that Si-NPs embedded into the polymer phase in the presence of GNPs layer. It is probably because of the high surface area and considerable thermal conductivity of the graphene platelets. The contact angle value for the sample containing graphene decreased a little bit respected to the coating without graphene and reached to 156.4˚ ± 2, due to the depletion of the surface roughness. The durability of the coatings against abrasion was evaluated by Taber® abrasion test, and it was observed that superhydrophobicity of the coatings remains for a longer time, in the presence of GNPs layer. Due to the simple fabrication method and good durability of the coating, this coating can be used as a durable superhydrophobic coating for metals and can be produced in large scale.Keywords: graphene, silica nanoparticles, superhydrophobicity, thermoplastic polyurethane
Procedia PDF Downloads 1865073 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body
Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker
Abstract:
This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel
Procedia PDF Downloads 3935072 Load Characteristics of Improved Howland Current Pump for Bio-Impedance Measurement
Authors: Zhao Weijie, Lin Xinjian, Liu Xiaojuan, Li Lihua
Abstract:
The Howland current pump is widely used in bio-impedance measurement. Much attention has been focused on the output impedance of the Howland circuit. Here we focus on the maximum load of the Howland source and discuss the relationship between the circuit parameters at maximum load. We conclude that the signal input terminal of the feedback resistor should be as large as possible, but that the current-limiting resistor should be smaller. The op-amp saturation voltage should also be high. The bandwidth of the circuit is proportional to the bandwidth of the op-amp. The Howland current pump was simulated using multisim12. When the AD8066AR was selected as the op-amp, the maximum load was 11.5 kΩ, and the Howland current pump had a stable output ipp to 2mAp up to 200 kHz. However, with an OPA847 op-amp and a load of 6.3 kΩ, the output current was also stable, and the frequency was as high as 3 MHz.Keywords: bio-impedance, improved Howland current pump, load characteristics, bioengineering
Procedia PDF Downloads 5145071 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems
Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb
Abstract:
Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems
Procedia PDF Downloads 6115070 Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions
Authors: Abdenour Bourabaa, Malika Fekih, Mohamed Saighi
Abstract:
A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied.Keywords: annular fin, dehumidification, fin efficiency, heat and mass transfer, wet fin
Procedia PDF Downloads 4805069 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 3975068 Improvement and Miniaturization RFID Patch Antenna by Inclusion the Complementary Metamaterials
Authors: Seif Naoui, Lassaad Latrach, Ali Gharsallah
Abstract:
This paper is specialized to highlight the method of miniaturization and improvement the patch antenna by using the complementary metamaterial. This method is presented by a simple technique is composed a structure of patch antenna integrated in its surface a cell of complementary split ring resonator. This resonator is placed at the middle of the radiating patch in parallel with the transmission line and with a variable angle of orientation. The objective is to find the ultimate angle where the best results are obtained on improving the characteristics of the considered antenna. This motif widespread at the traceability applications by wireless communication for RFID technology at the operation frequency 2.45 GHz. Our contribution is based on studies empirical often presented in this article. All simulation results were made by the CST Microwave Studio.Keywords: complimentary split ring resonators, computer simulation technology microwave studio, metamaterials patch antennas, microstrip patch antenna, radio frequency identification
Procedia PDF Downloads 4405067 Surfactant Improved Heavy Oil Recovery in Sandstone Reservoirs by Wettability Alteration
Authors: Rabia Hunky, Hayat Kalifa, Bai
Abstract:
The wettability of carbonate reservoirs has been widely recognized as an important parameter in oil recovery by flooding technology. Many surfactants have been studied for this application. However, the importance of wettability alteration in sandstone reservoirs by surfactant has been poorly studied. In this paper, our recent study of the relationship between rock surface wettability and cumulative oil recovery for sandstone cores is reported. In our research, it has been found there is a good agreement between the wettability and oil recovery. Nonionic surfactants, Tomadol® 25-12 and Tomadol® 45-13, are very effective in wettability alteration of sandstone core surface from highly oil-wet conditions to water-wet conditions. By spontaneous imbibition test, Interfacial tension, and contact angle measurement these two surfactants exhibit the highest recovery of the synthetic oil made with heavy oil. Based on these experimental results, we can further conclude that the contact angle measurement and imbibition test can be used as rapid screening tools to identify better EOR surfactants to increase heavy oil recovery from sandstone reservoirs.Keywords: EOR, oil gas, IOR, WC, IF, oil and gas
Procedia PDF Downloads 1035066 Parametric Screening and Design Refinement of Ceiling Fan Blades
Authors: Shamraiz Ahmad, Riaz Ahmad, Adnan Maqsood
Abstract:
This paper describes the application of 2k-design of experiment in order to screen the geometric parameters and experimental refinement of ceiling fan blades. The ratio of the air delivery to the power consumed is commonly known as service value (SV) in ceiling fan designer’s community. Service value was considered as the response for 56 inch ceiling fan and four geometric parameters (bend position at root, bend position at tip, bent angle at root and bent angle at tip) of blade were analyzed. With two levels, the 4-design parameters along with their eleven interactions were studied and design of experiment was employed for experimental arrangement. Blade manufacturing and testing were done in a medium scale enterprise. The objective was achieved and service value of ceiling fan was increased by 10.4 % without increasing the cost of production and manufacturing system. Experiments were designed and results were analyzed using Minitab® 16 software package.Keywords: parametric screening, 2k-design of experiment, ceiling fan, service value, performance improvement
Procedia PDF Downloads 5645065 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 3685064 Analysis and Control of Camera Type Weft Straightener
Authors: Jae-Yong Lee, Gyu-Hyun Bae, Yun-Soo Chung, Dae-Sub Kim, Jae-Sung Bae
Abstract:
In general, fabric is heat-treated using a stenter machine in order to dry and fix its shape. It is important to shape before the heat treatment because it is difficult to revert back once the fabric is formed. To produce the product of right shape, camera type weft straightener has been applied recently to capture and process fabric images quickly. It is more powerful in determining the final textile quality rather than photo-sensor. Positioning in front of a stenter machine, weft straightener helps to spread fabric evenly and control the angle between warp and weft constantly as right angle by handling skew and bow rollers. To process this tricky procedure, the structural analysis should be carried out in advance, based on which, its control technology can be drawn. A structural analysis is to figure out the specific contact/slippage characteristics between fabric and roller. We already examined the applicability of camera type weft straightener to plain weave fabric and found its possibility and the specific working condition of machine and rollers. In this research, we aimed to explore another applicability of camera type weft straightener. Namely, we tried to figure out camera type weft straightener can be used for fabrics. To find out the optimum condition, we increased the number of rollers. The analysis is done by ANSYS software using Finite Element Analysis method. The control function is demonstrated by experiment. In conclusion, the structural analysis of weft straightener is done to identify a specific characteristic between roller and fabrics. The control of skew and bow roller is done to decrease the error of the angle between warp and weft. Finally, it is proved that camera type straightener can also be used for the special fabrics.Keywords: camera type weft straightener, structure analysis, control, skew and bow roller
Procedia PDF Downloads 2925063 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test
Authors: S. A. Naeini, M. Ghorbani Tochaee
Abstract:
The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite
Procedia PDF Downloads 1465062 The Effect of Music on Consumer Behavior
Authors: Lara Ann Türeli, Özlem Bozkurt
Abstract:
There is a biochemical component to listening to music. The type of music listened to can lead to different levels of neurotransmitter and biochemical activity within the brain, resulting in brain stimulation and different moods. Therefore, music plays an important role in neuromarketing and consumer behavior. The quality of a commercial can be measured by the effect the music has on its audience. Thus, understanding how music can affect the brain can provide better marketing strategies for all businesses. The type of music used plays an important role in how a person responds to certain experiences. In the context of marketing and consumer behavior, music can determine whether a person will be intrigued to buy something. Depending on the type of music listened to by an individual; the music may trigger the release of pleasurable neurotransmitters such as dopamine. Dopamine is a neurotransmitter that plays an important role in reward pathways in the brain. When an individual experiences a pleasurable activity, increased levels of dopamine are produced, eventually leading to the formation of new reward pathways. Consequently, the increased dopamine activity within the brain triggered by music can result in new reward pathways along the dopamine pathways in the brain. Selecting pleasurable music for commercials can result in long-term brain stimulation, increasing consumerism. The effect of music on consumerism should be considered not only in commercials but also in the atmosphere it creates within stores. The type of music played in a store can affect consumer behavior and intention. Specifically, the rhythm, pitch, and pace of music can contribute to the mood of the song. The background music in a store can determine the consumer’s emotional presence and consequently affect their intentions. In conclusion, understanding the physiological, psychological, and neurochemical basis of the effect of music on brain stimulation is essential to understand consumer behavior. The role of dopamine in the formation of reward pathways as a result of music directly contributes to consumer behavior and the tendency of a commercial or store to leave a long-term effect on the consumer. The careful consideration of the pitch, pace, and rhythm of a song in the selection of music can not only help companies predict the behavior of a consumer but also determine the behavior of a consumer.Keywords: sensory processing, neuropsychology, dopamine, neuromarketing
Procedia PDF Downloads 805061 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil
Authors: Tanios Saliba, Jad Wakim, Elie Awwad
Abstract:
Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.Keywords: bottom ash, Clayey soil, mechanical properties, tests
Procedia PDF Downloads 1775060 Positive Effect of Manipulated Virtual Kinematic Intervention in Individuals with Traumatic Stiff Shoulder: Pilot Study
Authors: Isabella Schwartz, Ori Safran, Naama Karniel, Michal Abel, Adina Berko, Martin Seyres, Tamir Tsoar, Sigal Portnoy
Abstract:
Virtual Reality allows to manipulate the patient’s perception, thereby providing a motivational addition to real-time biofeedback exercises. We aimed to test the effect of manipulated virtual kinematic intervention on measures of active and passive Range of Motion (ROM), pain, and disability level in individuals with traumatic stiff shoulder. In a double-blinded study, patients with stiff shoulder following proximal humerus fracture and non-operative treatment were randomly divided into a non-manipulated feedback group (NM-group; N=6) and a manipulated feedback group (M-group; N=7). The shoulder ROM, pain, and the Disabilities of the Arm, Shoulder and Hand (DASH) scores were tested at baseline and after the 6 sessions, during which the subjects performed shoulder flexion and abduction in front of a graphic visualization of the shoulder angle. The biofeedback provided to the NM-group was the actual shoulder angle and the feedback provided to the M-group was manipulated so that 10° were constantly subtracted from the actual angle detected by the motion capture system. The M-group showed greater improvement in the active flexion ROM, with median and interquartile range of 197.1 (140.5-425.0) compared to 142.5 (139.1-151.3) for the NM-group (p=.046). Also, the M-group showed greater improvement in the DASH scores, with median and interquartile range of 67.7 (52.8-86.2) compared to 89.7 (83.8-98.3) for the NM-group (p=.022). Manipulated intervention is beneficial in individuals with traumatic stiff shoulder and should be further tested for other populations with orthopedic injuries.Keywords: virtual reality, biofeedback, shoulder pain, range of motion
Procedia PDF Downloads 1255059 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films
Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui
Abstract:
In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.Keywords: physical properties, sol, gel, TiO2/SiO2 composite films
Procedia PDF Downloads 4935058 Geometric Model to Study the Mechanism of Machining and Predict the Damage Occurring During Milling of Unidirectional CFRP
Authors: Faisal Islam, J. Ramkumar
Abstract:
The applications of composite materials in aerospace, sporting and automotive industries need high quality machined surfaces and dimensional accuracy. Some studies have been done to understand the fiber failure mechanisms encountered during milling machining of CFRP composites but none are capable of explaining the exact nature of the orientation-based fiber failure mechanisms encountered in the milling machining process. The objective of this work is to gain a better understanding of the orientation-based fiber failure mechanisms occurring on the slot edges during CFRP milling machining processes. The occurrence of damage is predicted by a schematic explanation based on the mechanisms of material removal which in turn depends upon fiber cutting angles. A geometric model based on fiber cutting angle and fiber orientation angle is proposed that defines the critical and safe zone during machining and predicts the occurrence of delamination. Milling machining experiments were performed on composite samples of varying fiber orientations to verify the proposed theory. Mean fiber pulled out length was measured from the microscopic images of the damaged area to quantify the amount of damage produced. By observing the damage occurring for different fiber orientation angles and fiber cutting angles for up-milling and down-milling edges and correlating it with the material removal mechanisms as described earlier, it can be concluded that the damage/delamination mainly depends on the portion of the fiber cutting angles that lies within the critical cutting angle zone.Keywords: unidirectional composites, milling, machining damage, delamination, carbon fiber reinforced plastics (CFRPs)
Procedia PDF Downloads 5305057 Experimental Investigation of Cup Anemometer under Static and Dynamic Wind Direction Changes: Evaluation of Directional Sensitivity
Authors: Vaibhav Rana, Nicholas Balaresque
Abstract:
The 3-cup anemometer is the most commonly used instrument for wind speed measurement and, consequently, for the wind resource assessment. Though the cup anemometer shows accurate measurement under quasi-static conditions, there is uncertainty in the measurement when subjected to field measurement. Sensitivity to the angle of attacks with respect to horizontal plane, dynamic response, and non-linear behavior in calibration due to friction. The presented work aimed to identify the sensitivity of anemometer to non-horizontal flow. The cup anemometer was investigated under low wind speed wind tunnel, first under the static flow direction changes and second under the dynamic direction changes, at a different angle of attacks, under the similar conditions of reference wind tunnel speeds. The cup anemometer response under both conditions was evaluated and compared. The results showed the anemometer under dynamic wind direction changes is highly sensitive compared to static conditions.Keywords: wind energy, cup anemometer, directional sensitivity, dynamic behavior, wind tunnel
Procedia PDF Downloads 1485056 Iris Detection on RGB Image for Controlling Side Mirror
Authors: Norzalina Othman, Nurul Na’imy Wan, Azliza Mohd Rusli, Wan Noor Syahirah Meor Idris
Abstract:
Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors.Keywords: iris detection, midpoint coordinates, RGB images, side mirror
Procedia PDF Downloads 4235055 DQN for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, gazebo, navigation
Procedia PDF Downloads 1135054 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking
Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser
Abstract:
The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC
Procedia PDF Downloads 4295053 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors
Authors: Ibrahim Beldjilali, Adel Ghenaiet
Abstract:
The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.Keywords: aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study
Procedia PDF Downloads 1595052 A Study on Traction Motor Design for Obtaining the Maximum Traction Force of Tram-Train
Authors: Geochul Jeong, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
This study is about IPMSM design for obtaining the maximum traction force of Tram-Train. Tram-Train is a Tram and Train-combined railway vehicles, which operates at a maximum speed of 70km/h in the city section (Tram section) and at a maximum speed of 150km/h in the out-of-city section (Train section). For this reason, tram-train was designed to be an IPMSM (Interior Permanent Synchronous Motor) with a wide range of speed variation. IPMSM’s magnetic path varies depending on the shape of rotor and in this case, the power characteristics are different in the constant torque area and the flux weakening area. Therefore, this study suggests a method to improve Tram-Train’s traction force, based on the relationship between magnetic torque and reluctance torque. The suggested method was applied through IPMSM rotor shape design and electromagnetic field finite element method was conducted to verify the validity of the suggested method.Keywords: tram-train, traction motor, IPMSM, synchronous motor, railway vehicles
Procedia PDF Downloads 4715051 In Vitro Assessment of Anti-microbial Properties of Murraya Koenigii Extract
Authors: Kinza Khan, Dad Muhmmad, Asif Saleem, Nadia Mukhtar, Tahir Yaqub
Abstract:
Ethomedicines are more commonly used in underdeveloped and developing countries. These medicines are sometimes more potent in controlling microbial infections than conventional medicines. Medicinal plants have been common practice to cure many diseases for centuries. Murraya koenigii is one of these plants and is commonly used in South Asian countries as a flavoring agent in food. To evaluate its anti-microbial activity, six different bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Bacillus cereus and Klebsiella pneumonia were used. N-hexane extract of Murraya koenigii leaves shows maximum activity against Bacillus cereus. Acetone extract of Murraya koenigii shoots showed more efficient activity against Pseudomonas aeruginosa Dichloromethane extracts showed maximum activity against Bacillus cereus. Ethanol extract exhibited maximum activity against Pseudomonas aeruginosa and Klebsiella pneumoniae. The methanol extract of Murraya koenigii shoots displayed maximum antibacterial activity against Bacillus cereus. Antifungal activity Ethanol extract was more effective against Candida albicans.Keywords: ethnomedicines, bacteria, fungi, murraya koenigii, antimicrobial activity
Procedia PDF Downloads 935050 Structural Evolution of Na6Mn(SO4)4 from High-Pressure Synchrotron Powder X-ray Diffraction
Authors: Monalisa Pradhan, Ajana Dutta, Irshad Kariyattuparamb Abbas, Boby Joseph, T. N. Guru Row, Diptikanta Swain, Gopal K. Pradhan
Abstract:
Compounds with the Vanthoffite crystal structure having general formula Na6M(SO₄)₄ (M= Mg, Mn, Ni , Co, Fe, Cu and Zn) display a variety of intriguing physical properties intimately related to their structural arrangements. The compound Na6Mn(SO4)4 shows antiferromagnetic ordering at low temperature where the in-plane Mn-O•••O-Mn interactions facilitates antiferromagnetic ordering via a super-exchange interaction between the Mn atoms through the oxygen atoms . The inter-atomic bond distances and angles can easily be tuned by applying external pressure and can be probed using high resolution X-ray diffraction. Moreover, because the magnetic interaction among the Mn atoms are super-exchange type via Mn-O•••O-Mn path, the variation of the Mn-O•••O-Mn dihedral angle and Mn-O bond distances under high pressure inevitably affects the magnetic properties. Therefore, it is evident that high pressure studies on the magnetically ordered materials would shed light on the interplay between their structural properties and magnetic ordering. This will indeed confirm the role of buckling of the Mn-O polyhedral in understanding the origin of anti-ferromagnetism. In this context, we carried out the pressure dependent X-ray diffraction measurement in a diamond anvil cell (DAC) up to a maximum pressure of 17 GPa to study the phase transition and determine equation of state from the volume compression data. Upon increasing the pressure, we didn’t observe any new diffraction peaks or sudden discontinuity in the pressure dependences of the d values up to the maximum achieved pressure of ~17 GPa. However, it is noticed that beyond 12 GPa the a and b lattice parameters become identical while there is a discontinuity in the β value around the same pressure. This indicates a subtle transition to a pseudo-monoclinic phase. Using the third order Birch-Murnaghan equation of state (EOS) to fit the volume compression data for the entire range, we found the bulk modulus (B0) to be 44 GPa. If we consider the subtle transition at 12 GPa, we tried to fit another equation state for the volume beyond 12 GPa using the second order Birch-Murnaghan EOS. This gives a bulk modulus of ~ 34 GPa for this phase.Keywords: mineral, structural phase transition, high pressure XRD, spectroscopy
Procedia PDF Downloads 875049 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.Keywords: multi objective optimization, pareto front, composite patch, cracked pipe
Procedia PDF Downloads 3125048 Experimental Investigation of Boundary Layer Instability and Transition on a Rotating Parabola in Axial Flow
Authors: Ali Kargar, Kamyar Mansour
Abstract:
In this paper the boundary layer instability and transition on a rotating parabola which is sheathed shape on a rotating 30 degrees total apex angle cone have been study by smoke visualization. The rotating cone especially 30 degrees total apex angle is a well-established subject in some previous novel works and also in our previous works. But in this paper a stabilizing effect is detected by the bluntness of nose and also surface curvature. A parabola model which is satisfying those conditions (sheathed parabola of the 30 degrees cone) has been built and studied in the wind tunnel. The results are shown that the boundary layer transition occurs at higher rotational Reynolds number in comparison by the cone. The results are shown in the visualization pictures and also are compared graphically.Keywords: transitional Reynolds number, wind tunnel, smoke visualization, rotating parabola
Procedia PDF Downloads 4165047 Efficacy of Collagen Matrix Implants in Phacotrabeculectomy with Mitomycin C at One Year
Authors: Lalit Tejwani, Reetika Sharma, Arun Singhvi, Himanshu Shekhar
Abstract:
Purpose: To assess the efficacy of collagen matrix implant (Ologen) in phacotrabeculectomy augmented with mitomycin C (MMC). Methods: A biodegradable collagen matrix (Ologen) was placed in the subconjunctival and subscleral space in twenty-two eyes of 22 patients with glaucoma and cataract who underwent combined phacoemulsification and trabeculectomy augmented with MMC. All of them were examined preoperatively and on the first postoperative day. They were followed for twelve months after surgery. Any intervention needed in follow-up period was noted. Any complication was recorded. The primary outcome measure was postoperative intraocular pressure at one year follow-up. Any additional postoperative treatments needed and adverse events were noted. Results: The mean age of patients included in the study was 57.77 ± 9.68 years (range=36 to 70 years). All the patients were followed for at least one year. Three patients had history of failed trabeculectomy. Fifteen patients had chronic angle closure glaucoma with cataract, five had primary open angle glaucoma with cataract, one had uveitic glaucoma with cataract, and one had juvenile open angle glaucoma with cataract. Mean preoperative IOP was 32.63 ± 8.29 mm Hg, eighteen patients were on oral antiglaucoma medicines. The mean postoperative IOP was 10.09 ± 2.65 mm Hg at three months, 10.36 ± 2.19 mm Hg at six months and 11.36 ± 2.72 mm Hg at one year follow up. No adverse effect related to Ologen was seen. Anterior chamber reformation was done in five patients, and three needed needling of bleb. Four patients needed additional antiglaucoma medications in the follow-up period. Conclusions: Combined phacotrabeculectomy with MMC with Ologen implantation appears to be a safe and effective option in glaucoma patients needing trabeculectomy with significant cataract. Comparative studies with longer duration of follow-up in larger number of patients are needed.Keywords: combined surgery, ologen, phacotrabeculectomy, success
Procedia PDF Downloads 213