Search results for: air traffic flow management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14252

Search results for: air traffic flow management

13832 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline

Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung

Abstract:

In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.

Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency

Procedia PDF Downloads 384
13831 Numerical and Experimental Investigation of Impeller Trimming on Fluid Flow inside a Centrifugal Pump

Authors: Rouhollah Torabi, Ashkan Chavoshi, Sheyda Almasi, Shima Almasi

Abstract:

In this paper the effect of impeller trim on centrifugal pump performance is studied and the most important effect which is decreasing the flow rate, differential head and efficiency is analyzed. For this case a low specific speed centrifugal pump is simulated with CFD. Total flow inside the pump including the secondary flow in sidewall gap which form internal leakage is modeled simultaneously in CFX software. The flow field in different area of pumps such as inside impeller, volute, balance holes and leakage through wear rings are studied. To validate the results experimental tests are done for various impeller diameters. Results also compared with analytic equations which predict pump performance with trimmed impeller.

Keywords: centrifugal pump, CFD, impeller, trim

Procedia PDF Downloads 389
13830 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 48
13829 Assessment of the Effectiveness of the Anti-Debris Flow Engineering Constructed to Reduce the Risk of Expected Debris Flow in the River Mletiskhevi by Computer Program RAMMS

Authors: Sopio Gogilava, Goga Chakhaia, Levan Tsulukidze, Zurab Laoshvili, Irina Khubulava, Shalva Bosikashvili, Teimuraz Gugushvili

Abstract:

Geoinformatics systems (GIS) integrated computer program RAMMS is widely used for forecasting debris flows and accordingly for the determination of anticipating risks with 85% accuracy. In view of the above, the work introduces new capabilities of the computer program RAMMS, which evaluates the effectiveness of anti-debris flow engineering construction, namely: the possibility of decreasing the expected velocity, kinetic energy, and output cone volume in the Mletiskhevi River. As a result of research has been determined that the anti-debris flow engineering construction designed to reduce the expected debris flow risk in the Mletiskhevi River is an effective environmental protection technology, that's why its introduction is promising.

Keywords: construction, debris flow, geoinformatics systems, program RAMMS

Procedia PDF Downloads 126
13828 Impact of the Time Interval in the Numerical Solution of Incompressible Flows

Authors: M. Salmanzadeh

Abstract:

In paper, we will deal with incompressible Couette flow, which represents an exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the simplest of all viscous flows, while at the same time retaining much of the same physical characteristics of a more complicated boundary-layer flow. The numerical technique that we will employ for the solution of the Couette flow is the Crank-Nicolson implicit method. Parabolic partial differential equations lend themselves to a marching solution; in addition, the use of an implicit technique allows a much larger marching step size than would be the case for an explicit solution. Hence, in the present paper we will have the opportunity to explore some aspects of CFD different from those discussed in the other papers.

Keywords: incompressible couette flow, numerical method, partial differential equation, Crank-Nicolson implicit

Procedia PDF Downloads 503
13827 Association between Noise Levels, Particulate Matter Concentrations and Traffic Intensities in a Near-Highway Urban Area

Authors: Mohammad Javad Afroughi, Vahid Hosseini, Jason S. Olfert

Abstract:

Both traffic-generated particles and noise have been associated with the development of cardiovascular diseases, especially in near-highway environments. Although noise and particulate matters (PM) have different mechanisms of dispersion, sharing the same emission source in urban areas (road traffics) can result in a similar degree of variability in their levels. This study investigated the temporal variation of and correlation between noise levels, PM concentrations and traffic intensities near a major highway in Tehran, Iran. Tehran particulate concentration is highly influenced by road traffic. Additionally, Tehran ultrafine particles (UFP, PM<0.1 µm) are mostly emitted from combustion processes of motor vehicles. This gives a high possibility of a strong association between traffic-related noise and UFP in near-highway environments of this megacity. Hourly average of equivalent continuous sound pressure level (Leq), total number concentration of UFPs, mass concentration of PM2.5 and PM10, as well as traffic count and speed were simultaneously measured over a period of three days in winter. Additionally, meteorological data including temperature, relative humidity, wind speed and direction were collected in a weather station, located 3 km from the monitoring site. Noise levels showed relatively low temporal variability in near-highway environments compared to PM concentrations. Hourly average of Leq ranged from 63.8 to 69.9 dB(A) (mean ~ 68 dB(A)), while hourly concentration of particles varied from 30,800 to 108,800 cm-3 for UFP (mean ~ 64,500 cm-3), 41 to 75 µg m-3 for PM2.5 (mean ~ 53 µg m-3), and 62 to 112 µg m-3 for PM10 (mean ~ 88 µg m-3). The Pearson correlation coefficient revealed strong relationship between noise and UFP (r ~ 0.61) overall. Under downwind conditions, UFP number concentration showed the strongest association with noise level (r ~ 0.63). The coefficient decreased to a lesser degree under upwind conditions (r ~ 0.24) due to the significant role of wind and humidity in UFP dynamics. Furthermore, PM2.5 and PM10 correlated moderately with noise (r ~ 0.52 and 0.44 respectively). In general, traffic counts were more strongly associated with noise and PM compared to traffic speeds. It was concluded that noise level combined with meteorological data can be used as a proxy to estimate PM concentrations (specifically UFP number concentration) in near-highway environments of Tehran. However, it is important to measure joint variability of noise and particles to study their health effects in epidemiological studies.

Keywords: noise, particulate matter, PM10, PM2.5, ultrafine particle

Procedia PDF Downloads 166
13826 Arms and Light Weapons Flow in Nigerian/Chad Border: A Reflection on the How Insurgents Had Access to Their Target

Authors: Lawan Ja’afar Tahir

Abstract:

This research work centered on the problem of free Arms flow around the Nigeria and Chad Border. The whole of the northeastern Nigerian region has been devastated by the crisis of insecurity facilitated by more than a decade of insurgency. One of the major issues of concern to security experts and personnel in the country is how the insurgents are getting access to weapons, which gave them more strength to fight the war for this long period, which has become so difficult to overcome. Among the possible avenues that continue to strengthen the enemies is the easy access to the arms flow from the neighboring countries, especially the Republic of Chad, which borders Nigeria to the east, where Boko Haram gained firm roots. This paper, therefore, looked at the nature of the waterway of the Nigeria/Chad Border, which has become a source of strength to the insurgents as the flow of weapons is one of the cheapest things on the Border. The availability of such arms flow has also led to the People abandoning their lands and economic and commercial activities, especially those settlements between the Border of these two countries. For more than eight years now, they have suspended their livelihood activities, roads were blocked and chances of survival in the rural areas were minimal due to the frequent attacks carried out by the insurgents. However, this research looks at the causes of the arms flow along the Border of these neighboring countries, the extent of damage done as a result of the availability of the weapons, and how far the Nigerian government has gone in curtailing the menace of the flow of dangerous weapons into the country. The research looked at the ways arm dealers are conniving with settlers along the border as well as the various ways they followed to reach their target. The work provided suggestion as to how the fragile Border should be managed with the view to reduce the influx of arms without control, which, according to this research, is the central factor that continues to unleash and give terror groups the opportunity to destroy people for more than a decade.

Keywords: border, insecurity, weapons, management

Procedia PDF Downloads 35
13825 Numerical Evaluation of the Flow Behavior inside the Scrubber Unit with Engine Exhaust Pipe

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

A wet scrubber is an air pollution control device that removes particulate matter and acid gases from waste gas streams found in marine engine exhaust. If the flue gases in the exhaust is employed for CFD simulation, it makes the problem complicate due to the involvement of emissions. Owing to the fact, the scrubber system in this paper is handled with appropriate approach by designing with the flow properties of hot air and water droplet injections to evaluate the flow behavior inside the system. Since the wet scrubber has the capability of operating over wide range of mixture compositions, the current scrubber model with the designing approach doesn’t deviate from the actual behavior of the system. The scrubber design is constructed with engine exhaust pipe with the purpose of measuring the flow properties inside the scrubber by the influence of exhaust pipe characteristics. The flow properties are computed by the thermodynamic variables such as temperature and pressure with the flow velocity. In this work, numerical analyses have been conducted for the flow of fluid in the scrubber system through CFD technique.

Keywords: wet scrubber, water droplet injections, thermodynamic variables, CFD technique

Procedia PDF Downloads 319
13824 Diagnostic and Analysis of the Performance of Freight Transportation on Urban Logistics System in the City of Sfax

Authors: Tarak Barhoumi, Younes Boujelbene

Abstract:

Nowadays, the problems of freight transport pose logistical constraints on the urban system in the city. The aim of this article is to gain a better understanding of the interactions between local traffic and interurban traffic on the one hand and between the location system and the transport system on the other hand. Thus, in a simulation and analysis approach cannot be restricted to the only transport system. The proposed approach is based on an assessment of the impact of freight transport, which is closely linked to the diagnostic method, based on two surveys carried out on the territory of the urban community of Sfax. These surveys are based on two main components 'establishment component' first and 'driver component' second. The results propose a reorganization of freight transport in the city of Sfax. First, an orientation of the heavy goods vehicles traffic towards the major axes of transport namely the ring roads (ring road N° 2, ring road N° 4 and ring road N° 11) and the penetrating news of the city. Then, the implementation of a retail goods delivery policy and the strengthening of logistics in the city. The creation of a logistics zone at the ring road N° 11 where various modes of freight transport meet, in order to decongest the roads of heavy goods traffic, reduce the cost of transport and thus improve the competitiveness of the economy regional.

Keywords: urban logistics systems, transport freight, diagnostics, evaluation

Procedia PDF Downloads 136
13823 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 252
13822 Numerical Simulation of External Flow Around D-Shaped Cylinders

Authors: Ouldouz Nourani Zonouz, Mehdi Salmanpour

Abstract:

Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases.

Keywords: D-shaped, CFD, external flow, low Reynolds number, square cylinder

Procedia PDF Downloads 442
13821 Rear Seat Belt Use in Developing Countries: A Case Study from the United Arab Emirates

Authors: Salaheddine Bendak, Sara S. Alnaqbi

Abstract:

The seat belt is a vital tool in improving traffic safety conditions and minimising injuries due to traffic accidents. Most developing countries are facing a big problems associated with the human and financial losses due to traffic accidents. One way to minimise these losses is the use of seat belts by passengers both in the front and rear seats of a vehicle; however, at the same time, close to nothing is known about the rates of seat belt utilisation among rear seat passengers in many developing countries. Therefore, there is a need to estimate these rates in order to know the extent of this problem and how people interact with traffic safety measures like seat belts and find demographic characteristics that contribute to wearing or non-wearing of seat belts with the aim of finding solutions to improve wearing rates. In this paper, an observational study was done to gather data on restraints use in motor vehicle rear seats in eight observational stations in a rapidly developing country, the United Arab Emirates (UAE), and estimate a use rate for the whole country. Also, a questionnaire was used in order to study demographic characteristics affecting the wearing of seatbelts in rear seats. Results of the observational study showed that the overall wearing/usage rate was 12.3%, which is considered very low when compared to other countries. Survey results show that single, male, less educated passengers from Arab and South Asian backgrounds use seat belts reportedly less than others. Finally, solutions are put forward to improve this wearing rate based on the results of this study.

Keywords: Seat belts, traffic crashes, United Arab Emirates, rear seats

Procedia PDF Downloads 222
13820 Flow: A Fourth Musical Element

Authors: James R. Wilson

Abstract:

Music is typically defined as having the attributes of melody, harmony, and rhythm. In this paper, a fourth element is proposed -"flow". "Flow" is a new dimension in music that has always been present but only recently identified and measured. The Adagio "Flow Machine" enables us to envision this component and even suggests a new approach to music theory and analysis. The Adagio was created specifically to measure the underlying “flow” in music. The Adagio is an entirely new way to experience and visualize the music, to assist in performing music (both as a conductor and/or performer), and to provide a whole new methodology for music analysis and theory. The Adagio utilizes musical “hit points”, such as a transition from one musical section to another (for example, in a musical composition utilizing the sonata form, a transition from the exposition to the development section) to help define the compositions flow rate. Once the flow rate is established, the Adagio can be used to determine if the composer/performer/conductor has correctly maintained the proper rate of flow throughout the performance. An example is provided using Mozart’s Piano Concerto Number 21. Working with the Adagio yielded an unexpected windfall; it was determined via an empirical study conducted at Nova University’s Biofeedback Lab that watching the Adagio helped volunteers participating in a controlled experiment recover from stressors significantly faster than the control group. The Adagio can be thought of as a new arrow in the Musicologist's quiver. It provides a new, unique way of viewing the psychological impact and esthetic effectiveness of music composition. Additionally, with the current worldwide access to multi-media via the internet, flow analysis can be performed and shared with others with little time and/or expense.

Keywords: musicology, music analysis, music flow, music therapy

Procedia PDF Downloads 150
13819 Helical Motions Dynamics and Hydraulics of River Channel Confluences

Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe

Abstract:

River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.

Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer

Procedia PDF Downloads 118
13818 Fatigue Truck Modification Factor for Design Truck (CL-625)

Authors: Mohamad Najari, Gilbert Grondin, Marwan El-Rich

Abstract:

Design trucks in standard codes are selected based on the amount of damage they cause on structures-specifically bridges- and roads to represent the real traffic loads. Some limited numbers of trucks are run on a bridge one at a time and the damage on the bridge is recorded for each truck. One design track is also run on the same bridge “n” times -“n” is the number of trucks used previously- to calculate the damage of the design truck on the same bridge. To make these damages equal a reduction factor is needed for that specific design truck in the codes. As the limited number of trucks cannot be the exact representative of real traffic through the life of the structure, these reduction factors are not accurately calculated and they should be modified accordingly. Started on July 2004, the vehicle load data were collected in six weigh in motion (WIM) sites owned by Alberta Transportation for eight consecutive years. This database includes more than 200 million trucks. Having these data gives the opportunity to compare the effect of any standard fatigue trucks weigh and the real traffic load on the fatigue life of the bridges which leads to a modification for the fatigue truck factor in the code. To calculate the damage for each truck, the truck is run on the bridge, moment history of the detail under study is recorded, stress range cycles are counted, and then damage is calculated using available S-N curves. A 2000 lines FORTRAN code has been developed to perform the analysis and calculate the damages of the trucks in the database for all eight fatigue categories according to Canadian Institute of Steel Construction (CSA S-16). Stress cycles are counted using rain flow counting method. The modification factors for design truck (CL-625) are calculated for two different bridge configurations and ten span lengths varying from 1 m to 200 m. The two considered bridge configurations are single-span bridge and four span bridge. This was found to be sufficient and representative for a simply supported span, positive moment in end spans of bridges with two or more spans, positive moment in interior spans of three or more spans, and the negative moment at an interior support of multi-span bridges. The moment history of the mid span is recorded for single-span bridge and, exterior positive moment, interior positive moment, and support negative moment are recorded for four span bridge. The influence lines are expressed by a polynomial expression obtained from a regression analysis of the influence lines obtained from SAP2000. It is found that for design truck (CL-625) fatigue truck factor is varying from 0.35 to 0.55 depending on span lengths and bridge configuration. The detail results will be presented in the upcoming papers. This code can be used for any design trucks available in standard codes.

Keywords: bridge, fatigue, fatigue design truck, rain flow analysis, FORTRAN

Procedia PDF Downloads 500
13817 Effect of Magnetic Field on Unsteady MHD Poiseuille Flow of a Third Grade Fluid Under Exponential Decaying Pressure Gradient with Ohmic Heating

Authors: O. W. Lawal, L. O. Ahmed, Y. K. Ali

Abstract:

The unsteady MHD Poiseuille flow of a third grade fluid between two parallel horizontal nonconducting porous plates is studied with heat transfer. The two plates are fixed but maintained at different constant temperature with the Joule and viscous dissipation taken into consideration. The fluid motion is produced by a sudden uniform exponential decaying pressure gradient and external uniform magnetic field that is perpendicular to the plates. The momentum and energy equations governing the flow are solved numerically using Maple program. The effects of magnetic field and third grade fluid parameters on velocity and temperature profile are examined through several graphs.

Keywords: exponential decaying pressure gradient, MHD flow, Poiseuille flow, third grade fluid

Procedia PDF Downloads 450
13816 CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room

Authors: Amirreza Niktash, B. P. Huynh

Abstract:

A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications.

Keywords: CFD, RANS, ventilation, windcatcher

Procedia PDF Downloads 407
13815 Use of Large Eddy Simulations Model to Simulate the Flow of Heavy Oil-Water-Air through Pipe

Authors: Salim Al Jadidi, Shian Gao, Shivananda Moolya

Abstract:

Computational Fluid Dynamic (CFD) technique coupled with Sub-Grid-Scale (SGS) model is used to study the flow behavior of heavy oil-water-air flow in a horizontal pipe by adapting ANSYS Fluent CFD software. The technique suitable for the transport of water-lubricated heavy viscous oil in a horizontal pipe is the Core Annular flow (CAF) technique. The present study focuses on the numerical study of CAF adapting Large Eddy Simulations (LES). The basic objective of the present study is to gain a basic knowledge of the flow behavior of heavy oil using turbulent CAF through a conventional horizontal pipe. This work also focuses on the success and applicability of LES. The simulation of heavy oil-water-air three-phase flow and two-phase flow of heavy oil–water in a conventional horizontal pipe is performed using ANSYS Fluent 16.2 software. The influence of three-phase heavy oil-water air flow in a selected pipe is affected by gravity. It is also observed from the result that the air phase and the variation in the temperature impact the behavior of the annular stream and pressure drop. Some results obtained during the study are validated with the results gained from part of the literature experiments and simulations, and the results show reasonably good agreement between the studies.

Keywords: computational fluid dynamics, gravity, heavy viscous oil, three-phase flow

Procedia PDF Downloads 56
13814 A Comparative Analysis of Evacuation Behavior in Case of Cyclone Sidr, Typhoon Yolanda and the Great East Japan Earthquake

Authors: Swarnali Chakma, Akihiko Hokugo

Abstract:

Research on three case studies reviewed here explains many aspects and complications of evacuation behavior during an emergency period. The scenario and phenomenon of the disaster were different, but the similarities are that after receiving the warning peoples does not take it seriously. Many individuals evacuated after taking some kind of action, for example; return to home, searching for family members, prepared valuable things etc. Based on a review of the literature, the data identified a number of factors that help explain evacuation behavior during the disaster. In the case of Japan, cultural inhibitors impact people’s behavior; for example, following the traffic rules, some people lost their time to skip because of the slow-moving car makes overcrowded traffic and some of them were washed away by the tsunami. In terms of Bangladeshi culture, women did not want to evacuate without men because staying men and women who do not know each other under the same roof together is not regular practice or comfortable. From these three case studies, it is observed that early warning plays an important role in cyclones, typhoons and earthquakes. A high level of trust from residents in the warning system is important to real evacuation. It is necessary to raise awareness of disaster and provide information on the vulnerability to cyclones, typhoons and earthquakes hazards at community levels. The local level may help decision makers and other stakeholders to make a better decision regarding an effective disaster management.

Keywords: disaster management, emergency period, evacuation, shelter, typhoon

Procedia PDF Downloads 134
13813 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi

Abstract:

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress

Procedia PDF Downloads 140
13812 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer

Authors: Y. Baba, A. Archibong-Eso, H. Yeung

Abstract:

Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.

Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length

Procedia PDF Downloads 305
13811 Viscous Flow Computations for the Diffuser Section of a Large Cavitation Tunnel

Authors: Ahmet Y. Gurkan, Cagatay S. Koksal, Cagri Aydin, U. Oral Unal

Abstract:

The present paper covers the viscous flow computations for the asymmetric diffuser section of a large, high-speed cavitation tunnel which will be constructed in Istanbul Technical University. The analyses were carried out by using the incompressible Reynold-Averaged-Navier-Stokes equations. While determining the diffuser geometry, a high quality, separation-free flow field with minimum energy loses was particularly aimed. The expansion angle has a critical role on the diffuser hydrodynamic performance. In order obtain a relatively short diffuser length, due to the constructive limitations, and hydrodynamic energy effectiveness, three diffuser sections with varying expansion angles for side and bottom walls were considered. A systematic study was performed to determine the most effective diffuser configuration. The results revealed that the inlet condition of the diffuser greatly affects its flow field. The inclusion of the contraction section in the computations substantially modified the flow topology in the diffuser. The effect of the diffuser flow on the test section flow characteristics was clearly observed. The influence of the introduction of small chamfers at the corners of the diffuser geometry is also presented.

Keywords: asymmetric diffuser, diffuser design, cavitation tunnel, viscous flow, computational fluid dynamics (CFD), rans

Procedia PDF Downloads 337
13810 Reduction of Aerodynamic Drag Using Vortex Generators

Authors: Siddharth Ojha, Varun Dua

Abstract:

Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated.

Keywords: aerodynamics, aerodynamic devices, body, computational fluid dynamics (CFD), flow visualization

Procedia PDF Downloads 200
13809 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System

Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya

Abstract:

The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.

Keywords: interline power flow controller, transmission pricing, unified power flow controller, cost allocation

Procedia PDF Downloads 121
13808 Research on the Public Policy of Vehicle Restriction under Traffic Control

Authors: Wang Qian, Bian Cheng Xiang

Abstract:

In recent years, with the improvement of China's urbanization level, the number of urban motor vehicles has grown rapidly. As residents' daily commuting necessities, cars cause a lot of exhaust emissions and urban traffic congestion. In the "Fourteenth Five Year Plan" of China, it is proposed to strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Urban transport accounts for a high proportion of carbon emission sources. It is an important driving force for the realization of China's carbon peak strategy. Some cities have introduced and implemented the policy of "car restriction" to solve related urban problems by reducing the use of cars. This paper analyzes the implementation of the "automobile restriction" policy, evaluates the relevant effects of the automobile restriction policy, and discusses how to better optimize the "automobile restriction" policy in the process of urban governance.

Keywords: carbon emission, traffic jams, vehicle restrictions, evaluate

Procedia PDF Downloads 130
13807 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 23
13806 CFD Modeling of Pollutant Dispersion in a Free Surface Flow

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Said, Hervé Bournot, Georges Le Palec

Abstract:

In this work, we determine the turbulent dynamic structure of pollutant dispersion in two-phase free surface flow. The numerical simulation was performed using ANSYS Fluent. The flow study is three-dimensional, unsteady and isothermal. The study area has been endowed with a rectangular obstacle to analyze its influence on the hydrodynamic variables and progression of the pollutant. The numerical results show that the hydrodynamic model provides prediction of the dispersion of a pollutant in an open channel flow and reproduces the recirculation and trapping the pollutant downstream near the obstacle.

Keywords: CFD, free surface, polluant dispersion, turbulent flows

Procedia PDF Downloads 510
13805 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve

Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.

Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve

Procedia PDF Downloads 276
13804 Measurement of Asphalt Pavement Temperature to Find out the Proper Asphalt Binder Performance Grade to the Asphalt Mixtures in Southern Desert of Libya

Authors: Khlifa El Atrash, Gabriel Assaf

Abstract:

Most developing countries use volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. The overall intent of the work reported in this study is to test different asphalt mixtures while taking into consideration the environment, type and source of material, tools, equipment, and the construction method. In this study, several tests were conducted on many samples that were carefully prepared under the expected traffic loads and temperatures in a dry hot climate. Several asphalt concrete mixtures were designed using two different binders. These mixtures were analyzed under two types of tests - Complex Modulus and Rutting test - to evaluate the hot mix asphalt properties under the represented temperatures and traffic load in Libya. These factors play an important role to improve the pavement performances in a hot climate weather based on the properties of the asphalt mixture, climate, and traffic load. This research summarized some recommendations for making asphalt mixtures used in hot dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance. Therefore, this study is aimed to develop a method for designing an asphalt mixture that takes into account field loading, various stresses, and temperature spectrums.

Keywords: volumetric analysis, pavement performances, hot climate, asphalt mixture, traffic load

Procedia PDF Downloads 288
13803 Solution to Increase the Produced Power in Micro-Hydro Power Plant

Authors: Radu Pop, Adrian Bot, Vasile Rednic, Emil Bruj, Oana Raita, Liviu Vaida

Abstract:

Our research presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. It is known that the fish ladder whole, were the water is capture is fix, and the water flow may vary with the river flow, this means that on the fish ladder we will have different servitude flows, sometimes more than needed. We propose to demonstrate that the ‘winter intake’ from micro-hydro power plant, could be automated with an intelligent system which is capable to read some imposed data and adjust the flow in to the needed value. With this automation concept, we demonstrate that the performance of the micro-hydro power plant could increase, in some flow operating regimes, with approx. 10%.

Keywords: energy, micro-hydro, water intake, fish ladder

Procedia PDF Downloads 198