Search results for: fungal degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2012

Search results for: fungal degradation

1592 Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye

Authors: B. Benalioua, I. Benyamina, M. Mansour, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, doping

Procedia PDF Downloads 389
1591 Effectiveness of Public Health Laws and Study of Social Aspects: With Special Reference to India

Authors: Arun Karoriya, Mrinal Agrawal

Abstract:

Health is one of the basic requirements of human being. And today India is facing a major degradation of health at every age group. As society evolves and flourishes, there are different types of rules, norms, standards which are required to control the conduct of the human being for its well-being and growth. Right to health is one of those aspects that can be counted, discovered and examined under the purview of constitutional provisions of India. The condition of health is at downfall despite the fact that there are several policies framed by the government. There is an urgent call for rigid public health laws to ensure safe and disease free society. The effectiveness of health law has to be examined by keeping in mind that it is hampering growth and economy and society establishment. Health in any society is a main social aspect as it plays a major role for economic development. The multidimensional approach to determine it is by discussing i) rational selection and use of medicines ii) sustainable adequate financing iii) affordable prices iv)reliable health and supply systems.

Keywords: degradation, flourish, multidimensional, policies

Procedia PDF Downloads 332
1590 Seismic Fragility of Weir Structure Considering Aging Degradation of Concrete Material

Authors: HoYoung Son, DongHoon Shin, WooYoung Jung

Abstract:

This study presented the seismic fragility framework of concrete weir structure subjected to strong seismic ground motions and in particular, concrete aging condition of the weir structure was taken into account in this study. In order to understand the influence of concrete aging on the weir structure, by using probabilistic risk assessment, the analytical seismic fragility of the weir structure was derived for pre- and post-deterioration of concrete. The performance of concrete weir structure after five years was assumed for the concrete aging or deterioration, and according to after five years’ condition, the elastic modulus was simply reduced about one–tenth compared with initial condition of weir structures. A 2D nonlinear finite element analysis was performed considering the deterioration of concrete in weir structures using ABAQUS platform, a commercial structural analysis program. Simplified concrete degradation was resulted in the increase of almost 45% of the probability of failure at Limit State 3, in comparison to initial construction stage, by analyzing the seismic fragility.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 468
1589 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: bearing strength, bolted joint, degradation scheme, progressive damage model

Procedia PDF Downloads 479
1588 Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye

Authors: S. V. Prabhakar Vattikuti, Chan Byon

Abstract:

In this paper, we report a facile synthetic strategy of randomly disturbed Bi₂S₃ nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi₂S₃/WS₂ with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi₂S₃/WS₂ composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi₂S₃/WS₂ photocatalyst. Due to their marked synergistic effects, the supported Bi₂S₃ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi₂S₃/WS₂ composite.

Keywords: photocatalyst, heterostructures, transition metal disulfides, organic dye, nanorods

Procedia PDF Downloads 276
1587 CAP-Glycine Protein Governs Growth, Differentiation, and the Pathogenicity of Global Meningoencephalitis Fungi

Authors: Kyung-Tae Lee, Li Li Wang, Kwang-Woo Jung, Yong-Sun Bahn

Abstract:

Microtubules are involved in mechanical support, cytoplasmic organization as well as in a number of cellular processes by interacting with diverse microtubule-associated proteins (MAPs), such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A common feature of these proteins is the presence of a cytoskeleton-associated protein-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate functions of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which causes fatal meningoencephalitis globally. In this study, we identified five CAP-Gly proteins encoding genes in C. neoformans. Among these, Cgp1, encoded by CNAG_06352, has a unique domain structure that has not been reported before in other eukaryotes. Supporting the role of Cpg1 in microtubule-related functions, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer, and Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular functions of microtubules, Cgp1 also governs maintenance of membrane stability and genotoxic stress responses. Furthermore, we demonstrate that Cgp1 uniquely regulates sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Our domain analysis reveals that the CAP-Gly domain plays major roles in all the functions of Cgp1. Finally, the cgp1Δ mutant is attenuated in virulence. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation and pathogenicity of C. neoformans.

Keywords: human fungal pathogen, CAP-Glycine protein, microtubule, meningoencephalitis

Procedia PDF Downloads 295
1586 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection

Authors: Pukhrambam Helena Chanu, Janardan Yadav

Abstract:

This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.

Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.

Procedia PDF Downloads 28
1585 Heterogeneous Photocatalytic Degradation of Ibuprofen in Ultrapure Water, Municipal and Pharmaceutical Industry Wastewaters Using a TiO2/UV-LED System

Authors: Nabil Jallouli, Luisa M. Pastrana-Martínez, Ana R. Ribeiro, Nuno F. F. Moreira, Joaquim L. Faria, Olfa Hentati, Adrián M. T. Silva, Mohamed Ksibi

Abstract:

Degradation and mineralization of ibuprofen (IBU) were investigated using Ultraviolet (UV) Light Emitting Diodes (LEDs) in TiO2 photocatalysis. Samples of ultrapure water (UP) and a secondary treated effluent of a municipal wastewater treatment plant (WWTP), both spiked with IBU, as well as a highly concentrated IBU (230 mgL-1) pharmaceutical industry wastewater (PIWW), were tested in the TiO2/UV-LED system. Three operating parameters, namely, pH, catalyst load and number of LEDs were optimized. The process efficiency was evaluated in terms of IBU removal using high performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Additionally, the mineralization was investigated by determining the dissolved organic carbon (DOC) content. The chemical structures of transformation products were proposed based on the data obtained using liquid chromatography with a high resolution mass spectrometer ion trap/time-of-flight (LC-MS-IT-TOF). A possible pathway of IBU degradation was accordingly proposed. Bioassays were performed using the marine bacterium Vibrio fischeri to evaluate the potential acute toxicity of original and treated wastewaters. TiO2 heterogeneous photocatalysis was efficient to remove IBU from UP and from PIWW, and less efficient in treating the wastewater from the municipal WWTP. The acute toxicity decreased by ca. 40% after treatment, regardless of the studied matrix.

Keywords: acute toxicity, Ibuprofen, UV-LEDs, wastewaters

Procedia PDF Downloads 232
1584 Kinetic Parameter Estimation from Thermogravimetry and Microscale Combustion Calorimetry

Authors: Rhoda Afriyie Mensah, Lin Jiang, Solomon Asante-Okyere, Xu Qiang, Cong Jin

Abstract:

Flammability analysis of extruded polystyrene (XPS) has become crucial due to its utilization as insulation material for energy efficient buildings. Using the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, the degradation kinetics of two pure XPS from the local market, red and grey ones, were obtained from the results of thermogravity analysis (TG) and microscale combustion calorimetry (MCC) experiments performed under the same heating rates. From the experiments, it was discovered that red XPS released more heat than grey XPS and both materials showed two mass loss stages. Consequently, the kinetic parameters for red XPS were higher than grey XPS. A comparative evaluation of activation energies from MCC and TG showed an insignificant degree of deviation signifying an equivalent apparent activation energy from both methods. However, different activation energy profiles as a result of the different chemical pathways were presented when the dependencies of the activation energies on extent of conversion for TG and MCC were compared.

Keywords: flammability, microscale combustion calorimetry, thermogravity analysis, thermal degradation, kinetic analysis

Procedia PDF Downloads 157
1583 Zeolite Supported Iron-Sensitized TIO₂ for Tetracycline Photocatalytic ‎Degradation under Visible Light: A Comparison between Doping and Ion ‎Exchange ‎

Authors: Ghadeer Jalloul, Nour Hijazi, Cassia Boyadjian, Hussein Awala, Mohammad N. Ahmad, ‎Ahmad Albadarin

Abstract:

In this study, we applied Fe-sensitized TiO₂ supported over embryonic Beta zeolite (BEA) zeolite ‎for the photocatalytic degradation of Tetracycline (TC) antibiotic under visible light. Four different ‎samples having 20, 40, 60, and 100% w/w as a ratio of TiO₂/BEA were prepared. The ‎immobilization of solgel TiO₂ (33 m²/g) over BEA (390 m²/g) increased its surface area to (227 ‎m²/g) and enhanced its adsorption capacity from 8% to 19%. To expand the activity of TiO₂ ‎photocatalyst towards the visible light region (λ>380 nm), we explored two different metal ‎sensitization techniques with Iron ions (Fe³⁺). In the ion-exchange method, the substitutional cations ‎in the zeolite in TiO₂/BEA were exchanged with (Fe³⁺) in an aqueous solution of FeCl₃. In the ‎doping technique, solgel TiO₂ was doped with (Fe³⁺) from FeCl₃ precursor during its synthesis and ‎before its immobilization over BEA. (Fe-TiO₂/BEA) catalysts were characterized using SEM, XRD, ‎BET, UV-VIS DRS, and FTIR. After testing the performance of the various ion-exchanged catalysts ‎under blue and white lights, only (Fe-TiO₂/BEA 60%) showed better activity as compared to pure ‎TiO₂ under white light with 100 ppm initial catalyst concentration and 20 ppm TC concentration. As ‎compared to ion-exchanged (Fe-TiO₂/BEA), doped (Fe-TiO₂/BEA) resulted in higher photocatalytic ‎efficiencies under blue and white lights. The 3%-Fe-doped TiO₂/BEA removed 92% of TC ‎compared to 54% by TiO₂ under white light. The catalysts were also tested under real solar ‎irradiations. This improvement in the photocatalytic performance of TiO₂ was due to its higher ‎adsorption capacity due to BEA support combined with the presence of Iron ions that enhance the ‎visible light absorption and minimize the recombination effect by the charge carriers. ‎

Keywords: Tetracycline, photocatalytic degradation, immobilized TiO₂, zeolite, iron-doped TiO₂, ion-exchange

Procedia PDF Downloads 82
1582 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS

Authors: M. Tabatabaee, R. Mohebat, M. Baranian

Abstract:

Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.

Keywords: zinc sulfide, nano articles, photodegradation, solar light

Procedia PDF Downloads 387
1581 In situ Biodegradation of Endosulfan, Imidacloprid, and Carbendazim Using Indigenous Bacterial Cultures of Agriculture Fields of Uttarakhand, India

Authors: Geeta Negi, Pankaj, Anjana Srivastava, Anita Sharma

Abstract:

In the present study, the presence of endosulfan, imidacloprid, carbendazim, in the soil /vegetables/cereals and water samples was observed in agriculture fields of Uttarakhand. In view of biodegradation of these pesticides, nine bacterial isolates were recovered from the soil samples of the fields which tolerated endosulfan, imidacloprid, carbendazim from 100 to 200 µg/ml. Three bacterial consortia used for in vitro bioremediation experiments were three bacterial isolates for carbendazim, imidacloprid and endosulfan, respectively. Maximum degradation (87 and 83%) of α and β endosulfan respectively was observed in soil slurry by consortium. Degradation of Imidacloprid and carbendazim under similar conditions was 88.4 and 77.5% respectively. FT-IR analysis of biodegraded samples of pesticides in liquid media showed stretching of various bonds. GC-MS of biodegraded endosulfan sample in soil slurry showed the presence of non-toxic intermediates. A pot trial with Bacterial treatments lowered down the uptake of pesticides in onion plants.

Keywords: biodegradation, carbendazim, consortium, endosulfan

Procedia PDF Downloads 350
1580 Greening the Blue: Enzymatic Degradation of Commercially Important Biopolymer Dextran Using Dextranase from Bacillus Licheniformis KIBGE-IB25

Authors: Rashida Rahmat Zohra, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Commercially important biopolymer, dextran, is enzymatically degraded into lower molecular weight fractions of vast industrial potential. Various organisms are associated with dextranase production, among which fungal, yeast and bacterial origins are used for commercial production. Dextranases are used to remove contaminating dextran in sugar processing industry and also used in oral care products for efficient removal of dental plaque. Among the hydrolytic products of dextran, isomaltooligosaccharides have prebiotic effect in humans and reduces the cariogenic effect of sucrose in oral cavity. Dextran derivatives produced by hydrolysis of high molecular polymer are also conjugated with other chemical and metallic compounds for usage in pharmaceutical, fine chemical industry, cosmetics, and food industry. Owing to the vast application of dextran and dextranases, current study focused on purification and analysis of kinetic parameters of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 35.75 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. Analysis of kinetic parameters revealed that dextranase performs optimum cleavage of low molecular weight dextran (5000 Da, 0.5%) at 35ºC in 15 min at pH 4.5 with a Km and Vmax of 0.3738 mg/ml and 182.0 µmol/min, respectively. Thermal stability profiling of dextranase showed that it retained 80% activity up to 6 hours at 30-35ºC and remains 90% active at pH 4.5. In short, the dextranase reported here performs rapid cleavage of substrate at mild operational conditions which makes it an ideal candidate for dextran removal in sugar processing industry and for commercial production of low molecular weight oligosaccharides.

Keywords: Bacillus licheniformis, dextranase, gel permeation chromatograpy, enzyme purification, enzyme kinetics

Procedia PDF Downloads 418
1579 Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater

Authors: Nibedita Pani, Vishnu Tejani, T. S. Anantha Singh

Abstract:

Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater.

Keywords: ammoniacal nitrogen, COD, Fenton oxidation, industrial wastewater

Procedia PDF Downloads 166
1578 Amplified Ribosomal DNA Restriction Analysis Method to Assess Rumen Microbial Diversity of Ruminant

Authors: A. Natsir, M. Nadir, S. Syahrir, A. Mujnisa, N. Purnomo, A. R. Egan, B. J. Leury

Abstract:

Rumen degradation characteristic of feedstuff is one of the prominent factors affecting microbial population in rumen of animal. High rumen degradation rate of faba bean protein may lead to inconstant rumen conditions that could have a prominent impact on rumen microbial diversity. Amplified Ribosomal DNA Restriction Analysis (ARDRA) is utilized to monitor diversity of rumen microbes on sheep fed low quality forage supplemented by faba beans. Four mature merino sheep with existing rumen cannula were used in this study according to 4 x 4 Latin square design. The results of study indicated that there were 37 different ARDRA types identified out of 136 clones examined. Among those clones, five main clone types existed across the treatments with different percentages. In conclusion, the ARDRA method is potential to be used as a routine tool to assess the temporary changes in the rumen community as a result of different feeding strategies.

Keywords: ARDRA method, cattle, genomic diversity, rumen microbes

Procedia PDF Downloads 338
1577 Dendrimer-Encapsulated N, Pt Co-Doped TiO₂ for the Photodegration of Contaminated Wastewater

Authors: S. K. M. Nzaba, H. H. Nyoni, B. Ntsendwana, B. B. Mamba, A. T. Kuvarega

Abstract:

Azo dye effluents, released into water bodies are not only toxic to the ecosystem but also pose a serious impact on human health due to the carcinogenic and mutagenic effects of the compounds present in the dye discharge. Conventional water treatment methods such as adsorption, flocculation/coagulation and biological processes are not effective in completely removing most of the dyes and their natural degradation by-products. Advanced oxidation processes (AOPs) have proven to be effective technologies for complete mineralization of these recalcitrant pollutants. Therefore, there is a need for new technology that can solve the problem. Thus, this study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal codoped TiO₂. N, Pt co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PAMAM G0), amine-terminated polyamidoamine dendrimer generation 1 ( PAMAM G1) and hyperbranched polyethyleneimine (HPEI) as templates and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier- transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet /visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25 revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N, Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of brilliant black (BB) dye. The N, metal codoped TiO₂ containing 0.5 wt. % of the metal consisted mainly of the anatase phase as confirmed by XRD results of all three samples, with a particle size range of 13–30 nm. The particles were largely spherical and shifted the absorption edge well into the visible region. Band gap reduction was more pronounced for the N, Pt HPEI (Pt 0.5 wt. %) codoped TiO₂ compared to PAMAM G0 and PAMAM G1. Consequently, codoping led to an enhancement in the photocatalytic activity of the materials for the degradation of brilliant black (BB).

Keywords: codoped TiO₂, dendrimer, photodegradation, wastewater

Procedia PDF Downloads 153
1576 Biosorption of Nickel by Penicillium simplicissimum SAU203 Isolated from Indian Metalliferous Mining Overburden

Authors: Suchhanda Ghosh, A. K. Paul

Abstract:

Nickel, an industrially important metal is not mined in India, due to the lack of its primary mining resources. But, the chromite deposits occurring in the Sukinda and Baula-Nuasahi region of Odhisa, India, is reported to contain around 0.99% of nickel entrapped in the goethite matrix of the lateritic iron rich ore. Weathering of the dumped chromite mining overburden often leads to the contamination of the ground as well as the surface water with toxic nickel. Microbes inherent to this metal contaminated environment are reported to be capable of removal as well as detoxification of various metals including nickel. Nickel resistant fungal isolates obtained in pure form from the metal rich overburden were evaluated for their potential to biosorb nickel by using their dried biomass. Penicillium simplicissimum SAU203 was the best nickel biosorbant among the 20 fungi tested and was capable to sorbing 16.85 mg Ni/g biomass from a solution containing 50 mg/l of Ni. The identity of the isolate was confirmed using 18S rRNA gene analysis. The sorption capacity of the isolate was further standardized following Langmuir and Freundlich adsorption isotherm models and the results reflected energy efficient sorption. Fourier-transform infrared spectroscopy studies of the nickel loaded and control biomass in a comparative basis revealed the involvement of hydroxyl, amine and carboxylic groups in Ni binding. The sorption process was also optimized for several standard parameters like initial metal ion concentration, initial sorbet concentration, incubation temperature and pH, presence of additional cations and pre-treatment of the biomass by different chemicals. Optimisation leads to significant improvements in the process of nickel biosorption on to the fungal biomass. P. simplicissimum SAU203 could sorb 54.73 mg Ni/g biomass with an initial Ni concentration of 200 mg/l in solution and 21.8 mg Ni/g biomass with an initial biomass concentration of 1g/l solution. Optimum temperature and pH for biosorption was recorded to be 30°C and pH 6.5 respectively. Presence of Zn and Fe ions improved the sorption of Ni(II), whereas, cobalt had a negative impact. Pre-treatment of biomass with various chemical and physical agents has affected the proficiency of Ni sorption by P. simplicissimum SAU203 biomass, autoclaving as well as treatment of biomass with 0.5 M sulfuric acid and acetic acid reduced the sorption as compared to the untreated biomass, whereas, NaOH and Na₂CO₃ and Twin 80 (0.5 M) treated biomass resulted in augmented metal sorption. Hence, on the basis of the present study, it can be concluded that P. simplicissimum SAU203 has the potential for the removal as well as detoxification of nickel from contaminated environments in general and particularly from the chromite mining areas of Odhisa, India.

Keywords: nickel, fungal biosorption, Penicillium simplicissimum SAU203, Indian chromite mines, mining overburden

Procedia PDF Downloads 173
1575 Recovery of an Area Degraded by Gullies in the Municipality of Monte Alto (SP), Brazil

Authors: Layane Sara Vieira, Paulo Egidio Bernardo, Roberto Saverio Souza Costa

Abstract:

Anthropogenic occupations and agricultural explorations without concern for the preservation and sustainability of the activity result in soil degradation that can make rural activity unfeasible. The objective of this work was to characterize and evaluate the recovery costs of an area degraded by major erosion (gully) in the municipality of Monte Alto (SP). Topographic characterization was carried out by means of a planialtimetric survey with a total station. The contours of the gully, internal area, slope height, contribution area, volume, and costs of operations for the recovery of the gully were delimited. The results obtained showed that the gully has a length of 145.56 m, a maximum width of 36.61 m, and a gap of 19.48 m. The external area of the gully is 1,039.8741 m², and the internal area is 119.3470 m². The calculated volume was 3,282.63 m³. The intervention area for breaking slopes was measured at 8,471.29 m², requiring the construction of 19 terraces in this area, vertically spaced at 2.8 m. The estimated costs for mechanical recovery of the gully were R$ 19,167.84 (US$ 3.657,98).

Keywords: erosion, volumetric assessment, soil degradation, terraces

Procedia PDF Downloads 80
1574 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 346
1573 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology

Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).

Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts

Procedia PDF Downloads 309
1572 Growth of Albizia in vitro: Endophytic Fungi as Plant Growth Promote of Albizia

Authors: Reine Suci Wulandari, Rosa Suryantini

Abstract:

Albizia (Paraserianthes falcataria) is a woody plant species that has a high economic value and multifunctional. Albizia is important timber, medicinal plants and can also be used as a plant to rehabilitate critical lands. The demand value of Albizia is increased so that the large quantities and high quality of seeds are required. In vitro propagation techniques are seed propagation that can produce more seeds and quality in a short time. In vitro cultures require growth regulators that can be obtained from biological agents such as endophytic fungi. Endophytic fungi are micro fungi that colonize live plant tissue without producing symptoms or other negative effects on host plants and increase plant growth. The purposes of this research were to isolate and identify endophytic fungi isolated from the root of Albizia and to study the effect of endophytic fungus on the growth of Albizia in vitro. The methods were root isolation, endophytic fungal identification, and inoculation of endophytic fungi to Albizia plants in vitro. Endophytic fungus isolates were grown on PDA media before being inoculated with Albizia sprouts. Incubation is done for 4 (four) weeks. The observed growth parameters were live explant percentage, percentage of explant shoot, and percentage of explant rooted. The results of the research showed that 6 (six) endophytic fungal isolates obtained from the root of Albizia, namely Aspergillus sp., Verticillium sp, Penicillium sp., Trichoderma sp., Fusarium sp., and Acremonium sp. Statistical analysis found that Trichoderma sp. and Fusarium sp. affect in vitro growth of Albizia. Endophytic fungi from the results of this research were potential as plant growth promoting. It can be applied to increase productivity either through increased plant growth and increased endurance of Albizia seedlings to pests and diseases.

Keywords: Albizia, endophytic fungi, propagation, in vitro

Procedia PDF Downloads 243
1571 Application of Space Technology at Cadestral Level and Land Resources Management with Special Reference to Bhoomi Sena Project of Uttar Pradesh, India

Authors: A. K. Srivastava, Sandeep K. Singh, A. K. Kulshetra

Abstract:

Agriculture is the backbone of developing countries of Asian sub-continent like India. Uttar Pradesh is the most populous and fifth largest State of India. Total population of the state is 19.95 crore, which is 16.49% of the country that is more than that of many other countries of the world. Uttar Pradesh occupies only 7.36% of the total area of India. It is a well-established fact that agriculture has virtually been the lifeline of the State’s economy in the past for long and its predominance is likely to continue for a fairly long time in future. The total geographical area of the state is 242.01 lakh hectares, out of which 120.44 lakh hectares is facing various land degradation problems. This needs to be put under various conservation and reclamation measures at much faster pace in order to enhance agriculture productivity in the State. Keeping in view the above scenario Department of Agriculture, Government of Uttar Pradesh has formulated a multi-purpose project namely Bhoomi Sena for the entire state. The main objective of the project is to improve the land degradation using low cost technology available at village level. The total outlay of the project is Rs. 39643.75 Lakhs for an area of about 226000 ha included in the 12th Five Year Plan (2012-13 to 2016-17). It is expected that the total man days would be 310.60 lakh. An attempt has been made to use the space technology like remote sensing, geographical information system, at cadastral level for the overall management of agriculture engineering work which is required for the treatment of degradation of the land. After integration of thematic maps a proposed action plan map has been prepared for the future work.

Keywords: GPS, GIS, remote sensing, topographic survey, cadestral mapping

Procedia PDF Downloads 293
1570 Characterization of Common Maize Ear Rot Pathogens in Ilesa Nigeria and Their Potential Control Using Selected Arbuscular Mycorrhizal Fungi

Authors: Olumayowa M. Olowe, Michael D. Asemoloye Odunayo J. Olawuyi, Hilda Vasanthakaalam

Abstract:

Poor management of maize ear rot caused by fungal infection in Nigeria affected the quantity and quality of maize. This study, therefore, aims at characterizing and controlling Fusarium strains using arbuscular mycorrhizal fungi. Maize ear showing rot symptoms were obtained from some selected farms located at Ilesa East and West using random sampling technique. Isolation of Fusarium pathogen from infected maize grain was done using direct pour plate method on potato dextrose agar (PDA) and was characterized based on morphological and molecular ITS-amplification methods. The reaction of PVASYN8F2, T2LCOMP1STR SYN-W-1, and T2LCOMP4 maize varieties, to the Fusarium ear rot pathogens and biocontrol efficacy of the mycorrhizal fungi were assessed on growth, yield, agronomic parameters and symptoms observed. The strains; olowILH1 and olowILH2 identified as Fusarium napiforme were the most dominant and virulent pathogens associated with the maize. They showed genetic similarity with documented ear rot pathogens on NCBI with accession numbers Fusarium proliferatum KT224027, KT224023, and Fusarium sp AY237110. They both exhibited varying inhibitory effects on the three maize varieties compare to control (uninfected plant) which had better growth characteristics. It was also observed that strain olowILH1 was more virulent than olowILH2. T2LCOMP4 was generally more susceptible to both fungal strains compared to the other two maize (T2LCOMP1STR SYN-W-1 and T2LCOMP4 ). In all, strain olowILH1 was more virulent than olowILH2, and Glomus clarum had higher inhibitory pathogenic effect against Fusarium strains compared to G. deserticola.

Keywords: arbuscular mycorrhizal fungi, disease management, Fusarium strains, identification

Procedia PDF Downloads 140
1569 Identifying Dominant Anaerobic Microorganisms for Degradation of Benzene

Authors: Jian Peng, Wenhui Xiong, Zheng Lu

Abstract:

An optimal recipe of amendment (nutrients and electron acceptors) was developed and dominant indigenous benzene-degrading microorganisms were characterized in this study. Lessons were learnt from the development of the optimal amendment recipe: (1) salinity and substantial initial concentration of benzene were detrimental for benzene biodegradation; (2) large dose of amendments can shorten the lag time for benzene biodegradation occurrence; (3) toluene was an essential co-substance for promoting benzene degradation activity. The stable isotope probing study identified incorporation 13C from 13C-benzene into microorganisms, which can be considered as a direct evidence of the occurrence of benzene biodegradation. The dominant mechanism for benzene removal was identified by quantitative polymerase chain reaction analysis to be nitrate reduction. Microbial analyses (denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that members of genus Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant within the microbial community and involved in the anaerobic benzene bioremediation.

Keywords: benzene, enhanced anaerobic bioremediation, stable isotope probing, biosep biotrap

Procedia PDF Downloads 324
1568 Polyethylene Terephthalate (PET) Fabrics Decoloring for PET Textile Recycle

Authors: Chung-Yang Chuang, Hui-Min Wang, Min-Yan Dong, Chang-Jung Chang

Abstract:

PET fiber is the most widely used fiber worldwide. This man-made fiber is prepared from petroleum chemicals, which may cause environmental pollution and resource exhausting issues, such as the use of non-renewable sources, greenhouse gas emission and discharge of wastewater. Therefore, the textile made by recycle-PET is the trend in the future. Recycle-PET fiber, compared with petroleum-made PET, shows lower carbon emissions and resource exhaustion. However, “fabric decoloring” is the key barrier to textile recycling. The dyes existing in the fabrics may cause PET chain degradation and appearance drawbacks during the textile recycling process. In this research, the water-based decoloring agent was used to remove the dispersed dye in the PET fabrics in order to obtain the colorless PET fabrics after the decoloring process. The decoloring rate of PET fabrics after the decoloring process was up to 99.0%. This research provides a better solution to resolve the issues of appearance and physical properties degradation of fabrics-recycle PET materials due to the residual dye. It may be possible to convert waste PET textiles into new high-quality PET fiber and build up the loop of PET textile recycling.

Keywords: PET, decoloring, disperse dye, textile recycle

Procedia PDF Downloads 116
1567 Climate Change, Global Warming and Future of Our Planet

Authors: Indu Gupta

Abstract:

Climate change and global warming is most burning issue for “our common future”. For this common global interest. Countries organize conferences of government and nongovernment type. Human being destroying the non-renewable resources and polluting the renewable resources of planet for economic growth. Air pollution is mainly responsible for global warming and climate change .Due to global warming ice glaciers are shrinking and melting. Forests are shrinking, deserts expanding and soil eroding. The depletion of stratospheric ozone layer is depleting and hole in ozone layer that protect us from harmful ultra violet radiation. Extreme high temperature in summer and extreme low temperature and smog in winters, floods in rainy season. These all are indication of climate change. The level of carbon dioxide and other heat trapping gases in the atmosphere is increasing at high speed. Nation’s are worried about environmental degradation.

Keywords: environmental degradation, global warming, soil eroding, ultra-Violate radiation

Procedia PDF Downloads 353
1566 Antimicrobial Activity of Fatty Acid Salts against Microbes for Food Safety

Authors: Aya Tanaka, Mariko Era, Manami Masuda, Yui Okuno, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives— Fungi and bacteria are present in a wide range of natural environments. They are breed in the foods such as vegetables and fruit, causing corruption and deterioration of these foods in some cases. Furthermore, some species of fungi and bacteria are known to cause food intoxication or allergic reactions in some individuals. To prevent fungal and bacterial contamination, various fungicides and bactericidal have been developed that inhibit fungal and bacterial growth. Fungicides and bactericides must show high antifungal and antibacterial activity, sustainable activity, and a high degree of safety. Therefore, we focused on the fatty acid salt which is the main component of soap. We focused on especially C10K and C12K. This study aimed to find the effectiveness of the fatty acid salt as antimicrobial agents for food safety. Materials and Methods— Cladosporium cladosporioides NBRC 30314, Penicillium pinophilum NBRC 6345, Aspergillus oryzae (Akita Konno store), Rhizopus oryzae NBRC 4716, Fusarium oxysporum NBRC 31631, Escherichia coli NBRC 3972, Bacillus subtilis NBRC 3335, Staphylococcus aureus NBRC 12732, Pseudomonas aenuginosa NBRC 13275 and Serratia marcescens NBRC 102204 were chosen as tested fungi and bacteria. Hartmannella vermiformis NBRC 50599 and Acanthamoeba castellanii NBRC 30010 were chosen as tested amoeba. Nine fatty acid salts including potassium caprate (C10K) and laurate (C12K) at 350 mM and pH 10.5 were used as antifungal activity. The spore suspension of each fungus (3.0×10⁴ spores/mL) or the bacterial suspension (3.0×10⁵ or 3.0×10⁶ or 3.0×10⁷ CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar or nutrient agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 °C. Results— C10K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than A. oryzae. C12K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than P. pinophilum and A. oryzae. C10K and C12K did not show high anti-yeast activity. C10K was antibacterial activity of 6 or 7 log-unit incubated time for 10 min against bacteria other than B. subtilis. C12K was antibacterial activity of 5 to 7 log-unit incubated time for 10 min against bacteria other than S. marcescens. C12K was anti-amoeba activity of 4 log-unit incubated time for 10 min against H. vermiformis. These results suggest C10K and C12K have potential in the field of food safety.

Keywords: food safety, microbes, antimicrobial, fatty acid salts

Procedia PDF Downloads 468
1565 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 278
1564 Experimental Setup of Corona Discharge on Dye Degradation for Science Education

Authors: Shivam Dubey, Vinit Srivastava, Abhay Singh Thakur, Rahul Vaish

Abstract:

The presence of organic dyes in water is a critical issue that poses a significant threat to the environment and human health. We have investigated the use of corona discharge as a potential method for degrading organic dyes in water. Methylene Blue dye was exposed to corona discharge, and its photo-absorbance was measured over time to determine the extent of degradation. The results depicted a decreased absorbance for the dye and the loss of the characteristic colour of methylene blue. The effects of various parameters, including current, voltage, gas phase, salinity, and electrode spacing, on the reaction rates, were investigated. The highest reaction rates were observed at the highest current and voltage (up to 10kV), lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. These findings have possible applications for science education curriculum. By investigating the use of corona discharge for destroying organic dyes, we can provide students with a practical application of scientific principles that they can apply to real-world problems. This research can demonstrate the importance of understanding the chemical and physical properties of organic dyes and the effects of corona discharge on their degradation and provide a holistic understanding of the applications of scientific research. Moreover, our study also emphasizes the importance of considering the various parameters that can affect reaction rates. By investigating the effects of current, voltage, matter phase, salinity, and electrode spacing, we can provide students with an opportunity to learn about the importance of experimental design and how to evade constraints that can limit meaningful results. In conclusion, this study has the potential to provide valuable insights into the use of corona discharge for destroying organic dyes in water and has significant implications for science education. By highlighting the practical applications of scientific principles, experimental design, and the importance of considering various parameters, this research can help students develop critical thinking skills and prepare them for future careers in science and engineering.

Keywords: dye degradation, corona discharge, science education, hands-on learning, chemical education

Procedia PDF Downloads 55
1563 Forest Degradation and Implications for Rural Livelihood in Kaimur Reserve Forest of Bihar, India

Authors: Shashi Bhushan, Sucharita Sen

Abstract:

In India, forest and people are inextricably linked since millions of people live adjacent to or within protected areas and harvest forest products. Indian forest has their own legacy to sustain by its own climatic nature with several social, economic and cultural activities. People surrounding forest areas are not only dependent on this resource for their livelihoods but also for the other source, like religious ceremonies, social customs and herbal medicines, which are determined by the forest like agricultural land, groundwater level, and soil fertility. The assumption that fuelwood and fodder extraction, which is the part of local livelihood leads to deforestation, has so far been the dominant mainstream views in deforestation discourses. Given the occupational division across social groups in Kaimur reserve forest, the differential nature of dependence of forest resources is important to understand. This paper attempts to assess the nature of dependence and impact of forest degradation on rural households across various social groups. Also, an additional element that is added to the enquiry is the way degradation of forests leading to scarcity of forest-based resources impacts the patterns of dependence across various social groups. Change in forest area calculated through land use land cover analysis using remote sensing technique and examination of different economic activities carried out by the households that are forest-based was collected by primary survey in Kaimur reserve forest of state of Bihar in India. The general finding indicates that the Scheduled Tribe and Scheduled Caste communities, the most socially and economically deprived sections of the rural society are involved in a significant way in collection of fuelwood, fodder, and fruits, both for self-consumption and sale in the market while other groups of society uses fuelwood, fruit, and fodder for self-use only. Depending on the local forest resources for fuelwood consumption was the primary need for all social groups due to easy accessibility and lack of alternative energy source. In last four decades, degradation of forest made a direct impact on rural community mediated through the socio-economic structure, resulting in a shift from forest-based occupations to cultivation and manual labour in agricultural and non-agricultural activities. Thus there is a need to review the policies with respect to the ‘community forest management’ since this study clearly throws up the fact that engagement with and dependence on forest resources is socially differentiated. Thus tying the degree of dependence and forest management becomes extremely important from the view of ‘sustainable’ forest resource management. The statization of forest resources also has to keep in view the intrinsic way in which the forest-dependent population interacts with the forest.

Keywords: forest degradation, livelihood, social groups, tribal community

Procedia PDF Downloads 144