Search results for: interface roughness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1827

Search results for: interface roughness

1407 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 368
1406 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application

Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu

Abstract:

Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.

Keywords: augmented reality, multimedia, user interface, engineering, education technology

Procedia PDF Downloads 554
1405 Thermal Annealing Effects on Minority Carrier Lifetime in GaInAsSb/GaSb by Means of Photothermal Defletion Technique

Authors: Souha Bouagila, Soufiene Ilahi

Abstract:

Photothermal deflection technique PTD have been employed to study the impact of thermal annealing on minority carrier in GaInAsSb grown on GaSb substarte, which used as an active layer for Vertical Cavity Surface Emitting laser (VCSEL). Photothermal defelction technique is nondescructive and accurate technique for electronics parameters determination. The measure of non-radiative recombination, electronic diffusivity, surface and interface recombination are effectuated by fitting the theoretical PTD signal to the experimental ones. As a results, we have found that Non-radiative lifetime increases from 3.8 µs (± 3, 9 %) for not annealed GaInAsSb to the 7.1 µs (± 5, 7%). In fact, electronic diffusivity D increased from 60.1 (± 3.9 %) to 89.6 cm2 / s (± 2.7%) for the as grown to that annealed for 60 min respectively. We have remarked that surface recombination velocity (SRV) decreases from 7963 m / s (± 6.3%) to 1450 m / s (± 3.6).

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, Surface and interface recombination velocity.GaInAsSb active layer

Procedia PDF Downloads 52
1404 The Effect of Closed Circuit Television Image Patch Layout on Performance of a Simulated Train-Platform Departure Task

Authors: Aaron J. Small, Craig A. Fletcher

Abstract:

This study investigates the effect of closed circuit television (CCTV) image patch layout on performance of a simulated train-platform departure task. The within-subjects experimental design measures target detection rate and response latency during a CCTV visual search task conducted as part of the procedure for safe train dispatch. Three interface designs were developed by manipulating CCTV image patch layout. Eye movements, perceived workload and system usability were measured across experimental conditions. Task performance was compared to identify significant differences between conditions. The results of this study have not been determined.

Keywords: rail human factors, workload, closed circuit television, platform departure, attention, information processing, interface design

Procedia PDF Downloads 146
1403 LIZTOXD: Inclusive Lizard Toxin Database by Using MySQL Protocol

Authors: Iftikhar A. Tayubi, Tabrej Khan, Mansoor M. Alsubei, Fahad A. Alsaferi

Abstract:

LIZTOXD provides a single source of high-quality information about proteinaceous lizard toxins that will be an invaluable resource for pharmacologists, neuroscientists, toxicologists, medicinal chemists, ion channel scientists, clinicians, and structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to explore the detail information of Lizard and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Lizard, toxin and toxin protein of different Lizard species. These interfaces created in this database will satisfy the demands of the scientific community by providing in-depth knowledge about Lizard and its toxin. In the next phase of our project we will adopt methodology and by using A MySQL and Hypertext Preprocessor (PHP) which and for designing Smart Draw. A database is a wonderful piece of equipment for storing large quantities of data efficiently. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, toxins, clinical data etc. LIZTOXD resource that provides comprehensive information about protein toxins from lizard toxins. The combination of specific classification schemes and a rich user interface allows researchers to easily locate and view information on the sequence, structure, and biological activity of these toxins. This manually curated database will be a valuable resource for both basic researchers as well as those interested in potential pharmaceutical and agricultural applications of lizard toxins.

Keywords: LIZTOXD, MySQL, PHP, smart draw

Procedia PDF Downloads 139
1402 Modulation of the Interphase in a Glass Epoxy System: Influence of the Sizing Chemistry on Adhesion and Interfacial Properties

Authors: S. Assengone Otogo Be, A. Fahs, L. Belec, T. A. Nguyen Tien, G. Louarn, J-F. Chailan

Abstract:

Glass fiber-reinforced composite materials have gradually developed in all sectors ranging from consumer products to aerospace applications. However, the weak point is most often the fiber/matrix interface, which can reduce the durability of the composite material. To solve this problem, it is essential to control the interphase and improve our understanding of the adhesion mechanism at the fibre/matrix interface. The interphase properties depend on the nature of the sizing applied on the surface of the glass fibers during their manufacture in order to protect them, facilitate their handling, and ensure fibre/matrix adhesion. The sizing composition, and in particular the nature of the coupling agent and the film-former affects the mechanical properties and the durability of composites. The aim of our study is, therefore, to develop and study composite materials with simplified sizing systems in order to understand how the main constituents modify the mechanical properties and the durability of composites from the nanometric to the macroscopic scale. Two model systems were elaborated: an epoxy matrix reinforced with simplified-sized glass fibres and an epoxy coating applied on glass substrates treated with the same sizings as fibres. For the sizing composition, two configurations were chosen. The first configuration possesses a chemical reactivity to link the glass and the matrix, and the second sizing contains non-reactive agents. The chemistry of the sized glass substrates and fibers was analyzed by FT-IR and XPS spectroscopies. The surface morphology was characterized by SEM and AFM microscopies. The observation of the surface samples reveals the presence of sizings which morphology depends on their chemistry. The evaluation of adhesion of coated substrates and composite materials show good interfacial properties for the reactive configuration. However, the non-reactive configuration exhibits an adhesive rupture at the interface of glass/epoxy for both systems. The interfaces and interphases between the matrix and the substrates are characterized at different scales. Correlations are made between the initial properties of the sizings and the mechanical performances of the model composites.

Keywords: adhesion, interface, interphase, materials composite, simplified sizing systems, surface properties

Procedia PDF Downloads 127
1401 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity

Procedia PDF Downloads 109
1400 Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase

Authors: Vahidullah Tac, Ercan Gurses

Abstract:

There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly.

Keywords: carbon nanotube, composite, interphase, micromechanical modeling

Procedia PDF Downloads 148
1399 The Smart Record and Replay Mechanism for Android

Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu, Hsiao-Han Huang

Abstract:

The number of Android applications (Apps) has increased rapidly in recent years. In order to get better programmatic control over Apps, we designed a record-and-replay mechanism to record Android input events and accessibility service events then make shortcuts. The shortcut is useful for complicated routine works and to Android beginners. We also generated graphical user interface (GUI) API by these shortcuts. GUI API helps developers make integrated Apps which can control other third-party Apps even if the official API is not offered by their providers. We demonstrated the usage of GUI API with two integrated Apps: Universal Bank App and Universal Communication App. Universal Bank App integrates three accounts from different banks and Universal Communication App integrates Line with WhatsApp. Both of them show the advantage of extendable GUI API. Furthermore, using our mechanism, shortcuts could replay almost all of the Top-100 Apps on Google Play correctly. In sum, the approach we present can help both Android developers and general users.

Keywords: graphical user interface, GUI API, record-and-replay, third-party apps

Procedia PDF Downloads 387
1398 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: Amit Sharma, J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics

Procedia PDF Downloads 367
1397 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution

Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi

Abstract:

Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.

Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS

Procedia PDF Downloads 35
1396 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation

Authors: Sudhanshu Kumar

Abstract:

Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.

Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size

Procedia PDF Downloads 189
1395 Implementation of a PDMS Microdevice for the Improved Purification of Circulating MicroRNAs

Authors: G. C. Santini, C. Potrich, L. Lunelli, L. Vanzetti, S. Marasso, M. Cocuzza, C. Pederzolli

Abstract:

The relevance of circulating miRNAs as non-invasive biomarkers for several pathologies is nowadays undoubtedly clear, as they have been found to have both diagnostic and prognostic value able to add fundamental information to patients’ clinical picture. The availability of these data, however, relies on a time-consuming process spanning from the sample collection and processing to the data analysis. In light of this, strategies which are able to ease this procedure are in high demand and considerable effort have been made in developing Lab-on-a-chip (LOC) devices able to speed up and standardise the bench work. In this context, a very promising polydimethylsiloxane (PDMS)-based microdevice which integrates the processing of the biological sample, i.e. purification of extracellular miRNAs, and reverse transcription was previously developed in our lab. In this study, we aimed at the improvement of the miRNA extraction performances of this micro device by increasing the ability of its surface to absorb extracellular miRNAs from biological samples. For this purpose, we focused on the modulation of two properties of the material: roughness and charge. PDMS surface roughness was modulated by casting with several templates (terminated with silicon oxide coated by a thin anti-adhesion aluminum layer), followed by a panel of curing conditions. Atomic force microscopy (AFM) was employed to estimate changes at the nanometric scale. To introduce modifications in surface charge we functionalized PDMS with different mixes of positively charged 3-aminopropyltrimethoxysilanes (APTMS) and neutral poly(ethylene glycol) silane (PEG). The surface chemical composition was characterized by X-ray photoelectron spectroscopy (XPS) and the number of exposed primary amines was quantified with the reagent sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (s-SDTB). As our final end point, the adsorption rate of all these different conditions was assessed by fluorescence microscopy by incubating a synthetic fluorescently-labeled miRNA. Our preliminary analysis identified casting on thermally grown silicon oxide, followed by a curing step at 85°C for 1 hour, as the most efficient technique to obtain a PDMS surface roughness in the nanometric scaleable to trap miRNA. In addition, functionalisation with 0.1% APTMS and 0.9% PEG was found to be a necessary step to significantly increase the amount of microRNA adsorbed on the surface, therefore, available for further steps as on-chip reverse transcription. These findings show a substantial improvement in the extraction efficiency of our PDMS microdevice, ultimately leading to an important step forward in the development of an innovative, easy-to-use and integrated system for the direct purification of less abundant circulating microRNAs.

Keywords: circulating miRNAs, diagnostics, Lab-on-a-chip, polydimethylsiloxane (PDMS)

Procedia PDF Downloads 294
1394 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel

Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han

Abstract:

Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.

Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method

Procedia PDF Downloads 363
1393 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model

Authors: Can Huang, Xiaoliang Wang, Qingquan Liu

Abstract:

Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.

Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH

Procedia PDF Downloads 42
1392 Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface

Authors: Neha Kanodia, M. Kamil

Abstract:

Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition.

Keywords: surface-pressure, mean molecular area isotherms, hysteresis, static elasticity

Procedia PDF Downloads 424
1391 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test

Procedia PDF Downloads 244
1390 Modeling Electrical Properties of Hetero-Junction-Graphene/Pentacene and Gold/Pentacene

Authors: V. K. Lamba, Abhinandan Bharti

Abstract:

We investigate the electronic transport properties across the graphene/ pentacene and gold/pentacene interface. Further, we studied the effect of ripples/bends in pentacene using NEGF-DFT approach. Current transport across the pentacene/graphene interface is found to be remarkably different from transport across pentacene/Gold interfaces. We found that current across these interfaces could be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Further, the degree of bend or degrees of the curve formed during ripple formation strongly change the optimized geometric structures, charge distributions, energy bands, and DOS. The misorientation and hybridization of carbon orbitals are associated with a variation in bond lengths and carrier densities, and are the causes of the dramatic changes in the electronic structure during ripple formation. The electrical conductivity decreases with increase in curvature during ripple formation or due to bending of pentacene molecule and a decrease in conductivity is directly proportional to the increase in curvature angle and given by quadratic relation.

Keywords: hetero-junction, grapheme, NEGF-DFT, pentacene, gold/pentacene

Procedia PDF Downloads 215
1389 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: nonlinear oscillations, two-layered liquid, instability region, hydrodynamic coefficients, resonance frequency

Procedia PDF Downloads 199
1388 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports

Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel

Abstract:

The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.

Keywords: biomechanics, inertial sensors, motion capture, rehabilitation

Procedia PDF Downloads 120
1387 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 552
1386 Scaling Analysis of the Contact Line and Capillary Interaction Induced by a Floating Tilted Cylinder

Authors: ShiQing Gao, XingYi Zhang, YouHe Zhou

Abstract:

When a floating tilted cylinder pierces a fluid interface, the fulfilment of constant-contact-angle condition along the cylinder results in shift, stretch and distortion of the contact line, thus leading to a capillary interaction. We perform an investigation of the scaling dependence of tilt angle, contact angle, and cylinder radius on the contact line profile and the corresponding capillary interaction by numerical simulation and experiment. Characterized by three characteristic parameters respectively, the dependences for each deformation mode are systematically analyzed. Both the experiment and simulation reveals an invariant structure that is independent of contact angle and radius to characterize the stretch of the contact line for every tilted case. Based on this observation, we then propose a general capillary force scaling law to incredibly grasp all the simulated results, by simply approximating the contact line profile as tilted ellipse.

Keywords: gas-liquid/liquid-fluid interface, colloidal particle, contact line shape, capillary interaction, surface evolver (SE)

Procedia PDF Downloads 258
1385 An Investigation on Interface Shear Resistance of Twinwall Units for Tank Structures

Authors: Jaylina Rana, Chanakya Arya, John Stehle

Abstract:

Hybrid precast twinwall concrete units, mainly used in basement, core and crosswall construction, are now being adopted in water retaining tank structures. Their use offers many advantages compared with conventional in-situ concrete alternatives, however, the design could be optimised further via a deeper understanding of the unique load transfer mechanisms in the system. In the tank application, twinwall units, which consist of two precast concrete biscuits connected by steel lattices and in-situ concrete core, are subject to bending. Uncertainties about the degree of composite action between the precast biscuits and hence flexural performance of the units necessitated laboratory tests to investigate the interface shear resistance. Testing was also required to assess both the leakage performance and buildability of a variety of joint details. This paper describes some aspects of this novel approach to the design/construction of tank structures as well as selected results from some of the tests that were carried out.

Keywords: hybrid construction, twinwall, precast construction, composite action

Procedia PDF Downloads 450
1384 Graphical User Interface for Presting Matlab Work for Reduction of Chromatic Disperion Using Digital Signal Processing for Optical Communication

Authors: Muhammad Faiz Liew Abdullah, Bhagwan Das, Nor Shahida, Abdul Fattah Chandio

Abstract:

This study presents the designed features of Graphical User Interface (GUI) for chromatic dispersion (CD) reduction using digital signal processing (DSP) techniques. GUI is specially designed for windows platform. The obtained simulation results from matlab are presented via this GUI. After importing results from matlab in GUI, It will present your work on any windows7 and onwards versions platforms without matlab software. First part of the GUI contains the research methodology block diagram and in the second part, output for each stage is shown in separate reserved area for the result display. Each stage of methodology has the captions to display the results. This GUI will be very helpful during presentations instead of making slides this GUI will present all your work easily in the absence of other software’s such as Matlab, Labview, MS PowerPoint. GUI is designed using C programming in MS Visio Studio.

Keywords: Matlab simulation results, C programming, MS VISIO studio, chromatic dispersion

Procedia PDF Downloads 437
1383 Online Multilingual Dictionary Using Hamburg Notation for Avatar-Based Indian Sign Language Generation System

Authors: Sugandhi, Parteek Kumar, Sanmeet Kaur

Abstract:

Sign Language (SL) is used by deaf and other people who cannot speak but can hear or have a problem with spoken languages due to some disability. It is a visual gesture language that makes use of either one hand or both hands, arms, face, body to convey meanings and thoughts. SL automation system is an effective way which provides an interface to communicate with normal people using a computer. In this paper, an avatar based dictionary has been proposed for text to Indian Sign Language (ISL) generation system. This research work will also depict a literature review on SL corpus available for various SL s over the years. For ISL generation system, a written form of SL is required and there are certain techniques available for writing the SL. The system uses Hamburg sign language Notation System (HamNoSys) and Signing Gesture Mark-up Language (SiGML) for ISL generation. It is developed in PHP using Web Graphics Library (WebGL) technology for 3D avatar animation. A multilingual ISL dictionary is developed using HamNoSys for both English and Hindi Language. This dictionary will be used as a database to associate signs with words or phrases of a spoken language. It provides an interface for admin panel to manage the dictionary, i.e., modification, addition, or deletion of a word. Through this interface, HamNoSys can be developed and stored in a database and these notations can be converted into its corresponding SiGML file manually. The system takes natural language input sentence in English and Hindi language and generate 3D sign animation using an avatar. SL generation systems have potential applications in many domains such as healthcare sector, media, educational institutes, commercial sectors, transportation services etc. This research work will help the researchers to understand various techniques used for writing SL and generation of Sign Language systems.

Keywords: avatar, dictionary, HamNoSys, hearing impaired, Indian sign language (ISL), sign language

Procedia PDF Downloads 203
1382 Polyhedral Oligomeric Silsesquioxane in Poly Lactic Acid and Poly Butylene Adipate-Co-Terephthalate Blend

Authors: Elahe Moradi, Hoseinali A. Khonakdar

Abstract:

The escalating interest in renewable polymers is undeniable, albeit accompanied by inherent challenges. In our study, we endeavored to make a significant contribution to environmental conservation by introducing an eco-friendly structure, developed through an innovative approach. Specifically, we enhanced the compatibility between two immiscible polymers, namely poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Our strategy involved the use of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles, equipped with an epoxy functional group (Epoxy-POSS), to accomplish this objective with solution casting method. The incorporation of 1% nanoparticles into the PLA blend resulted in a decrease in its cold crystallization temperature. Furthermore, these nanoparticles possess the requisite capability to enhance molecular mobility, facilitated by the induction of a lubrication effect. The emergence of a PLA-CO-POSS-CO-PBAT structure at the interface between PLA and PBAT led to a significant amplification of the interactions at the interface of the matrix and the dispersed phase.

Keywords: compatibilization, thermal behavior, structure-properties, nanocomposite, PLA, PBAT

Procedia PDF Downloads 39
1381 A Combined CFD Simulation of Plateau Borders including Films and Transitional Areas of Liquid Foams

Authors: Abdolhamid Anazadehsayed, Jamal Naser

Abstract:

An integrated computational fluid dynamics model is developed for a combined simulation of Plateau borders, films, and transitional areas between the film and the Plateau borders to reduce the simplifications and shortcomings of available models for foam drainage in micro-scale. Additionally, the counter-flow related to the Marangoni effect in the transitional area is investigated. The results of this combined model show the contribution of the films, the exterior Plateau borders, and Marangoni flow in the drainage process more accurately since the inter-influence of foam's elements is included in this study. The exterior Plateau borders flow rate can be four times larger than the interior ones. The exterior bubbles can be more prominent in the drainage process in cases where the number of the exterior Plateau borders increases due to the geometry of container. The ratio of the Marangoni counter-flow to the Plateau border flow increases drastically with an increase in the mobility of air-liquid interface. However, the exterior bubbles follow the same trend with much less intensity since typically, the flow is less dependent on the interface of air-liquid in the exterior bubbles. Moreover, the Marangoni counter-flow in a near-wall transition area is less important than an internal one. The influence of air-liquid interface mobility on the average velocity of interior foams is attained with more accuracy with more realistic boundary condition. Then it has been compared with other numerical and analytical results. The contribution of films in the drainage is significant for the mobile foams as the velocity of flow in the film has the same order of magnitude as the velocity in the Plateau border. Nevertheless, for foams with rigid interfaces, film's contribution in foam drainage is insignificant, particularly for the films near the wall of the container.

Keywords: foam, plateau border, film, Marangoni, CFD, bubble

Procedia PDF Downloads 326
1380 The Touch Sensation: Ageing and Gender Influences

Authors: A. Abdouni, C. Thieulin, M. Djaghloul, R. Vargiolu, H. Zahouani

Abstract:

A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender.

Keywords: ageing, finger, gender, touch

Procedia PDF Downloads 245
1379 The Effects of Urbanization on Peri-Urban Livelihood in Ghana: A Case of Kumasi Peri-Urban Communities

Authors: Charles Kwaku Oppong

Abstract:

The research linked urban expansion resulting from urbanization with changing morphology processes happening in peri-urban communities. Two villages of Kumasi City peri-urban were used as a case study. Appropriate analytical framework and methodology (literature review and empirical evidence) were employed to ensure that all pertinent issues of peri-urban interface are brought to light. It was discovered from the study that since peri-urban livelihood is linked with assets base; it has been found that stock of asset, as well as transformation processes, were major factors in the shaping of livelihoods strategies. For that reason, success or failure of household livelihoods was seen to relate to the kind of livelihood strategy employed. With efforts to mitigate for livelihoods failure due to peri-urban development, households' recourse to remittances, land disposal, and other means as an alternative livelihood approach. The study calls for local government policy interventions in regulating peri-urban transformation process and providing safety nets for the vulnerable.

Keywords: urban expansion, peri-urban interface, livelihoods, asset

Procedia PDF Downloads 225
1378 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform

Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung

Abstract:

Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.

Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing

Procedia PDF Downloads 204