Search results for: matrix suction
1930 Irreducible Sign Patterns of Minimum Rank of 3 and Symmetric Sign Patterns That Allow Diagonalizability
Authors: Sriparna Bandopadhyay
Abstract:
It is known that irreducible sign patterns in general may not allow diagonalizability and in particular irreducible sign patterns with minimum rank greater than or equal to 4. It is also known that every irreducible sign pattern matrix with minimum rank of 2 allow diagonalizability with rank of 2 and the maximum rank of the sign pattern. In general sign patterns with minimum rank of 3 may not allow diagonalizability if the condition of irreducibility is dropped, but the problem of whether every irreducible sign pattern with minimum rank of 3 allows diagonalizability remains open. In this paper it is shown that irreducible sign patterns with minimum rank of 3 under certain conditions on the underlying graph allow diagonalizability. An alternate proof of the results that every sign pattern matrix with minimum rank of 2 and no zero lines allow diagonalizability with rank of 2 and also that every full sign pattern allows diagonalizability with all permissible ranks of the sign pattern is given. Some open problems regarding composite cycles in an irreducible symmetric sign pattern that support of a rank principal certificate are also answered.Keywords: irreducible sign patterns, minimum rank, symmetric sign patterns, rank -principal certificate, allowing diagonalizability
Procedia PDF Downloads 981929 On the Optimality of Blocked Main Effects Plans
Authors: Rita SahaRay, Ganesh Dutta
Abstract:
In this article, experimental situations are considered where a main effects plan is to be used to study m two-level factors using n runs which are partitioned into b blocks, not necessarily of same size. Assuming the block sizes to be even for all blocks, for the case n ≡ 2 (mod 4), optimal designs are obtained with respect to type 1 and type 2 optimality criteria in the class of designs providing estimation of all main effects orthogonal to the block effects. In practice, such orthogonal estimation of main effects is often a desirable condition. In the wider class of all available m two level even sized blocked main effects plans, where the factors do not occur at high and low levels equally often in each block, E-optimal designs are also characterized. Simple construction methods based on Hadamard matrices and Kronecker product for these optimal designs are presented.Keywords: design matrix, Hadamard matrix, Kronecker product, type 1 criteria, type 2 criteria
Procedia PDF Downloads 3661928 Development and Analysis of Waste Human Hair Fiber Reinforced Composite
Authors: Tesfaye Worku
Abstract:
Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.Keywords: composite, human hair fiber, matrix, unsaturated polyester
Procedia PDF Downloads 711927 Adversary Emulation: Implementation of Automated Countermeasure in CALDERA Framework
Authors: Yinan Cao, Francine Herrmann
Abstract:
Adversary emulation is a very effective concrete way to evaluate the defense of an information system or network. It is about building an emulator, which depending on the vulnerability of a target system, will allow to detect and execute a set of identified attacks. However, emulating an adversary is very costly in terms of time and resources. Verifying the information of each technique and building up the countermeasures in the middle of the test is also needed to be accomplished manually. In this article, a synthesis of previous MITRE research on the creation of the ATT&CK matrix will be as the knowledge base of the known techniques and a well-designed adversary emulation software CALDERA based on ATT&CK Matrix will be used as our platform. Inspired and guided by the previous study, a plugin in CALDERA called Tinker will be implemented, which is aiming to help the tester to get more information and also the mitigation of each technique used in the previous operation. Furthermore, the optional countermeasures for some techniques are also implemented and preset in Tinker in order to facilitate and fasten the process of the defense improvement of the tested system.Keywords: automation, adversary emulation, CALDERA, countermeasures, MITRE ATT&CK
Procedia PDF Downloads 2111926 Evaluation of Corrosion Property of Aluminium-Zirconium Dioxide (AlZrO2) Nanocomposites
Authors: M. Ramachandra, G. Dilip Maruthi, R. Rashmi
Abstract:
This paper aims to study the corrosion property of aluminum matrix nanocomposite of an aluminum alloy (Al-6061) reinforced with zirconium dioxide (ZrO2) particles. The zirconium dioxide particles are synthesized by solution combustion method. The nanocomposite materials are prepared by mechanical stir casting method, varying the percentage of n-ZrO2 (2.5%, 5% and 7.5% by weight). The corrosion behavior of base metal (Al-6061) and Al/ZrO2 nanocomposite in seawater (3.5% NaCl solution) is measured using the potential control method. The corrosion rate is evaluated by Tafel extrapolation technique. The corrosion potential increases with the increase in wt.% of n-ZrO2 in the nanocomposite which means the decrease in corrosion rate. It is found that on addition of n-ZrO2 particles to the aluminum matrix, the corrosion rate has decreased compared to the base metal.Keywords: Al6061 alloy, corrosion, solution, stir casting, combustion, potentiostat, zirconium dioxide
Procedia PDF Downloads 4091925 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation
Procedia PDF Downloads 1531924 Building a Lean Construction Body of Knowledge
Authors: Jyoti Singh, Ahmed Stifi, Sascha Gentes
Abstract:
The process of construction significantly contributes to high level of risks, complexity and uncertainties leading to cost and time overrun, customer dissatisfaction etc. lean construction is important as it is a comprehensive system of tools and concepts focusing on moving closer to customer satisfaction by understanding the process, identifying the waste and eliminating it. The proposed work includes identification of knowledge areas from lean perspective, lean tools/concepts used in lean construction and establishing a relationship matrix between knowledge areas and lean tools/concepts, thus developing and building up a lean construction body of knowledge (LCBOK), i.e. a guide to lean construction, aiming to provide guidelines to manage individual projects and also helping construction industry to minimise waste and maximize value to the customer. In this study, we identified 8 knowledge areas and 62 lean tools/concepts from lean perspective and also one tool can help to manage two or more knowledge areas.Keywords: knowledge areas, lean body matrix, lean construction, lean tools
Procedia PDF Downloads 4371923 Biodegradable and Bioactive Scaffold for Bone Tissue Engineering
Authors: A. M. Malagon Escandon, J. A. Arenas Alatorre, C. P. Chaires Rosas, N. A. Vazquez Torres, B. Hernandez Tellez, G. Pinon Zarate, M. Herrera Enriquez, A. E. Castell Rodriguez
Abstract:
The current approach to the treatment of bone defects involves the use of scaffolds that provide a biological and mechanically stable niche to favor tissue repair. Despite the significant progress in the field of bone tissue engineering, several main problems associated are attributed to giving a low biodegradation degree, does not promote osseointegration and regeneration, if the bone is not healing as well as expected or fails to heal, will not be given a proper ossification or new bone formation. The actual approaches of bone tissue regeneration are directed to the use of decellularized native extracellular matrices, which are able of retain their own architecture, mechanic properties, biodegradability and promote new bone formation because they are capable of conserving proteins and other factors that are founded in physiological concentrations. Therefore, we propose an extracellular matrix-based bioscaffolds derived from bovine cancellous bone, which is processed by decellularization, demineralization, and hydrolysis of the collagen protein, these protocols have been successfully carried out in other organs and tissues; the effectiveness of its biosafety has also been previously evaluated in vivo and Food and Drug Administration (FDA) approved. In the specific case of bone, a more complex treatment is needed in comparison with other organs and tissues because is necessary demineralization and collagen denaturalization. The present work was made in order to obtain a temporal scaffold that succeed in degradation in an inversely proportional way to the synthesis of extracellular matrix and the maturation of the bone by the cells of the host.Keywords: bioactive, biodegradable, bone, extracellular matrix-based bioscaffolds, stem cells, tissue engineering
Procedia PDF Downloads 1581922 Hydro-Mechanical Behavior of Calcareous Soils in Arid Region
Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat
Abstract:
This paper presents the study of hydro mechanical behavior of this optimal mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying- wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction
Procedia PDF Downloads 5071921 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales
Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng
Abstract:
Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.Keywords: landslides, modelling, rainfall, suction
Procedia PDF Downloads 1841920 The Estimation of Human Vital Signs Complexity
Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius
Abstract:
Non-stationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables interactions.Keywords: cardiac diseases, complex systems theory, ECG analysis, matrix analysis
Procedia PDF Downloads 3451919 Polymer Dispersed Liquid Crystals Based on Poly Vinyl Alcohol Boric Acid Matrix
Authors: Daniela Ailincai, Bogdan C. Simionescu, Luminita Marin
Abstract:
Polymer dispersed liquid crystals (PDLC) represent an interesting class of materials which combine the ability of polymers to form films and their mechanical strength with the opto-electronic properties of liquid crystals. The proper choice of the two components - the liquid crystal and the polymeric matrix - leads to materials suitable for a large area of applications, from electronics to biomedical devices. The objective of our work was to obtain PDLC films with potential applications in the biomedical field, using poly vinyl alcohol boric acid (PVAB) as a polymeric matrix for the first time. Presenting all the tremendous properties of poly vinyl alcohol (such as: biocompatibility, biodegradability, water solubility, good chemical stability and film forming ability), PVAB brings the advantage of containing the electron deficient boron atom, and due to this, it should promote the liquid crystal anchoring and a narrow liquid crystal droplets polydispersity. Two different PDLC systems have been obtained, by the use of two liquid crystals, a nematic commercial one: 4-cyano-4’-penthylbiphenyl (5CB) and a new smectic liquid crystal, synthesized by us: buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate (BBO). The PDLC composites have been obtained by the encapsulation method, working with four different ratios between the polymeric matrix and the liquid crystal, from 60:40 to 90:10. In all cases, the composites were able to form free standing, flexible films. Polarized light microscopy, scanning electron microscopy, differential scanning calorimetry, RAMAN- spectroscopy and the contact angle measurements have been performed, in order to characterize the new composites. The new smectic liquid crystal has been characterized using 1H-NMR and single crystal X-ray diffraction and its thermotropic behavior has been established using differential scanning calorimetry and polarized light microscopy. The polarized light microscopy evidenced the formation of round birefringent droplets, anchored homeotropic in the first case and planar in the second, with a narrow dimensional polydispersity, especially for the PDLC containing the largest amount of liquid crystal, fact evidenced by SEM, also. The obtained values for the water to air contact angle showed that the composites have a proper hydrophilic-hydrophobic balance, making them potential candidates for bioapplications. More than this, our studies demonstrated that the water to air contact angle varies as a function of PVAB matrix crystalinity degree, which can be controled as a function of time. This fact allowed us to conclude that the use of PVAB as matrix for PDLCs obtaining offers the possibility to modulate their properties for specific applications.Keywords: 4-cyano-4’-penthylbiphenyl, buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate, contact angle, polymer dispersed liquid crystals, poly vinyl alcohol boric acid
Procedia PDF Downloads 4501918 Comparison of Anterolateral Thigh Flap with or without Acellular Dermal Matrix in Repair of Hypopharyngeal Squamous Cell Carcinoma Defect: A Retrospective Study
Authors: Yaya Gao, Bing Zhong, Yafeng Liu, Fei Chen
Abstract:
Aim: The purpose of this study was to explore the difference between acellular dermal matrix (ADM) combined with anterolateral thigh (ALT) flap and ALT flap alone. Methods: HSCC patients were treated and divided into group A (ALT) and group B (ALT+ADM) between January 2014 and December 2018. We compared and analyzed the intraoperative information and postoperative outcomes of the patients. Results: There were 21 and 17 patients in group A and group B, respectively. The operation time, blood loss, defect size and anastomotic vessel selection showed no significant difference between two groups. The postoperative complications, including wound bleeding (n=0 vs. 1, p=0.459), wound dehiscence (n=0 vs. 1, p=0.459), wound infection (n=5vs.3, p=0.709), pharyngeal fistula (n=5vs.4, p=1.000) and hypoproteinemia (n=11 vs. 12, p=0.326) were comparable between the groups. Dysphagia at 6 months (number of liquid diets=0vs. 0; number of partial tube feedings=1vs. 1; number of total tube feedings=1vs. 0, p=0.655) also showed no significant differences. However, significant differences was observed in dysphagia at 12 months (number of liquid diets=0vs. 0; number of partial tube feedings=3 vs. 1; number of total tube feedings=10vs. 1, p=0.006). Conclusion: For HSCC patients, the use of the ALT flap combined ADM, compared to ALT treatment, showed better swallowing function at 12 months. The ALT flap combined ADM may serve as a safe and feasible alternative for selected HSCC patients.Keywords: hypopharyngeal squamous cell carcinoma, anterolateral thigh free flap, acellular dermal matrix, reconstruction, dysphagia
Procedia PDF Downloads 771917 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method
Authors: Chong Wang, Alexandre Urbano Hoffmann
Abstract:
Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction
Procedia PDF Downloads 4271916 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure
Authors: B. Hekner, J. Myalski, P. Wrzesniowski
Abstract:
This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application
Procedia PDF Downloads 1181915 Microstructure and Sintering of Boron-Alloyed Martensitic Stainless Steel
Authors: Ming-Wei Wu, Yu-Jin Tsai, Ching-Huai Chang
Abstract:
Liquid phase sintering (LPS) is a versatile technique for achieving effective densification of powder metallurgy (PM) steels and other materials. The aim of this study was to examine the influences of 0.6 wt% boron on the microstructure and LPS behavior of boron-alloyed 410 martensitic stainless steel. The results showed that adding 0.6 wt% boron can obviously promote the LPS due to a eutectic reaction and increase the sintered density of 410 stainless steel. The density was much increased by 1.06 g/cm³ after 1225ºC sintering. Increasing the sintering temperature from 1225ºC to 1275ºC did not obviously improve the sintered density. After sintering at 1225ºC~1275ºC, the matrix was fully martensitic, and intragranular borides were extensively found due to the solidification of eutectic liquid. The microstructure after LPS consisted of the martensitic matrix and (Fe, Cr)2B boride, as identified by electron backscatter diffraction (EBSD) and electron probe micro-analysis (EPMA).Keywords: powder metallurgy, liquid phase sintering, stainless steel, martensite, boron, microstructure
Procedia PDF Downloads 2581914 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite
Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali
Abstract:
In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force
Procedia PDF Downloads 4321913 Forced Convection Boundary Layer Flow of a Casson Fluid over a Moving Permeable Flat Plate beneath a Uniform Free Stream
Authors: N. M. Arifin, S. P. M. Isa, R. Nazar, N. Bachok, F. M. Ali, I. Pop
Abstract:
In this paper, the steady forced convection boundary layer flow of a Casson fluid past a moving permeable semi-infinite flat plate beneath a uniform free stream is investigated. The mathematical problem reduces to a pair of noncoupled ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Both the cases when the plate moves into or out of the origin are considered. Effects of the non-Newtonian (Casson) parameter, moving parameter, suction or injection parameter and Eckert number on the flow and heat transfer characteristics are thoroughly examined. Dual solutions are found to exist for each value of the governing parameters.Keywords: forced convection, Casson fluids, moving flat plate, boundary layer
Procedia PDF Downloads 4661912 Satellite Image Classification Using Firefly Algorithm
Authors: Paramjit Kaur, Harish Kundra
Abstract:
In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.Keywords: image classification, firefly algorithm, satellite image classification, terrain classification
Procedia PDF Downloads 4011911 Evaluation of National Research Motivation Evolution with Improved Social Influence Network Theory Model: A Case Study of Artificial Intelligence
Authors: Yating Yang, Xue Zhang, Chengli Zhao
Abstract:
In the increasingly interconnected global environment brought about by globalization, it is crucial for countries to timely grasp the development motivations in relevant research fields of other countries and seize development opportunities. Motivation, as the intrinsic driving force behind actions, is abstract in nature, making it difficult to directly measure and evaluate. Drawing on the ideas of social influence network theory, the research motivations of a country can be understood as the driving force behind the development of its science and technology sector, which is simultaneously influenced by both the country itself and other countries/regions. In response to this issue, this paper improves upon Friedkin's social influence network theory and applies it to motivation description, constructing a dynamic alliance network and hostile network centered around the United States and China, as well as a sensitivity matrix, to remotely assess the changes in national research motivations under the influence of international relations. Taking artificial intelligence as a case study, the research reveals that the motivations of most countries/regions are declining, gradually shifting from a neutral attitude to a negative one. The motivation of the United States is hardly influenced by other countries/regions and remains at a high level, while the motivation of China has been consistently increasing in recent years. By comparing the results with real data, it is found that this model can reflect, to some extent, the trends in national motivations.Keywords: influence network theory, remote assessment, relation matrix, dynamic sensitivity matrix
Procedia PDF Downloads 681910 Mechanical Characterization of Mango Peel Flour and Biopolypropylene Composites Compatibilized with PP-g-IA
Authors: J. Gomez-Caturla, L. Quiles-Carrillo, J. Ivorra-Martinez, D. Garcia-Garcia, R. Balart
Abstract:
The present work reports on the development of wood plastic composites based on biopolypropylene (BioPP) and mango peel flour (MPF) by extrusion and injection moulding processes. PP-g-IA and DCP have been used as a compatibilizer and as free radical initiators for reactive extrusion, respectively. Mechanical and morphological properties have been characterized in order to study the compatibility of the blends. The obtained results showed that DCP and PP-g-IA improved the stiffness of BioPP in terms of elastic modulus. Moreover, they positively increased the tensile strength and elongation at the break of the blends in comparison with the sample that only had BioPP and MPF in its composition, improving the affinity between both compounds. DCP and PP-g-IA even seem to have certain synergy, which was corroborated through FESEM analysis. Images showed that the MPF particles had greater adhesion to the polymer matrix when PP-g-IA and DCP were added. This effect was more intense when both elements were added, observing an almost inexistent gap between MPF particles and the BioPP matrix.Keywords: biopolyproylene, compatibilization, mango peel flour, wood plastic composite
Procedia PDF Downloads 1011909 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film
Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap
Abstract:
Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA
Procedia PDF Downloads 1271908 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect
Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti
Abstract:
Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity
Procedia PDF Downloads 4291907 Interpretation and Clustering Framework for Analyzing ECG Survey Data
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 4721906 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring
Procedia PDF Downloads 2291905 Effect of the Vertical Pressure on the Electrical Behaviour of the Micro-Copper Polyurethane Composite Films
Authors: Saeid Mehvari, Yolanda Sanchez-Vicente, Sergio González Sánchez, Khalid Lafdi
Abstract:
Abstract- Materials with a combination of transparency, electrical conductivity, and flexibility are required in the growing electronic sector. In this research, electrically conductive and flexible films have been prepared. These composite films consist of dispersing micro-copper particles into polyurethane (PU) matrix. Two sets of samples were made using both spin coating technique (sample thickness lower than 30 μm) and materials casting (sample thickness lower than 100 μm). Copper concentrations in the PU matrix varied from 0.5 to 20% by volume. The dispersion of micro-copper particles into polyurethane (PU) matrix were characterised using optical microscope and scanning electron microscope. The electrical conductivity measurement was carried out using home-made multimeter set up under pressures from 1 to 20 kPa through thickness and in plane direction. It seems that samples made by casting were not conductive. However, the sample made by spin coating shows through-thickness conductivity when they are under pressure. The results showed that spin-coated films with higher concentration of 2 vol. % of copper displayed a significant increase in the conductivity value, known as percolation threshold. The maximum conductivity of 7.2 × 10-1 S∙m-1 was reached at concentrations of filler with 20 vol. % at 20kPa. A semi-empirical model with adjustable coefficients was used to fit and predict the electrical behaviour of composites. For the first time, the finite element method based on the representative volume element (FE-RVE) was successfully used to predict their electrical behaviour under applied pressures. Keywords: electrical conductivity, micro copper, numerical simulation, percolation threshold, polyurethane, RVE model
Procedia PDF Downloads 1981904 Analysis of ECGs Survey Data by Applying Clustering Algorithm
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 3521903 Corrosion Behavior of Austempered Ductile Iron Microalloyed with Boron in Rainwater
Authors: S. Gvazava, N. Khidasheli, V. Tediashvili, M. Donadze
Abstract:
The work presented in this paper studied the of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in rainwater. A range of structural states of the metal matrix was obtained by changing the regimes of thermal treantments of a high-strength cast iron. The specimens were austenised at 900 0C for 30, 60, 90, 120 minutes. Afterwards, isothermal quenching was performed at 280 and 400 0C for40 seconds. The study was carried out using weight-change (WC), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM-EDS). According to the results, corrosion resistance of the boron microallyedbainitic ADI greatly depends on the type of the bainitic matrix and the amount of the retained austenite, which is driven by diffusion permeability of interphase and intergrain boundaries.Keywords: austempered ductile iron, corrosion behaviour, retained austenite, corrosion rate, interphase boundary, upper bainite, lower bainite
Procedia PDF Downloads 1221902 The Effects of Food Matrix and Different Excipient Foods on β-Carotene Bioaccessibility in Carrots
Authors: Birgul Hizlar, Sibel Karakaya
Abstract:
Nowadays, consumers are more and more aware of the benefits beyond basic nutrition provided by food and food compounds. Between these, carotenoids have been demonstrated to exhibit multiple health benefits (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). However, carotenoid bioaccessibility and bioavailability is generally rather low due to their specific localization in plant tissue and lipophilic nature. This situation is worldwide issue, since both developed and developing countries have their interest and benefits in increasing the uptake of carotenoids from the human diet. Recently, a new class of foods designed to improve the bioaccessibility/bioavailability of orally administered bioactive compounds is introduced: excipient foods. Excipient foods are specially designed foods which are prepared depending on the physicochemical properties of target bioactive compounds and increasing the bioavailability or bioaccessibility of bioactive compound. In this study, effects of food matrix (greating, boiling and mashing) and different excipient foods (olive oil, lemon juice, whey curd and dried artichoke leaf powder) on bioaccessibility of β-carotene in carrot were investigated by means of simulating in vitro gastrointestinal (GI) digestion. β-carotene contents of grated, boiled and mashed (after boiling process) carrots were 79.28, 147.63 and 151.19 μg/g respectively. No significant differences among boiled and mashed samples indicated that mashing process had no effect on the release of β-carotene from the food matrix (p > 0.05). On the contrary, mashing causes significant increase in the β-carotene bioaccessibility (p < 0.05). The highest β-carotene content was found in the mashed carrots incorporated with olive oil and lemon juice (C2). However, no significant differences between that sample and C1 (mashed carrot with lemon juice, olive oil, dried artichoke leaf powder), C3 (mashed carrot with addition of olive oil, lemon juice, whey curd) and). Similarly, the highest β-carotene bioaccessibility (50.26%) was found mashed C3 sample (p < 0.05). The increase in the bioaccessibility was approximately 5 fold and 50 fold when compared to grated and mashed samples containing olive oil, lemon juice and whey curd. The results demonstrate that both, food matrix and excipient foods, are able to increase the bioaccessibility of β-carotene.Keywords: bioaccessibility, carotenoids, carrot, β-carotene
Procedia PDF Downloads 3831901 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 263