Search results for: Adult dataset
2035 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 802034 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki, Kyoka Sato
Abstract:
In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control
Procedia PDF Downloads 1562033 Distribution and Densities of Anopheles Mosquito in El Obied Town, Sudan
Authors: Adam Musa Adam Eissa
Abstract:
Environmental and weather changes especially rainfall affects the distribution and densities of mosquitoes. This work was carried out to study the distribution and densities of mosquitoes adults and larvae in a total of five selected stations in El Obied Town. A cross-sectional survey of Anopheline mosquito larval habitats was conducted. The survey was conducted during the dry season (January 2013). Larvae were collected by using the standard dipping technique, while adult stages were collected by rearing larvae in cage, because the density of adults Anopheles mosquito per room was zero by using spray sheet method by using Permethrin pesticide 25%E.C, during the study period. The results revealed that (2347) Anopheline mosquito larvae were found and collected from only one station. All of which (2347) larvae (100%) were classified as probably Anopheles Squamosus. The study also showed that, a number of 81 adults (100%) Anopheline mosquito were classified as probably Anopheles Squamosus. Anopheles Squamosus were found only in the shallow pond water habitat in Alrahma west area of El Obied, the mean Anopheline density in the study area for larvae was 0.313 per dip while the mean density of adult was 0 per room. The high mosquito larval density in Alrahma west area indicated that, this part of El Obied Town is at risk of mosquito-borne diseases including malaria. This study recommended to apply the control program against mosquito at this part of the Town.Keywords: anopheles, squamosus, Alrahma, distribution
Procedia PDF Downloads 2852032 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials
Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik
Abstract:
Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes
Procedia PDF Downloads 612031 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 3082030 Using Autoencoder as Feature Extractor for Malware Detection
Authors: Umm-E-Hani, Faiza Babar, Hanif Durad
Abstract:
Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.Keywords: malware, auto encoders, automated feature engineering, classification
Procedia PDF Downloads 722029 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma
Authors: Ki-Yeo Kim
Abstract:
Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes
Procedia PDF Downloads 4232028 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1162027 Spatio-Temporal Variability in Reciprocal Resource Subsidies across Adjacent Terrestrial and Aquatic Eastern Cape Ecosystems
Authors: Tiyisani L. Chavalala, Nicole B. Richoux, Martin H. Villet
Abstract:
Rivers and their adjacent ecosystems are linked by reciprocal ecological subsidies. Rivers receive nutrients and energy from land, and these transfers can represent important food subsidies, a phenomenon known as allochthony. Emergence of adult aquatic invertebrates can also provide important food sources to terrestrial consumers. Reciprocal subsidies are influenced by factors such as canopy cover, river flow rate and channel width, which can be highly variable through space and time. The aim of this study is to identify and quantify the main trophic links between adjacent ecosystems (terrestrial and freshwater systems) in several Eastern Cape Rivers with different catchment sizes and flow rates and to develop an understanding of the factors that affect the strength of these links and their spatial dynamics. Food sources and consumers were sampled during four seasons (August 2016, November 2016, February 2017 and May 2017), and stable isotope ratios will serve as tracers to estimate the food web structures. Emergence traps are being used to quantify the rates of emergence of adult aquatic insects, and infall-pan traps are being used to quantify the terrestrial insects falling into rivers as potential food subsidies.Keywords: emerging aquatic insects, in-falling terrestrial insects, reciprocal resource subsidies, stable isotopes
Procedia PDF Downloads 2052026 Better Together: Diverging Trajectories of Local Social Work Practice and Nationally-Regulated Social Work Education in the UK
Authors: Noel Smith
Abstract:
To achieve professional registration, UK social workers need to complete a programme of education and training which meets standards set down by central government. When it comes to practice, social work in local authorities must fulfil requirements of national legislation but there is considerable local variation in the organisation and delivery of services. This presentation discusses the on-going reform of social work education by central government in the context of research of social work services in a local authority. In doing so it highlights that the ‘direction of travel’ of the national reform of social work education seems at odds with the trajectory of development of local social work services. In terms of education reform, the presentation cites key government initiatives including the knowledge and skills requirements which have been published separately for, respectively, child and family social work and adult social work. Also relevant is the Government’s new ‘teaching partnership’ pilot which focuses exclusively on social work in local government, in isolation from social work in NGOs. In terms of research, the presentation discusses two studies undertaken by Professor Smith in Suffolk County Council, a local authority in the east of England. The first is an equality impact analysis of the introduction of a new model for the delivery of adult and community services in Suffolk. This is based on qualitative research with local government representatives and NGOs involved in social work with older people and people with disabilities. The second study is an on-going, mixed method evaluation of the introduction of a new model of social care for children and young people in Suffolk. This new model is based on the international ‘Signs of Safety’ approach, which is applied in this model to a wide range of services from early intervention to child protection. While both studies are localised, the service models they examine are good illustrations of the way services are developing nationally. Analysis of these studies suggest that, if services continue to develop as they currently are, then social workers will require particular skills which are not be adequately addressed in the Government’s plans for social work education. Two issues arise. First, education reform concentrates on social work within local government while increasingly local authorities are outsourcing service provision to NGOs, expecting greater community involvement in providing care, and integrating social care with health care services. Second, education reform focuses on the different skills required for working with older and disabled adults and working with children and families, to the point where potentially the profession would be fragmented into two different classes of social worker. In contrast, the development of adult and children’s services in local authorities re-asserts the importance of common social work skills relating to personalisation, prevention and community development. The presentation highlights the importance for social work education in the UK to be forward looking, in terms of the changing design of service delivery, and outward looking, in terms of lessons to be drawn from international social work.Keywords: adult social work, children and families social work, European social work, social work education
Procedia PDF Downloads 3002025 Psychological Aspects of Depression among the Romanian Adults
Authors: Zoltan Abram
Abstract:
Background: In the last time it was hardly increased the prevalence of psychical diseases and disorders which reduce work capacity, life quality and life expectancy. Objectives: The aim of our research is to study the psychical health state of the Romanian adults living in the middle part of the country and the role of some economical, psychological and social factors, especially in relationship with depression. Methods: The study is based on a complex anonymous questionnaire, including Beck depressive scale, which was completed by a representative sample among adult population. The applied method was a combination between stratification and more-steps sampling. Results: After our results depression is the most common psychical illness with 9,1% diagnosis, but the tendency to depression, the existence of depressive symptoms is much higher than the treated illness. The percentage of suicide attempt among the studied population was 2,9%. It is analysed how gender, age, professional and social status, living and working conditions and different social factors are influencing the health state. According to Beck score, it was established a significant difference in the favour of female, elderly people, lower educational level, urban population. Conclusions: In our study it is underlined the importance of health promotion and education. It is concluded that improving living standards, modifying in a proper way the lifestyle of the population, we can positively influence the physical and mental health state of the Romanian adult population.Keywords: Beck scale, depression, psychological aspects, suicide attempt
Procedia PDF Downloads 4212024 The Oppressive Boss and Employees' Authoritarianism: The Relation between Suppression of Voice by Employers and Employees' Preferences for Authoritarian Political Leadership
Authors: Antonia Stanojević, Agnes Akkerman
Abstract:
In contemporary society, economically active people typically spend most of their waking hours doing their job. Having that in mind, this research examines how socialization at the workplace shapes political preferences. Innovatively, it examines, in particular, the possible relationship between employees’ voice suppression by the employer and the formation of their political preferences. Since the employer is perceived as an authority figure, their behavior might induce spillovers to attitudes about political authorities and authoritarian governance. Therefore, a positive effect of suppression of voice by employers on employees' preference for authoritarian governance is expected. Furthermore, this relation is expected to be mediated by two mechanisms: system justification and power distance. Namely, it is expected that suppression of voice would create a power distance organizational climate and increase employees’ acceptance of unequal distribution of power, as well as evoke attempts of oppression rationalization through system justification. The hypotheses will be tested on the data gathered within the first wave of Work and Politics Dataset 2017 (N=6000), which allows for a wide range of demographic and psychological control variables. Although a cross-sectional analysis to be used at this point does not allow for causal inferences, the confirmation of expected relationships would encourage and justify further longitudinal research on the same panel dataset, in order to get a clearer image of the causal relationship between employers' suppression of voice and workers' political preferences.Keywords: authoritarian values, political preferences, power distance, system justification, voice suppression
Procedia PDF Downloads 2692023 Adult Attachment Security as a Predictor of Career Decision-Making Self-Efficacy among College Students in the United States
Authors: Mai Kaneda, Sarah Feeney
Abstract:
This study examined the association between adult attachment security and career decision-making self-efficacy (CDMSE) among college students in the United States. Previous studies show that attachment security is associated with levels of CDMSE among college students. Given that a majority of studies examining career development variables have used parental attachment measures, this study adds to understanding of this phenomenon by utilizing a broader measure of attachment. The participants included 269 college students (76% female) between the ages of 19-29. An anonymous survey was distributed online via social media as well as in hard copy format in classrooms. Multiple regression analyses were conducted to determine the relationship between anxious and avoidant attachment and CDMSE. Results revealed anxious attachment was a significant predictor of CDMSE (B = -.13, p = .01), such that greater anxiety in attachment was associated with lower levels of CDMSE. When accounting for anxious attachment, avoidant attachment was no longer significant as a predictor of CDMSE (B = -.12, p = .10). The variance in college CDMSE explained by the model was 7%, F(2,267) = 9.51, p < .001. Results for anxious attachment are consistent with existing literature that finds insecure attachment to be related to lower levels of CDMSE, however the non-significant results for avoidant attachment as a predictor of CDMSE suggest not all types of attachment insecurity are equally related to CDMSE. Future research is needed to explore the nature of the relationship between different dimensions of attachment insecurity and CDMSE.Keywords: attachment, career decision-making, college students, self-efficacy
Procedia PDF Downloads 2212022 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2772021 The Classification Accuracy of Finance Data through Holder Functions
Authors: Yeliz Karaca, Carlo Cattani
Abstract:
This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).Keywords: artificial neural networks, finance data, Holder regularity, multifractals
Procedia PDF Downloads 2462020 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1302019 Dietary Practices of Adult Type 2 Diabetes Mellitus Patients Attending Kitui Out Patient Clinic at Kitui County, Kenya
Authors: Alice W. Theuri, Anselimo O. Makokha, Florence M. Kyallo
Abstract:
Type 2 diabetes mellitus (T2DM) is a serious metabolic disorder whose prevalence among adults has been increasing in the last decade. It is estimated that by 2030, the number of cases in Africa will almost double. Diet and lifestyle modifications are considered the cornerstone for the treatment and management of T2DM. Despite this, there is minimum literature assessing the dietary practices and glycemic control in a semi arid region context in Kenya. The objective of this study was to determine the dietary practices of adult T2DM patients attending Kitui out patient clinic in Kitui County. This was a cross sectional study design where every consenting second patient attending diabetic clinic was interviewed. A total of 138 T2DM patients were interviewed using a structured interview guide on socio-economic and dietary practices administered. The study was carried out in April and May 2017. There were more female (64%) than male (36%) in this study with majority being unemployed (38.4%). Forty seven percent (47.6%) had elevated HbA1c. Majority took three meals per day while DDS was 4.3 ± 1.09. The mean energy intake for men and women was 2823.8 ± 82.45 and 2766.3.30 ± 76.74 respectively. There was a non significant positive relationship (r= 131; P value = 0.124) between amount energy consumed and glycemic control. There were suboptimal dietary practices leading to poor glycemic control among T2DM patients attending diabetic clinic at Kitui District Hospital.Keywords: adults, dietary practices, semi arid region, T2DM
Procedia PDF Downloads 1522018 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 582017 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2112016 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan
Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas
Abstract:
The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1
Procedia PDF Downloads 1692015 Isolation, Characterization and Myogenic Differentiation of Synovial Mesenchymal Stem Cells
Authors: Fatma Y. Meligy
Abstract:
Objectives: The objectives of this study aimed to isolate and characterize mesenchymal stem cells (MSCs) derived from synovial membrane. Then to assess the potentiality of myogenic differentiation of these isolated MSCs. Methods: The MSCs were isolated from synovial membrane by digestion method. Three adult rats were used. The 5 -azacytidine was added to the cultured cells for one day. The isolated cells and treated cells are assessed using immunoflouresence, flowcytometry, PCR and real time PCR. Results: The isolated stem cells showed morphological aspect of stem cells they showed strong positivity to CD44 and CD90 in immunoflouresence while in CD34 and CD45 showed negative reaction. The treated cells with 5-azacytidine was shown to have positive reaction for desmin. Flowcytometric analysis showed that synovial MSCs had strong positive percentage for CD44(%98)and CD90 (%97) and low percentage for CD34 & CD45 while the treated cells showed positive percentage for myogenic marker myogenin (85%). As regard the PCR and Real time PCR, the treated cells showed positive reaction to the desmin primer. Conclusion: The adult MSCs were isolated successfully from synovial membrane and characterized with stem cell markers. The isolated cells could be differentiated in vitro into myogenic cells. These differentiated cells could be used in auto-replacement of diseased or traumatized muscle cells as a regenerative therapy for muscle disorders and trauma.Keywords: mesenchymal stem cells, synovial membrane, myogenic differentiation
Procedia PDF Downloads 3062014 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region
Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski
Abstract:
Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.Keywords: lightning, urbanization, thunderstorms, climatology
Procedia PDF Downloads 762013 Correlation between Clinical Measurements of Static Foot Posture in Young Adults
Authors: Phornchanok Motantasut, Torkamol Hunsawong, Lugkana Mato, Wanida Donpunha
Abstract:
Identifying abnormal foot posture is important for prescribing appropriate management in patients with lower limb disorders and chronic non-specific low back pain. The normalized navicular height truncated (NNHt) and the foot posture index-6 (FPI-6) have been recommended as the common, simple, valid, and reliable static measures for clinical application. The NNHt is a single plane measure while the FPI-6 is a triple plane measure. At present, there is inadequate information about the correlation between the NNHt and the FPI-6 for categorizing foot posture that leads to a difficulty of choosing the appropriate assessment. Therefore, the present study aimed to determine the correlation between the NNHt and the FPI-6 measures in adult participants with asymptomatic feet. Methods: A cross-sectional descriptive study was conducted in 47 asymptomatic individuals (23 males and 24 females) aged 28.89 ± 7.67 years with body mass index 21.73 ± 1.76 kg/m². The right foot was measured twice by the experienced rater using the NNHt and the FPI-6. A sequence of the measures was randomly arranged for each participant with a 10-minute rest between the tests. The Pearson’s correlation coefficient (r) was used to determine the relationship between the measures. Results: The mean NNHt score was 0.23 ± 0.04 (ranged from 0.15 to 0.36) and the mean FPI-6 score was 4.42 ± 4.36 (ranged from -6 to +11). The Pearson’s correlation coefficient among the NNHt score and the FPI-6 score was -0.872 (p < 0.01). Conclusion: The present finding demonstrates the strong correlation between the NNHt and FPI-6 in adult feet and implies that both measures could be substituted for each other in identifying foot posture.Keywords: foot posture index, foot type, measurement of foot posture, navicular height
Procedia PDF Downloads 1382012 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic
Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova
Abstract:
Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification
Procedia PDF Downloads 1082011 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1012010 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 872009 Affective Ambivalence in Informal Caregivers of Older Adults in the Face of Loss and Grief Processes
Authors: Ivannys Cappas Perez
Abstract:
Worldwide the population of older adults is increasing. The World Health Organization (2022) estimates that it will double by 2050. Informal caregivers of older adults may experience contradictory impulses, overload, and multiple losses before the death of the older adult in their care. The general purpose of research was to identify and describe the affective ambivalence in informal caregivers of older adults in the face of loss and grief processes. The dimensions under study were affective ambivalence, informal caregivers of older adults, loss processes and the grieving process. A qualitative approach methodology and an empirical phenomenological design were used through Clark Moustakas' Multiangulation Model to describe, categorize and interpret, intentionality, temporality and intersubjectivity a problem never studied. Among the findings was the feminization of the role. Affective ambivalence is manifested through emotions, feelings, thoughts and behavior, including non-verbal language. The assumption of the role is highly influenced by an affective and moral factor, where a minimum of 35 hours per week are invested in without family and financial support. It was found that the participants experience objective and subjective overload. Furthermore, because of the role, they experienced loss of life, loss of aspects of themselves, loss of objects, emotional losses, and losses linked to development. On the other hand, up to two types of grief were found simultaneously. Finally, the presence of affective ambivalence was found with the same intensity 13 years after the loss of the older adult under care.Keywords: affective ambivalence, informal caregivers of older adults, loss processes, grief processes
Procedia PDF Downloads 362008 Grandparent's Psychologically Control, Parent's Well-Being and the Coparenting Practice among Vietnamese Families
Authors: Nam-Phuong T. Hoang, Divna Haslam, Matthew Sanders
Abstract:
Parenting psychological control (PPC) is a parenting manner of which intrusive tactics such as guilt induction, shaming or love withdrawal is adopted to manipulate the child's behavior, emotion and beliefs. PPC has been widely reported to be associated with both psychological dysfunction and low self-esteem in adolescents. Highly demanding and restrictive parenting was also found to related to high rate of risk behaviors, depression, anxiety and anti-social behaviors in adults who co-live with their parents. In many cultures like that of Asia, adults keep on co-live with their parents even after having their own families, and this is not an uncommon practice. Due to the culture obligation of family relationship and the filial piety, children are expected to stay with their parents to taking care of them when they get older, and the parents are also expected to co-live with their children in order to support them with grandchild care. As one become a grandparent, however, it does not means one stop being the parent to their own child. The effect of PPC if exist thus might continue to interfere one’s relationship with their adult children and also their adult child’s parenting. This study was designed to examine that effect of PPC on adults’ life as parents. Data was collected from 501 Vietnamese parents whose children between the age of 2 to 12 and having their parent living with them or taking care of the grandchild on daily basic. Findings show that grandparent psychological control (GPPC) is significantly associated with parent’s harsh parenting, parent’s well-being, and parent-grandparent coparenting relationship. Significantly, GPPC is the strongest predictor for the coparenting conflict between parent and grandparent.Keywords: parenting psychological control, grandparent, coparenting, well-being
Procedia PDF Downloads 2492007 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 1542006 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece
Authors: Eleni Giouli
Abstract:
Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.Keywords: adult skills, distance learning, education, lifelong learning
Procedia PDF Downloads 137