Search results for: computer assisted learning
9265 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach
Authors: Xinyi Le
Abstract:
In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach
Procedia PDF Downloads 4399264 Determination of Biological Efficiency Values of Some Pesticide Application Methods under Second Crop Maize Conditions
Authors: Ali Bolat, Ali Bayat, Mustafa Gullu
Abstract:
Maize can be cultivated both under main and second crop conditions in Turkey. Main pests of maize under second crop conditions are Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hübner (Lepidoptera: Crambidae). Aerial spraying applications to control these two main maize pests can be carried out until 2006 in Turkey before it was banned due to environmental concerns like drifting of sprayed pestisides and low biological efficiency. In this context, pulverizers which can spray tall maize plants ( > 175 cm) from the ground have begun to be used. However, the biological efficiency of these sprayers is unknown. Some methods have been tested to increase the success of ground spraying in field experiments conducted in second crop maize in 2008 and 2009. For this aim, 6 spraying methods (air assisted spraying with TX cone jet, domestic cone nozzles, twinjet nozzles, air induction nozzles, standard domestic cone nozzles and tail booms) were used at two application rates (150 and 300 l.ha-1) by a sprayer. In the study, biological efficacy evaluations of each methods were measured in each parcel. Biological efficacy evaluations included counts of number of insect damaged plants, number of holes in stems and live larvae and pupa in stems of selected plants. As a result, the highest biological efficacy value (close to 70%) was obtained from Air Assisted Spraying method at 300 l / ha application volume.Keywords: air assisted sprayer, drift nozzles, biological efficiency, maize plant
Procedia PDF Downloads 2149263 Developing Interactive Media for Piston Engine Lectures to Improve Cadets Learning Outcomes: Literature Study
Authors: Jamaludin Jamaludin, Suparji Suparji, Lilik Anifah, I. Gusti Putu Asto Buditjahjanto, Eppy Yundra
Abstract:
Learning media is an important and main component in the learning process. By using currently available media, cadets still have difficulty understanding how the piston engine works, so they are not able to apply these concepts appropriately. This study aims to examine the development of interactive media for piston engine courses in order to improve student learning outcomes. The research method used is a literature study of several articles, journals and proceedings of interactive media development results from 2010-2020. The results showed that the development of interactive media is needed to support the learning process and influence the cognitive abilities of students. With this interactive media, learning outcomes can be improved and the learning process can be effective.Keywords: interactive media, learning outcomes, learning process, literature study
Procedia PDF Downloads 1549262 Examination of the Satisfaction Levels of Pre-Service Teachers Concerning E-Learning Process in Terms of Different Variables
Authors: Agah Tugrul Korucu
Abstract:
Significant changes have taken place for the better in the bulk of information and in the use of technology available in the field of education induced by technological changes in the 21st century. It is mainly the job of the teachers and pre-service teachers to integrate information and communication technologies into education by means of conveying the use of technology to individuals. While the pre-service teachers are conducting lessons by using technology, the methods they have developed are important factors for the requirements of the lesson and for the satisfaction levels of the students. The study of this study is to examine the satisfaction levels of pre-service teachers as regards e-learning in a technological environment in which there are lesson activities conducted through an online learning environment in terms of various variables. The study group of the research is composed of 156 pre-service teachers that were students in the departments of Computer and Teaching Technologies, Art Teaching and Pre-school Teaching in the academic year of 2014 - 2015. The qualitative research method was adopted for this study; the scanning model was employed in collecting the data. “The Satisfaction Scale regarding the E-learning Process”, developed by Gülbahar, and the personal information form, which was developed by the researcher, were used as means of collecting the data. Cronbach α reliability coefficient, which is the internal consistency coefficient of the scale, is 0.91. SPSS computerized statistical package program and the techniques of medium, standard deviation, percentage, correlation, t-test and variance analysis were used in the analysis of the data.Keywords: online learning environment, integration of information technologies, e-learning, e-learning satisfaction, pre-service teachers
Procedia PDF Downloads 3539261 A Call for Transformative Learning Experiences to Facilitate Student Workforce Diversity Learning in the United States
Authors: Jeanetta D. Sims, Chaunda L. Scott, Hung-Lin Lai, Sarah Neese, Atoya Sims, Angelia Barrera-Medina
Abstract:
Given the call for increased transformative learning experiences and the demand for academia to prepare students to enter workforce diversity careers, this study explores the landscape of workforce diversity learning in the United States. Using a multi-disciplinary syllabi browsing process and a content analysis method, the most prevalent instructional activities being used in workforce-diversity related courses in the United States are identified. In addition, the instructional activities are evaluated based on transformative learning tenants.Keywords: workforce diversity, workforce diversity learning, transformative learning, diversity education, U. S. workforce diversity, workforce diversity assignments
Procedia PDF Downloads 5059260 Learning Performance of Sports Education Model Based on Self-Regulated Learning Approach
Authors: Yi-Hsiang Pan, Ching-Hsiang Chen, Wei-Ting Hsu
Abstract:
The purpose of this study was to compare the learning effects of the sports education model (SEM) to those of the traditional teaching model (TTM) in physical education classes in terms of students learning motivation, action control, learning strategies, and learning performance. A quasi-experimental design was utilized in this study, and participants included two physical educators and four classes with a total of 94 students in grades 5 and 6 of elementary schools. Two classes implemented the SEM (n=47, male=24, female=23; age=11.89, SD=0.78) and two classes implemented the TTM (n=47, male=25, female=22, age=11.77; SD=0.66). Data were collected from these participants using a self-report questionnaire (including a learning motivation scale, action control scale, and learning strategy scale) and a game performance assessment instrument, and multivariate analysis of covariance was used to conduct statistical analysis. The findings of the study revealed that the SEM was significantly better than the TTM in promoting students learning motivation, action control, learning strategies, and game performance. It was concluded that the SEM could promote the mechanics of students self-regulated learning process, and thereby improve students movement performance.Keywords: self-regulated learning theory, learning process, curriculum model, physical education
Procedia PDF Downloads 3439259 Chelator-assisted Phytoextraction of Nickel from Nickeliferous Lateritic Soil by Phyllanthus sp. nov.
Authors: Grecco M. Ante, Princess Rochelle O. Gan
Abstract:
Plants that can absorb greater than 10,000 µg Ni/g dry mass in their stems and leaves are termed as ‘hypernickelophores’. Chelators are chemicals that make the metals in the soil more soluble, making them a potential enhancer for phytoextraction. This study aims to observe the effect of different concentrations of the chelating agent ethylene diamine tetraacetate (EDTA) on the metal uptake (or rate of phytoextraction) of Nickel by Phyllanthus sp. nov. The plant is found to be a hyperickelophore in normal conditions. The addition of EDTA increased the metal uptake of the plant. The increasing amount of the chelating agent causes a decrease in the phytoextraction of the plant but moves the onset of its peak of maximum nickel content in its tissue to an earlier time. The chelator-assisted phytoextraction of nickel by Phyllanthus sp. nov. is proven to be an efficient auxiliary mining operation for nickel laterite mines.Keywords: phytomining, Phyllanthus sp. nov., EDTA, nickel, laterite
Procedia PDF Downloads 4679258 The Impact of Usefulness and Ease of Using Mobile Learning Technology on Faculty Acceptance
Authors: Leena Ahmad Khaleel Alfarani, Maggie McPherson, Neil Morris
Abstract:
Over the last decade, m-learning has been widely accepted and utilized by many western universities. However, Saudi universities face many challenges in utilizing such technology, a central one being to encourage teachers to use such technology. Although there are several factors that affect faculty members’ participation in the adoption of m-learning, this paper focuses merely on two factors, the usefulness and ease of using m-learning. A sample of 279 faculty members in one Saudi university has responded to the online survey. The results of the study have revealed that there is a statistically significant relationship (at the 0.05 level) between both usefulness and ease of using m-learning factors and the intention of teachers to use m-learning currently and in the future.Keywords: mobile learning, diffusion of innovation theory, technology acceptance, faculty adoption
Procedia PDF Downloads 5479257 Design of the Ubiquitous Cloud Learning Management System
Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema
Abstract:
This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system
Procedia PDF Downloads 5239256 Overview on Effectiveness of Learning Contract in Architecture Design Studios
Authors: Badiossadat Hassanpour, Reza Sirjani, Nangkuala Utaberta
Abstract:
The avant-garde educational systems are striving to find a life long learning methods. Different fields and majors have test variety of proposed models, and found their difficulties and strengths. Architecture as a critical stage of education due to its characteristics which are learning by doing and critique based education and evaluation is out of this study procedure. Learning contracts is a new alternative form of evaluation of students’ achievements, while it acts as agreement about learning goals. Obtained results from studies in different fields which confirm its positive impact on students' learning in those fields and positively affected students' motivation and confidence in meeting their own learning needs, prompted us to implement this model in architecture design studio. In this implemented contract to the studio, students were asked to use the existing possibility of contract to have self assessment and examine their professional development to identify whether they are deficient or they would like to develop more expertise. The evidences of this research as well indicate that students feel positive about the learning contract and see it accommodating their individual learning needs.Keywords: contract (LC), architecture design studio, education, student-centered learning
Procedia PDF Downloads 4409255 A Machine Learning-Assisted Crime and Threat Intelligence Hunter
Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng
Abstract:
Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.Keywords: cybercrime, deep web, threat intelligence, web crawler
Procedia PDF Downloads 1759254 Competences for Learning beyond the Academic Context
Authors: Cristina Galván-Fernández
Abstract:
Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.Keywords: competences, e-portfolio, higher education, self-regulation
Procedia PDF Downloads 3019253 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 269252 The Potentials of Online Learning and the Challenges towards Its Adoption in Nigeria's Higher Institutions of Learning
Authors: Kuliya Muhammed
Abstract:
This paper examines the potentials of online learning and the challenges to its adoption in Nigeria’s higher institutions of learning. The research would assist in tackling the challenges of online learning adoption and enlighten institutions on the numerous benefits of online learning in Nigeria. The researcher used survey method for the study and questionnaires were used to obtain the needed data from 230 respondents cut across 20 higher institutions in the country. The findings revealed that online learning has the prospect to boost access to learning tools, assist students’ to learn from the comfort of their offices or homes, reduce the cost of learning, and enable individuals to gain self-knowledge. The major challenges in the adoption of e-learning are poor Information and Communication Technology infrastructures, poor internet connectivity where available, lack of Information and Communication Technology background, problem of power supply, lack of commitment by institutions, poor maintenance of Information and Communication Technology tools, inadequate facilities, lack of government funding and fraud. Recommendations were also made at the end of the research work.Keywords: electronic, ICT, institution, internet, learning, technology
Procedia PDF Downloads 3889251 Management in Health Education Process among Spa Resorts in Poland
Authors: J. Wozniak-Holecka, T. Holecki, P. Romaniuk
Abstract:
Spa facilities are being perceived as the ways of healing treatment in Poland and are guaranteed within the public financing. The universal health insurance (National Health Fund, NFZ), and the disability prevention programme held by Social Insurance Institution (ZUS) are the main sources of financing spa facilities. The dominant public payer of spa services is the NFZ. The Social Insurance Institution covers the cost of health treatment realized in spa facilities as medical rehabilitation, in the field of disability prevention. Health services delivered in the spa resorts are characterized by complexity, and the combination of various methods, typical for health prevention, education, balneotherapy, and physiotherapy. Healing with natural methods, believed to enhance the therapeutic effect, is also involved in health spa treatment. Regardless of the type of facility, each form of spa treatment includes health promotion, health education, prevention at all levels, including rehabilitation. The aim of the study was to determine the optimal organization of health education process. Its efficiency strongly depends on the type of service provider and the funding institution (NFZ vs ZUS). It results from the use of different measures of the effectiveness, the quality and the evaluation of the process being assessed by funding institutions. The methods of the study include a comparative and descriptive quantitative and qualitative analysis. In the empirical part, a questionnaire had been developed. It was then distributed among spa personnel, responsible directly for the health promotion, and among patients who are beneficiaries of health services in spa centers. The quantitative part of the study was based on interviews carried with the use of the online survey (CAWI: Computer-Assisted Web Interview), telephone survey (CATI: Computer-Assisted Telephone Interview) and a conventional questionnaire (PAPI: Paper over Pencil Interview). As a result of the conducted research, it was found that the effectiveness of health education activities in spa resort facilities in Poland is higher when the services are organized using structured tools for managerial control. This applies to formalized procedures implemented by one of the dominant payers covering costs of services (ZUS) and involves the application of health education as one of the mandatory elements of treatment, subjected to the process of control during the course of spa therapy and evaluation after it is completed.Keywords: effectiveness, health education, public health system, spa treatment
Procedia PDF Downloads 1449250 LORA: A Learning Outcome Modelling Approach for Higher Education
Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga
Abstract:
To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling
Procedia PDF Downloads 1889249 Using Educational Gaming as a Blended Learning Tool in South African Education
Authors: Maroonisha Maharajh
Abstract:
Based on the Black Swan and Disruptive Innovation Theories, this study proposes an educational game based learning model within the context of the traditional classroom learning environment. In the proposed model, the perceived e-learning component is decomposed into accessibility, perceived quality and perceived usability within the traditional rural classroom environment. A sample of 92 respondents took part in this study. The results suggest that users’ continuance intention is determined by both economic and grassroots internet accessibility, which in turn is jointly determined by perceived usefulness, information quality, service quality, system quality, perceived ease of use and cognitive absorption of learning.Keywords: blended learning, flipped classroom, e-learning, gaming
Procedia PDF Downloads 2559248 Experiential Learning for Upholding Entrepreneurship Education: A Case Study from Egypt
Authors: Randa El Bedawy
Abstract:
Exchanging best practices in the scope of entrepreneurship education and the use of experiential learning approaches are growing lately at a very fast pace. Educators should be challenged to promote such a learning approach to bridge the gap between entrepreneurship students and the actual business work environment. The study aims to share best practices, experiences, and knowledge to support entrepreneurship education. The study is exploratory qualitative research based on a case study approach to demonstrate how experiential learning can be used for supporting learning effectiveness in entrepreneurship education through demonstrating a set of fourteen tasks that were used to engage practically the students who were studying a course of entrepreneurship at the American University in Cairo. The study sheds the light on the rational process of using experiential learning to endorse entrepreneurship education through the illustration of each task along with its learning outcomes. The study explores the benefits and obstacles that educators may face when implementing such an experiential approach. The results of the study confirm that developing an experiential learning approach based on constructing a set of well designed practical tasks that complement the overall intended learning outcomes has proven very effective for promoting the students’ learning of entrepreneurship education. However, good preparation for both educators and students is needed primarily to ensure the effective implementation of such an experiential learning approach.Keywords: business education, entrepreneurship, entrepreneurship education, experiential learning
Procedia PDF Downloads 1639247 The Use of Videoconferencing in a Task-Based Beginners' Chinese Class
Authors: Sijia Guo
Abstract:
The development of new technologies and the falling cost of high-speed Internet access have made it easier for institutes and language teachers to opt different ways to communicate with students at distance. The emergence of web-conferencing applications, which integrate text, chat, audio / video and graphic facilities, offers great opportunities for language learning to through the multimodal environment. This paper reports on data elicited from a Ph.D. study of using web-conferencing in the teaching of first-year Chinese class in order to promote learners’ collaborative learning. Firstly, a comparison of four desktop videoconferencing (DVC) tools was conducted to determine the pedagogical value of the videoconferencing tool-Blackboard Collaborate. Secondly, the evaluation of 14 campus-based Chinese learners who conducted five one-hour online sessions via the multimodal environment reveals the users’ choice of modes and their learning preference. The findings show that the tasks designed for the web-conferencing environment contributed to the learners’ collaborative learning and second language acquisition.Keywords: computer-mediated communication (CMC), CALL evaluation, TBLT, web-conferencing, online Chinese teaching
Procedia PDF Downloads 3109246 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1079245 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1039244 Influence of Instructors in Engaging Online Graduate Students in Active Learning in the United States
Authors: Ehi E. Aimiuwu
Abstract:
As of 2017, many online learning professionals, institutions, and journals are still wondering how instructors can keep student engaged in the online learning environment to facilitate active learning effectively. The purpose of this qualitative single-case and narrative research is to explore whether online professors understand their role as mentors and facilitators of students’ academic success by keeping students engaged in active learning based on personalized experience in the field. Data collection tools that were used in the study included an NVivo 12 Plus qualitative software, an interview protocol, a digital audiotape, an observation sheet, and a transcription. Seven online professors in the United States from LinkedIn and residencies were interviewed for this study. Eleven online teaching techniques from previous research were used as the study framework. Data analysis process, member checking, and key themes were used to achieve saturation. About 85.7% of professors agreed on rubric as the preferred online grading technique. About 57.1% agreed on professors logging in daily, students logging in about 2-5 times weekly, knowing students to increase accountability, email as preferred communication tool, and computer access for adequate online learning. About 42.9% agreed on syllabus for clear class expectations, participation to show what has been learned, and energizing students for creativity.Keywords: class facilitation, class management, online teaching, online education, pedagogy
Procedia PDF Downloads 1169243 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1649242 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 1309241 Mobile Phones and Language Learning: A Qualitative Meta-Analysis of Studies Published between 2008 and 2012 in the Proceedings of the International Conference on Mobile Learning
Authors: Lucia Silveira Alda
Abstract:
This research aims to analyze critically a set of studies published in the Proceedings of the International Conference on Mobile Learning of IADIS, from 2008 until 2012, which addresses the issue of foreign language learning mediated by mobile phones. The theoretical review of this study is based on the Vygotskian assumptions about tools and mediated learning and the concepts of mobile learning, CALL and MALL. In addition, the diffusion rates of the mobile phone and especially its potential are considered. Through systematic review and meta-analysis, this research intended to identify similarities and differences between the identified characteristics in the studies on the subject of language learning and mobile phone. From the analysis of the results, this study verifies that the mobile phone stands out for its mobility and portability. Furthermore, this device presented positive aspects towards student motivation in language learning. The studies were favorable to mobile phone use for learning. It was also found that the challenges in using this tool are not technical, but didactic and methodological, including the need to reflect on practical proposals. The findings of this study may direct further research in the area of language learning mediated by mobile phones.Keywords: language learning, mobile learning, mobile phones, technology
Procedia PDF Downloads 2839240 The Effect of Classroom Atmospherics on Second Language Learning
Authors: Sresha Yadav, Ishwar Kumar
Abstract:
Second language learning is an important area of research in the language and linguistic domains. Literature suggests that several factors impact second language learning, including age, motivation, objectives, teacher, instructional material, classroom interaction, intelligence and previous background, previous linguistic experience, other student characteristics. Previous researchers have also highlighted that classroom atmospherics has a significant impact on learning as well as on the performance of students. However, the impact of classroom atmospherics on second language learning is still not known in the existing literature. Therefore, the purpose of the present study is to explore whether classroom atmospherics has an impact on second language learning or not? And if it does, it would be worthwhile to explore the nature of such relationship. The present study aims to explore the impact of classroom atmospherics on second language learning by dwelling into the existing literature to explore factors which impact second language learning, classroom atmospherics which impact language learning and the metrics through which such learning impacts could be measured. Based on the findings of literature review, the researchers have adopted a clustering approach for categorization and positioning of various measures of second language learning. Based on the clustering approach, the researchers have approach for measuring the impact of classroom atmospherics on second language learning by drawing a student sample consisting of 80 respondents. The results of the study uncover various basic premises of second language learning, especially with regard to classroom atmospherics. The present study is important not only from the point of view of language learning but implications could be drawn with regard to the design of classroom atmospherics, environmental psychology, anthropometrics, etc as well.Keywords: classroom atmospherics, cluster analysis, linguistics, second language learning
Procedia PDF Downloads 4589239 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System
Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi
Abstract:
Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.Keywords: channel estimation, OFDM, pilot-assist, VLC
Procedia PDF Downloads 1819238 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: evolving learning, knowledge extraction, knowledge graph, text mining
Procedia PDF Downloads 4589237 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.Keywords: learning style, VARK, sensory preferences, identification model, didactic practices
Procedia PDF Downloads 2819236 Integrating Student Engagement Activities into the Learning Process
Authors: Yingjin Cui, Xue Bai, Serena Reese
Abstract:
Student engagement and student interest during class instruction are important conditions for active learning. Engagement, which has an important relationship with learning motivation, influences students' levels of persistence in overcoming challenges. Lack of student engagement and absence from face-to-face lectures and tutorials, in turn, can lead to poor academic performance. However, keeping students motivated and engaged in the learning process in different instructional modes poses a significant challenge; students can easily become discouraged from attending lectures and tutorials across both online and face-to-face settings. Many factors impact students’ engagement in the learning process. If you want to keep students focused on learning, you have to invite them into the process of helping themselves by providing an active learning environment. Active learning is an excellent technique for enhancing student engagement and participation in the learning process because it provides means to motivate the student to engage themselves in the learning process through reflection, analyzing, applying, and synthesizing the material they learn during class. In this study, we discussed how to create an active learning class (both face-to-face and synchronous online) through engagement activities, including reflection, collaboration, screen messages, open poll, tournament, and transferring editing roles. These activities will provide an uncommon interactive learning environment that can result in improved learning outcomes. To evaluate the effectiveness of those engagement activities in the learning process, an experimental group and a control group will be explored in the study.Keywords: active learning, academic performance, engagement activities, learning motivation
Procedia PDF Downloads 150