Search results for: gas phase sorption
4207 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 864206 The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge
Authors: E. Al-Essa, R. Bello-Mendoza, D. G. Wareham
Abstract:
Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.Keywords: anaerobic digestion, iron oxide, methanogenesis, nanoparticle
Procedia PDF Downloads 1404205 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector
Authors: Dana M. Ragab, Jasim A Ghaeb
Abstract:
The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.Keywords: power quality, space vector, unbalance evaluation, three-phase power system
Procedia PDF Downloads 1894204 Two-Step Inversion Method for Multi-mode Surface Waves
Authors: Ying Zhang
Abstract:
Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution.Keywords: surface wave inversion, waveform separation, love waves, higher-mode interference
Procedia PDF Downloads 704203 Using Phase Equilibrium Theory to Calculate Solubility of γ-Oryzanol in Supercritical CO2
Authors: Boy Arief Fachri
Abstract:
Even its content is rich in antioxidants ϒ-oryzanol, rice bran is not used properly as functional food. This research aims to (1) extract ϒ-oryzanol; (2) determine the solubility of ϒ-oryzanol in supercritical CO2 based on phase equilibrium theory; and (3) study the effect of process variables on solubility. Extraction experiments were carried out for rice bran (5 g) at various extraction pressures, temperatures and reaction times. The flowrate of supercritical fluid through the extraction vessel was 25 g/min. The extracts were collected and analysed with high-pressure liquid chromatography (HPLC). The conclusion based on the experiments are as: (1) The highest experimental solubility was 0.303 mcg/mL RBO at T= 60°C, P= 90 atm, t= 30 min; (2) Solubility of ϒ-oryzanol was influenced by pressure and temperature. As the pressure and temperature increase, the solubility increases; (3) The solubility data of supercritical extraction can be successfully determined using phase equilibrium theory. Meanwhile, tocopherol was found and slightly investigated in this work.Keywords: rice bran, solubility, supercritical CO2, ϒ-orizanol
Procedia PDF Downloads 3874202 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor
Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie
Abstract:
Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization
Procedia PDF Downloads 234201 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method
Authors: Arwa Alzughaibi
Abstract:
Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization
Procedia PDF Downloads 2584200 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi
Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou
Abstract:
We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition
Procedia PDF Downloads 3054199 Acute Phase Proteins as Biomarkers of Urinary Tract Infection (UTI) in Dairy Cattle
Authors: Wael El-Deeb
Abstract:
The present study aimed to investigate the diagnostic importance of acute phase proteins in urinary tract infection (UTI) in cattle. We describe the clinical, bacteriological and biochemical findings in 99 lactating cows. Blood and urine samples from diseased (n=84) and control healthy cows (n=15) were submitted to laboratory investigations. The urine analysis revealed hematuria and pyuria in UTI group. The isolated bacteria were E.coli (43/84) Corynebacterium spp, (31/84), Proteus spp. (6/84) and Streptococcus spp (4/84). The concentrations of Haptoglobin (Hp), serum amyloid A (SAA), α1-Acid glycoprotein (AGP), fibrinogen (Fb), total protein, albumen, and globulin were higher in cows with UTI when compared to healthy ones. Fifty-one of 84 cows with UTI were successfully treated. The levels of Hp, SAA, AGP, total protein, and globulin were associated with the odds of treatment failure. Conclusively, acute phase proteins could be used as diagnostic and prognostic biomarkers in cows with UTI.Keywords: cows, urinary, infections, haptoglobin, serum Amyloid A
Procedia PDF Downloads 7244198 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 1464197 An Efficient Acquisition Algorithm for Long Pseudo-Random Sequence
Authors: Wan-Hsin Hsieh, Chieh-Fu Chang, Ming-Seng Kao
Abstract:
In this paper, a novel method termed the Phase Coherence Acquisition (PCA) is proposed for pseudo-random (PN) sequence acquisition. By employing complex phasors, the PCA requires only complex additions in the order of N, the length of the sequence, whereas the conventional method utilizing fast Fourier transform (FFT) requires complex multiplications and additions both in the order of Nlog2N . In order to combat noise, the input and local sequences are partitioned and mapped into complex phasors in PCA. The phase differences between pairs of input and local phasors are utilized for acquisition, and thus complex multiplications are avoided. For more noise-robustness capability, the multi-layer PCA is developed to extract the code phase step by step. The significant reduction of computational loads makes the PCA an attractive method, especially when the sequence length of is extremely large which becomes intractable for the FFT-based acquisition.Keywords: FFT, PCA, PN sequence, convolution theory
Procedia PDF Downloads 4784196 ERP Implementation in Iran: A Successful Experience in DGC
Authors: Mohammad Reza Ostad Ali Naghi Kashani
Abstract:
Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing. Although ERP projects are expensive, time consuming, and complex, there are some successful experiences. These days, developing countries are striving to implement ERP projects successfully; however, there are many obstacles. Therefore, these projects would be failed or partially failed. This paper concerns the implementation of a successful ERP implementation, IFS, in Iran at Dana Geophysics Company (DGC). After a short review of ERP and ERP market in Iran, we propose a three phases deployment methodology (phase 1: Preparation and Business Process Management (BPM) phase 2: implementation and phase 3: testing, golive-1 (pilot) and golive-2 (final)). Then, we present five guidelines (Project Management, Change Management, Business Process Management (BPM), Training& Knowledge Management, and Technical Management), which were chose as work streams. In this case study we present lessons learned in Project management and Business process Management.Keywords: business process management, critical success factors, ERP, project management
Procedia PDF Downloads 4924195 Soybean Oil Based Phase Change Material for Thermal Energy Storage
Authors: Emre Basturk, Memet Vezir Kahraman
Abstract:
In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing
Procedia PDF Downloads 3834194 Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone
Authors: Anıl Dinçer, Dilek Duranoğlu
Abstract:
Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed.Keywords: dehydrogenation, liquid phase, methyl ethyl ketone, secondary alcohol
Procedia PDF Downloads 2974193 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs
Authors: T. Topór, A. Derkowski, P. Ziemiański
Abstract:
Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.Keywords: maturation, methane sorption, organic matter, porosity, shales
Procedia PDF Downloads 2374192 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials
Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie
Abstract:
The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT
Procedia PDF Downloads 724191 A Mixed-Integer Nonlinear Program to Optimally Pace and Fuel Ultramarathons
Authors: Kristopher A. Pruitt, Justin M. Hill
Abstract:
The purpose of this research is to determine the pacing and nutrition strategies which minimize completion time and carbohydrate intake for athletes competing in ultramarathon races. The model formulation consists of a two-phase optimization. The first-phase mixed-integer nonlinear program (MINLP) determines the minimum completion time subject to the altitude, terrain, and distance of the race, as well as the mass and cardiovascular fitness of the athlete. The second-phase MINLP determines the minimum total carbohydrate intake required for the athlete to achieve the completion time prescribed by the first phase, subject to the flow of carbohydrates through the stomach, liver, and muscles. Consequently, the second phase model provides the optimal pacing and nutrition strategies for a particular athlete for each kilometer of a particular race. Validation of the model results over a wide range of athlete parameters against completion times for real competitive events suggests strong agreement. Additionally, the kilometer-by-kilometer pacing and nutrition strategies, the model prescribes for a particular athlete suggest unconventional approaches could result in lower completion times. Thus, the MINLP provides prescriptive guidance that athletes can leverage when developing pacing and nutrition strategies prior to competing in ultramarathon races. Given the highly-variable topographical characteristics common to many ultramarathon courses and the potential inexperience of many athletes with such courses, the model provides valuable insight to competitors who might otherwise fail to complete the event due to exhaustion or carbohydrate depletion.Keywords: nutrition, optimization, pacing, ultramarathons
Procedia PDF Downloads 1904190 Synthesis of NiNW/ Cellulose Nano Hybrid via Liquid-Phase Reduction
Authors: Siti Rahmah Shamsuri, Eiichiro Matsubara, Shohei Shiomi
Abstract:
The 1D nanomaterial is far surpassed the 0D nanomaterial. It does not just offer most of the benefit of the 0D nanomaterial such as the large surface area, a great number of active site and an efficient interfacial charge transfer but also can assemble into free-standing and flexible electrode due to their high aspect ratio. Thus, it is essential to develop a simple and ease synthesis of this 1D nanomaterial for the practical application. Here, nickel nanowire/cellulose hybrid has been successfully fabricated via a simple liquid-phase method with the assist of the magnetic field. A finer nickel nanowire was heterogeneously nucleated on the surface of the cellulose fiber, which demonstrated the effect of the hydroxyl group on the cellulose structure. The result of the nickel nanowire size was found to vary from 66-114 nm. A detailed discussion on the mechanism of the nickel nanowire/ cellulose hybrid formation is also shown in this paper.Keywords: cellulose nanofiber, liquid-phase reduction, metal nanowire, nano hybrid material
Procedia PDF Downloads 3404189 Implementation of Real-Time Multiple Sound Source Localization and Separation
Authors: Jeng-Shin Sheu, Qi-Xun Zheng
Abstract:
This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.Keywords: real-time, spectrum analysis, sound source localization, sound source separation
Procedia PDF Downloads 1554188 Understanding the Accumulation of Microplastics in Riverbeds and Soils
Authors: Gopala Krishna Darbha
Abstract:
Microplastics (MPs) are secondary fragments of large-sized plastic debris released into the environment and fall in the size range of less than 5 mm. Though reports indicate the abundance of MPs in both riverine and soil environments, their fate is still not completely understood due to the complexity of natural conditions. Mineral particles are ubiquitous in the rivers and may play a vital role in accumulating MPs to the riverbed, thus affecting the benthic life and posing a threat to the river's health. Apart, the chemistry (pH, ionic strength, humics) at the interface can be very prominent. The MPs can also act as potential vectors to transport other contaminants in the environment causing secondary water pollution. The present study focuses on understanding the interaction of MPs with weathering sequence of minerals (feldspar, kaolinite and gibbsite) under batch mode under relevant environmental and natural conditions. Simultaneously, we performed stability studies and transport (column) experiments to understand the mobility of MPs under varying soil solutions (SS) chemistry and the influence of contaminants (CuO nanoparticles). Results showed that the charge and morphology of the gibbsite played an significant role in sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). The Fourier transform infrared spectroscopy data supports the complexation of NPs with gibbsite particles via hydrogen bonding. In case of feldspar and kaolinite, a weak interaction with NPs was observed which can be due to electrostatic repulsions and low surface area to volume ration of the mineral particles. The study highlights the enhanced mobility in presence of feldspar and kaolinite while gibbsite rich zones can cause entrapment of NPs accumulating in the riverbeds. In the case of soils, in the absence of MPs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (Ksed(1/h)) for CuO NPs was >0.5 h−1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of MPs. The Ksed for CuO NPs decreased to half and found <0.25 h−1 in the presence of MPs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in the presence of MPs. Results suggest that the release of MPs in the terrestrial ecosystem is a potential threat leading to increased mobility of metal nanoparticles in the environment.Keywords: microplastics, minerals, sorption, soils
Procedia PDF Downloads 904187 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows
Authors: F. A. Hamad, S. He
Abstract:
In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow
Procedia PDF Downloads 3974186 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions
Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann
Abstract:
Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination
Procedia PDF Downloads 4374185 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.Keywords: EEG, epilepsy, phase correlation, seizure
Procedia PDF Downloads 3094184 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines
Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi
Abstract:
In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.Keywords: breast cancer, mammography, CAD system, features, fusion
Procedia PDF Downloads 5994183 Liquid Phase Sintering of Boron-Alloyed Powder Metallurgy Stainless Steel
Authors: Ming-Wei Wu, Zih-Jie Lin
Abstract:
Liquid phase sintering (LPS) is a feasible means for decreasing the porosity of powder metallurgy (PM) Fe-based material without substantially increase the production cost. The aim of this study was to investigate the effect of 0.6 wt% boron on the densification of PM 304L stainless steel by LPS. The results indicated that the increase in the sintered density of 304L+0.6B steel is obvious after 1250 ºC sintering, and eutectic structures with borides are observed at the interfaces of the raw steel powders. Differential scanning calorimetry (DSC) results show that liquid is generated at 1244ºC during sintering. The boride in the eutectic structure is rich in boron and chromium atoms and is deficient in nickel atoms, as identified by electron probe micro-analyzer (EPMA). Furthermore, the sintered densities of 304L and 304L+0.6B steels sintered at 1300 ºC are 6.99 g/cm3 and 7.69 g/cm3, respectively, indicating that boron is a suitable alloying element for facilitating LPS of PM 304L stainless steel.Keywords: powder metallurgy, liquid phase sintering, stainless steel, boron, microstructure
Procedia PDF Downloads 3364182 A Novel Method For Non-Invasive Diagnosis Of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study
Authors: Gamal Shiha, Waleed Samir, Zahid Azam, Premashis Kar, Saeed Hamid, Shiv Sarin
Abstract:
A simple, rapid and non-invasive electromagnetic sensor (C-FAST device) was- patented; for diagnosis of HCV RNA. Aim: To test the validity of the device compared to standard HCV PCR. Subjects and Methods: The first phase was done as pilot in Egypt on 79 participants; the second phase was done in five centers: one center from Egypt, two centers from Pakistan and two centers from India (800, 92 and 113 subjects respectively). The third phase was done nationally as multicenter study on (1600) participants for ensuring its representativeness. Results: When compared to PCR technique, C-FAST device revealed sensitivity 95% to 100%, specificity 95.5% to 100%, PPV 89.5% to 100%, NPV 95% to 100% and positive likelihood ratios 21.8% to 38.5%. Conclusion: It is practical evidence that HCV nucleotides emit electromagnetic signals that can be used for its identification. As compared to PCR, C-FAST is an accurate, valid and non-invasive device.Keywords: C-FAST- a valid and reliable device, distant cellular interaction, electromagnetic signal detection, non-invasive diagnosis of HCV
Procedia PDF Downloads 4324181 Effect of Transition Metal Addition on Aging Behavior of Invar Alloy
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight per cent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.Keywords: Invar alloy, transition metals, phase equilibrium, aging behavior, microstructure, hardness
Procedia PDF Downloads 5324180 A Continuous Switching Technique for a Single Phase Bridgeless and Transformer-Less Active Rectifier with High Power Factor and Voltage Stabilization
Authors: Rahul Ganpat Mapari, D. G. Wakde
Abstract:
In this paper, a proposed approach to improve the power factor of single-phase rectifiers and to regulate the output voltage against the change in grid voltage and load is presented. This converter topology is evaluated on the basis of performance and its salient features like simplicity, low cost and high performance are discussed to analyze its applicability. The proposed control strategy is bridgeless, transformer-less and output current sensor-less and consists of only two Bi-directional IGBTs and two diodes. The voltage regulation is achieved by a simple voltage divider to communicate to a controller to control the duty cycles of PWM. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity.Keywords: Active Rectifier (AC-DC), power factor, single phase, voltage regulation
Procedia PDF Downloads 5804179 CFD Analysis of Solar Floor Radiant Heating System with PCM
Authors: Mohammad Nazififard, Reihane Faghihi
Abstract:
This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.Keywords: solar floor, heating system, phase change material, computational fluid dynamics
Procedia PDF Downloads 2454178 The Austenite Role in Duplex Stainless Steel Performance
Authors: Farej Ahmed Emhmmed Alhegagi
Abstract:
Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels
Procedia PDF Downloads 359