Search results for: deep work
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15336

Search results for: deep work

14916 Synthesis of 5-Substituted 1H-Tetrazoles in Deep Eutectic Solvent

Authors: Swapnil A. Padvi, Dipak S. Dalal

Abstract:

The chemistry of tetrazoles has been grown tremendously in the past few years because tetrazoles are important and useful class of heterocyclic compounds which have a widespread application such as anticancer, antimicrobial, analgesics, antibacterial, antifungal, antihypertensive, and anti-allergic drugs in medicinal chemistry. Furthermore, tetrazoles have application in material sciences as explosives, rocket propellants, and in information recording systems. In addition to this, they have a wide range of application in coordination chemistry as a ligand. Deep eutectic solvents (DES) have emerged over the current decade as a novel class of green reaction media and applied in various fields of sciences because of their unique physical and chemical properties similar to the ionic liquids such as low vapor pressure, non-volatility, high thermal stability and recyclability. In addition, the reactants of DES are cheaply available, low-toxic, and biodegradable, which makes them predominantly required for large-scale applications effectively in industrial production. Herein we report the [2+3] cycloaddition reaction of organic nitriles with sodium azide affords the corresponding 5-substituted 1H-tetrazoles in six different types of choline chloride based deep eutectic solvents under mild reaction condition. Choline chloride: ZnCl2 (1:2) showed the best results for the synthesis of 5-substituted 1 H-tetrazoles. This method reduces the disadvantages such as: the use of toxic metals and expensive reagents, drastic reaction conditions and the presence of dangerous hydrazoic acid. The approach provides environment-friendly, short reaction times, good to excellent yields; safe process and simple workup make this method an attractive and useful contribution to present green organic synthesis of 5-substituted-1H-tetrazoles. All synthesized compounds were characterized by IR, 1H NMR, 13C NMR and Mass spectroscopy. DES can be recovered and reused three times with very little loss in activity.

Keywords: click chemistry, choline chloride, green chemistry, deep eutectic solvent, tetrazoles

Procedia PDF Downloads 231
14915 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 7
14914 Identifying the Faces of colonialism: An Analysis of Gender Inequalities in Economic Participation in Pakistan through Postcolonial Feminist Lens

Authors: Umbreen Salim, Anila Noor

Abstract:

This paper analyses the influences and faces of colonialism in women’s participation in economic activity in postcolonial Pakistan, through postcolonial feminist economic lens. It is an attempt to probe the shifts in gender inequalities that have existed in three stages; pre-colonial, colonial, and postcolonial times in the Indo-Pak subcontinent. It delves into an inquiry of pre-colonial as it is imperative to understand the situation and context before colonisation in order to assess the deviations associated with its onset. Hence, in order to trace gender inequalities this paper analyses from Mughal Era (1526-1757) that existed before British colonisation, then, the gender inequalities that existed during British colonisation (1857- 1947) and the associated dynamics and changes in women’s vulnerabilities to participate in the economy are examined. Followed by, the postcolonial (1947 onwards) scenario of discriminations and oppressions faced by women. As part of the research methodology, primary and secondary data analysis was done. Analysis of secondary data including literary works and photographs was carried out, followed by primary data collection using ethnographic approaches and participatory tools to understand the presence of coloniality and gender inequalities embedded in the social structure through participant’s real-life stories. The data is analysed using feminist postcolonial analysis. Intersectionality has been a key tool of analysis as the paper delved into the gender inequalities through the class and caste lens briefly touching at religion. It is imperative to mention the significance of the study and very importantly the practical challenges as historical analysis of 18th and 19th century is involved. Most of the available work on history is produced by a) men and b) foreigners and mostly white authors. Since the historical analysis is mostly by men the gender analysis presented misses on many aspects of women’s issues and since the authors have been mostly white European gives it as Mohanty says, ‘under western eyes’ perspective. Whereas the edge of this paper is the authors’ deep attachment, belongingness as lived reality and work with women in Pakistan as postcolonial subjects, a better position to relate with the social reality and understand the phenomenon. The study brought some key results as gender inequalities existed before colonisation when women were hidden wheel of stable economy which was completely invisible. During the British colonisation, the vulnerabilities of women only increased and as compared to men their inferiority status further strengthened. Today, the postcolonial woman lives in deep-rooted effects of coloniality where she is divided in class and position within the class, and she has to face gender inequalities within household and in the market for economic participation. Gender inequalities have existed in pre-colonial, during colonisation and postcolonial times in Pakistan with varying dynamics, degrees and intensities for women whereby social class, caste and religion have been key factors defining the extent of discrimination and oppression. Colonialism may have physically ended but the coloniality remains and has its deep, broad and wide effects in increasing gender inequalities in women’s participation in the economy in Pakistan.

Keywords: colonialism, economic participation, gender inequalities, women

Procedia PDF Downloads 208
14913 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 104
14912 Response of Diaphragmatic Excursion to Inspiratory Muscle Trainer Post Thoracotomy

Authors: H. M. Haytham, E. A. Azza, E.S. Mohamed, E. G. Nesreen

Abstract:

Thoracotomy is a great surgery that has serious pulmonary complications, so purpose of this study was to determine the response of diaphragmatic excursion to inspiratory muscle trainer post thoracotomy. Thirty patients of both sexes (16 men and 14 women) with age ranged from 20 to 40 years old had done thoracotomy participated in this study. The practical work was done in cardiothoracic department, Kasr-El-Aini hospital at faculty of medicine for individuals 3 days Post operatively. Patients were assigned into two groups: group A (study group) included 15 patients (8 men and 7 women) who received inspiratory muscle training by using inspiratory muscle trainer for 20 minutes and routine chest physiotherapy (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Group B (control group) included 15 patients (8 men and 7 women) who received the routine chest physiotherapy only (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Ultrasonography was used to evaluate the changes in diaphragmatic excursion before and after training program. Statistical analysis revealed a significant increase in diaphragmatic excursion in the study group (59.52%) more than control group (18.66%) after using inspiratory muscle trainer post operatively in patients post thoracotomy. It was concluded that the inspiratory muscle training device increases diaphragmatic excursion in patients post thoracotomy through improving inspiratory muscle strength and improving mechanics of breathing and using of inspiratory muscle trainer as a method of physical therapy rehabilitation to reduce post-operative pulmonary complications post thoracotomy.

Keywords: diaphragmatic excursion, inspiratory muscle trainer, ultrasonography, thoracotomy

Procedia PDF Downloads 319
14911 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 64
14910 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 120
14909 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application

Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior

Abstract:

Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.

Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks

Procedia PDF Downloads 170
14908 Improvement of Soft Clay Soil with Biopolymer

Authors: Majid Bagherinia

Abstract:

Lime and cement are frequently used as binders in the Deep Mixing Method (DMM) to improve soft clay soils. The most significant disadvantages of these materials are carbon dioxide emissions and the consumption of natural resources. In this study, three different biopolymers, guar gum, locust bean gum, and sodium alginate, were investigated for the improvement of soft clay using DMM. In the experimental study, the effects of the additive ratio and curing time on the Unconfined Compressive Strength (UCS) of stabilized specimens were investigated. According to the results, the UCS values of the specimens increased as the additive ratio and curing time increased. The most effective additive was sodium alginate, and the highest strength was obtained after 28 days.

Keywords: deep mixing method, soft clays, ground improvement, biopolymers, unconfined compressive strength

Procedia PDF Downloads 79
14907 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning

Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka

Abstract:

Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.

Keywords: road conditions, built-in vehicle technology, deep learning, drones

Procedia PDF Downloads 124
14906 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 142
14905 Well-being at Work in the Sports Sector: Systematic Review and Perspectives

Authors: Ouazoul Abdeloauhd, Jemjami Nadia

Abstract:

The concept of well-being at work is one of today's significant challenges in maintaining quality of life and managing psycho-social risks at work. Indeed, work in the sports sector has evolved, and this exponential evolution, marked by increasing demands and psychological, physical, and social challenges, which sometimes exceed the resources of sports actors, influences their sense of well-being at work. Well-being and burnout as antagonists provide information on the quality of working life in sports. The Basic aim of this literature review is to analyze the scientific corpus dealing with the subject of well-being at work in the sports sector while exploring the link between sports burnout and well-being. The results reveal the richness of the conceptual approaches and the difficulties of implementing them. Prospects for future research have, therefore, been put forward.

Keywords: well-being, burnout, quality of life, psycho-social risk, work on sports sector

Procedia PDF Downloads 91
14904 Research on Design Methods for Riverside Spaces of Deep-cut Rivers in Mountainous Cities: A Case Study of Qingshuixi River in Chongqing City

Authors: Luojie Tang

Abstract:

Riverside space is an important public space and ecological corridor in urban areas, but mountainous urban rivers are often overlooked due to their deep valleys and poor accessibility. This article takes the Qing Shui Xi River in Chongqing as an example, and through long-term field inspections, measurements, interviews, and online surveys, summarizes the problems of poor accessibility, limited space for renovation, lack of waterfront facilities, excessive artificial intervention, low average runoff, severe river water pollution, and difficulty in integrated watershed management in riverside space. Based on the current situation and drawing on relevant experiences, this article summarizes the design methods for riverside space in deep valley rivers in mountainous urban areas. Regarding spatial design techniques, the article emphasizes the importance of integrating waterfront spaces into the urban public space system and vertical linkages. Furthermore, the article suggests different design methods and improvement strategies for the already developed areas and new development areas. Specifically, the article proposes a planning and design strategy of "protection" and "empowerment" for new development areas and an updating and transformation strategy of "improvement" and "revitalization" for already developed areas. In terms of ecological restoration methods, the article suggests three focus points: increasing the runoff of urban rivers, raising the landscape water level during dry seasons, and restoring vegetation and wetlands in the riverbank buffer zone while protecting the overall pattern of the watershed. Additionally, the article presents specific design details of the Qingshuixi River to illustrate the proposed design and restoration techniques.

Keywords: deep-cut river, design method, mountainous city, Qingshuixi river in Chongqing, waterfront space design

Procedia PDF Downloads 109
14903 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 91
14902 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 90
14901 Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test

Authors: R. Alias, A. Kasa, M. R. Taha

Abstract:

The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shear tests and the small direct shear tests carried out using the same shearing rate of 0.09 mm/min and similar normal stresses of 100, 200, and 300 kPa. The results show that the peak and residual shear strength decreases as particle size increases.

Keywords: particle size, shear strength, granular material, direct shear test

Procedia PDF Downloads 489
14900 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 106
14899 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 98
14898 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 99
14897 Water-Controlled Fracturing with Fuzzy-Ball Fluid in Tight Gas Reservoirs of Deep Coal Measures in Sulige

Authors: Xiangchun Wang, Lihui Zheng, Maozong Gan, Peng Zhang, Tong Wu, An Chang

Abstract:

The deep coal measure tight gas reservoir in Sulige is usually reformed by fracturing, because the reservoir thickness is small, the water layers can be easily communicated during fracturing, which will lead to water production of gas wells and lower production of gas wells. Therefore, it is necessary to control water during fracturing in deep coal measure tight gas reservoir. Using fuzzy-ball fluid to control water fracturing can not only increase the output but also reduce the water output. The fuzzy-ball fluid was prepared indoors to carry out evaluation experiments. The fuzzy ball fluid was mixed in equal volume with the pre-fluid and formation water to test its compatibility. The core displacement device was used to test the gas and water breaking through the matrix and fractured cores blocked by fuzzy-ball fluid. The breakthrough pressure of the plunger tests its water blocking performance. The experimental results show that there is no precipitation after the fuzzy-ball fluid is mixed with the pad fluid and the formation water, respectively. The breakthrough pressure gradients of gas and water after the fuzzy-ball fluid plugged the cracks were 0.02MPa/cm and 0.04MPa/cm, respectively, and the breakthrough pressure gradients of gas and water after the matrix was plugged were 0.03MPa/cm and 0.2MPa/cm, respectively, which meet the requirements of field operation. Two wells A and B in the Sulige Gas Field were used on site to implement water control fracturing. After the pre-fluid was injected into the two wells, 50m3 of fuzzy-ball fluid was pumped to plug the water. The construction went smoothly. After water control and fracturing, the average daily output in 161 days was increased by 13.71% and 6.99% compared with that of adjacent wells in the same layer. The adjacent wells were bubbled for 3 times and 63 times respectively, while there was no effusion in A and B construction wells. The results show that fuzzy-ball fluid is a water plugging material suitable for water control fracturing in tight gas wells, and its water control mechanism can also provide a new idea for the development of water control fracturing materials.

Keywords: coal seam, deep layer, fracking, fuzzy-ball fluid, reservoir reconstruction

Procedia PDF Downloads 227
14896 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 232
14895 Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments

Authors: Ehsan Heidaryan

Abstract:

Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated.

Keywords: carbon dioxide, hydrate, sequestration, surfactant

Procedia PDF Downloads 437
14894 Organizational Learning, Job Satisfaction and Work Performance among Nurses

Authors: Rafia Rafique, Arifa Khadim

Abstract:

This research investigates the moderating role of job satisfaction between organizational learning and work performance among nurses. Correlation research design was used. Non-probability purposive sampling technique was utilized to recruit a sample of 110 nurses from public hospitals situated in the city of Lahore. The construct of organizational learning was measured using subscale of Integrated Scale for Measuring Organizational Learning. Job satisfaction was measured with the help of Job Satisfaction Survey. Performance of employees (task performance, contextual performance and counterproductive work behavior) was assessed by Individual Work Performance Questionnaire. Job satisfaction negatively moderates the relationship between organizational learning and counterproductive work behavior. Education has a significant positive relationship with organizational learning. Age, current hospital experience, marital satisfaction and salary of the nurses have positive relationship while number of children has significant negative relationship with counterproductive work behavior. These outcomes can be insightful in understanding the dynamics involved in work performance. Based on the result of this study relevant solutions can be proposed to improve the work performance of nurses.

Keywords: counterproductive work behavior, nurses, organizational learning, work performance

Procedia PDF Downloads 445
14893 Association of Work Pattern with the Well-Being and Happiness: Evidence from Married Women Working in Delhi, India

Authors: Kanchan Negi

Abstract:

Background: Modern work culture has driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and well-being (including happiness) in a sample of working women. Method: Primary data of 360 currently married women working in the education, health, banking and IT sector in Delhi, India, were analysed. Logistic regression was used to estimate physical and psychological well-being and happiness across work characteristics. Results: Relative to 35–40 hours/week, working longer related to poor well-being (ß=0.75, 95% CI 0.12 to 1.39). Compared with not working weekends, working most or all weekends is related to poor physical (ß=0.34, 95% CI 0.08 to 0.61) and psychological well-being (ß=0.50, 95% CI 0.20 to 0.79). Rigid work patterns (ß=0.17, 95% CI −0.09 to 0.42) are also related to poor well-being. Conclusion: Decreased well-being and unhappiness are significantly linked to strenuous and rigid work patterns, suggesting that modern work culture may contribute to poor well-being. Flexible timings, compensatory holidays, work-from-home, and daycare facilities for young ones must be welcomed by companies to ease the dual burden of homemakers and career makers.

Keywords: happiness, well-being, work pattern, working women

Procedia PDF Downloads 183
14892 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 168
14891 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure

Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon

Abstract:

Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.

Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance

Procedia PDF Downloads 335
14890 The Impact of Work-Related Crime on the Work Environment

Authors: Monica Kaltenbrunner

Abstract:

Work-related crime has severe consequences for individual employees and society, and the problem has received widespread attention. For those who work where this type of criminality occurs, it can deteriorate the work environment. The purpose of the systematic literature review is to collate and enhance knowledge about work-related crime and its consequences for the work environment, primarily from an employee perspective. A comprehensive literature search was conducted in three databases, with the final search in May 2024. Grey literature was searched for on relevant websites. Only literature conducted in the EU, Norway, and Canada between 2013 and 2024 was included. Industries represented are land-based industry, hotel and restaurant, health and welfare/domestic work, construction, vehicles and transport, and cleaning. The literature review includes 39 publications, of which 33 are scientific studies. The results show that both men and women work in a work-related crime setting, most from Central and Eastern Europe, Asia, Africa, and South America. The results demonstrate that, regardless of workers’ gender or industry, workers are being exploited. Their work environment is characterized by high demand, low influence and low support. It is also common for the work environment to involve different risks, such as safety problems and risks of harassment and discrimination. This systematic literature review is one of few that focuses on the employee perspective on the work environment in workplaces where work-related crime occurs and collates existing research within the field.

Keywords: occupational safety and health, undeclared work, migrant, exploitation

Procedia PDF Downloads 6
14889 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 127
14888 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 238
14887 Searching the Relationship among Components that Contribute to Interactive Plight and Educational Execution

Authors: Shri Krishna Mishra

Abstract:

In an educational context, technology can prompt interactive plight only when it is used in conjunction with interactive plight methods. This study, therefore, examines the relationships among components that contribute to higher levels of interactive plight and execution, such as interactive Plight methods, technology, intrinsic motivation and deep learning. 526 students participated in this study. With structural equation modelling, the authors test the conceptual model and identify satisfactory model fit. The results indicate that interactive Plight methods, technology and intrinsic motivation have significant relationship with interactive Plight; deep learning mediates the relationships of the other variables with Execution.

Keywords: searching the relationship among components, contribute to interactive plight, educational execution, intrinsic motivation

Procedia PDF Downloads 454