Search results for: soil texture prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5625

Search results for: soil texture prediction

1215 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study

Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan

Abstract:

Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.

Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation

Procedia PDF Downloads 230
1214 Application of Remote Sensing and GIS for Delineating Groundwater Potential Zones of Ariyalur, Southern Part of India

Authors: G. Gnanachandrasamy, Y. Zhou, S. Venkatramanan, T. Ramkumar, S. Wang

Abstract:

The natural resources of groundwater are the most precious resources around the world that balances are shrinking day by day. In connection, there is an urgency need for demarcation of potential groundwater zone. For these rationale integration of geographical information system (GIS) and remote sensing techniques (RS) for the hydrological studies have become a dramatic change in the field of hydrological research. These techniques are provided to locate the potential zone of groundwater. This research has been made to indent groundwater potential zone in Ariyalur of the southern part of India with help of GIS and remote sensing techniques. To identify the groundwater potential zone used by different thematic layers of geology, geomorphology, drainage, drainage density, lineaments, lineaments density, soil and slope with inverse distance weighting (IDW) methods. From the overall result reveals that the potential zone of groundwater in the study area classified into five classes named as very good (12.18 %), good (22.74 %), moderate (32.28 %), poor (27.7 %) and very poor (5.08 %). This technique suggested that very good potential zone of groundwater occurred in patches of northern and central parts of Jayamkondam, Andimadam and Palur regions in Ariyalur district. The result exhibited that inverse distance weighting method offered in this research is an effective tool for interpreting groundwater potential zones for suitable development and management of groundwater resources in different hydrogeological environments.

Keywords: GIS, groundwater potential zone, hydrology, remote sensing

Procedia PDF Downloads 208
1213 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 70
1212 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 254
1211 A Cephalometric Superimposition of a Skeletal Class III Orthognathic Patient on Nasion-Sella Line

Authors: Albert Suryaprawira

Abstract:

The Nasion-Sella Line (NSL) has been used for several years as a reference line in longitudinal growth study. Therefore this line is considered to be stable not only to evaluate treatment outcome and to predict relapse possibility but also to manage prognosis. This is a radiographic superimposition of an adult male aged 19 years who complained of difficulty in aesthetic, talking and chewing. Patient has a midface hypoplasia profile (concave). He was diagnosed to have a severe Skeletal Class III with Class III malocclusion, increased lower vertical height, and an anterior open bite. A pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. A panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, a pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, a post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition using NSL as a reference line between those radiographs was performed to analyse the outcome. It is important to describe the amount of hard and soft tissue movement and to predict the possibility of relapse after the surgery. The patient also needs to understand all the surgical plan, outcome and relapse prevention. The surgical management included maxillary impaction and advancement of Le Fort I osteotomy. The evaluation using NSL as a reference was a very useful method in determining the outcome and prognosis.

Keywords: Nasion-Sella Line, midface hypoplasia, Le Fort 1, maxillary advancement

Procedia PDF Downloads 147
1210 External Store Safe Separation Evaluation Process Implementing CFD and MIL-HDBK-1763

Authors: Thien Bach Nguyen, Nhu-Van Nguyen, Phi-Minh Nguyen, Minh Hien Dao

Abstract:

The external store safe separation evaluation process implementing CFD and MIL-HDBK-1763 is proposed to support the evaluation and compliance of the external store safe separation with the extensive using CFD and the criteria from MIL-HDBK-1763. The criteria of safe separation are researched and investigated for the various standards and handbooks such as MIL-HDBK-1763, MIL-HDBK-244A, AGARD-AG-202 and AGARD-AG-300 to acquire the appropriate and tailored values and limits for the typical applications of external carriages and aircraft fighters. The CFD and 6DOF simulations are extensively used in ANSYS 2023 R1 Software for verification and validation of moving unstructured meshes and solvers by calibrating the position, aerodynamic forces and moments of the existing air-to-ground missile models. The verified CFD and 6DoF simulation separation process is applied and implemented for the investigation of the typical munition separation phenomena and compliance with the tailored requirements of MIL-HDBK-1763. The prediction of munition trajectory parameters under aircraft aerodynamics interference and specified rack unit consideration after munition separation is provided and complied with the tailored requirements to support the safe separation evaluation of improved and newly external store munition before the flight test performed. The proposed process demonstrates the effectiveness and reliability in providing the understanding of the complicated store separation and the reduction of flight test sorties during the improved and new munition development projects by extensively using the CFD and tailoring the existing standards.

Keywords: external store separation, MIL-HDBK-1763, CFD, moving meshes, flight test data, munition.

Procedia PDF Downloads 32
1209 Antioxidant Enzymes and Crude Mitochondria ATPases in the Radicle of Germinating Bean (Vigna unguiculata) Exposed to Different Concentrations of Crude Oil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study examined the effect of Bonny Light whole crude oil (WC) and its water soluble fraction (WSF) on the activities of antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) and crude mitochondria ATPases in the radicle of germinating bean (Vigna unguiculata). The percentage germination, level of lipid peroxidation, antioxidant enzyme, and mitochondria Ca2+ and Mg2+ ATPase activities were measured in the radicle of bean after 7, 14, and 21 days post germination. Viable bean seeds were planted in soils contaminated with 10ml, 25ml, and 50ml of whole crude oil (WC) and its water soluble fraction (WSF) to obtain 2, 5, and 10% v/w crude oil contamination. There was dose dependent reduction of the number of bean seeds that germinated in the contaminated soils compared with control (p<0.001). The activities of the antioxidant enzymes, as well as, adenosine triphosphatase enzymes, were also significantly (p<0.001) altered in the radicle of the plants grown in contaminated soil compared with the control. Generally, the level of lipid peroxidation was highest after 21 days post germination when compared with control. Stress to germinating bean caused by Bonny Light crude oil or its water soluble fraction resulted in adaptive changes in crude mitochondria ATPases in the radicle.

Keywords: antioxidant enzymes, bonny light crude oil, radicle, mitochondria ATPases

Procedia PDF Downloads 308
1208 Combined Aplication of Indigenous Pseudomonas fluorescens and the AM Fungi as the Potential Biocontrol Agents of Banana Fusarium wilt

Authors: Eri Sulyanti, Trimurti Habazar, Eti Farda Husen, Abdi Dharma, Nasril Nasir

Abstract:

In this study, combination of some biocontrol agents with different mechanisms was an alternative to improve the effectiveness of the biological control agents. Single and combined applications of indigenous Pseudomonas fluorescens and Arbuscular Mychorrhizae Fungi (AM Fungi) isolates were tested to induce the resistance on susceptible Cavendish banana against F.oxysporum f. sp. cubense race 4 under greenhouse conditions. These isolates originally isolated from healthy banana rhizosphere at endemic Fusarium wilt areas in the centre of production banana in West Sumatra. These researches were conducted with Randomized Block Design with 16 treatments and 10 replications. The treatments were three indigenous isolates of Pseudomonas fluorescens (Par1-Cv, Par4-Rj1, Par2-Jt1) and 3 isolates of AM Fungi (Gl1BuA4, Gl2BuA6, and Gl1KeP3. The biocontrol agents were applied as single agents and combination two of them. This study demonstrated that the application of combination biocontrol organisms Pseudomonas fluorescens and AM Fungi provided were more effective than single application. The combination of Par1-Cv and Gl1BuA4 isolates was the most effective to control Fusarium wilt and followed by the combination of Par1-Cv and Gl2BuA6 and Par2-Jt1 and Gl1P3.

Keywords: pseudomonad fluorescens (Pf), arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates, fusarium oxysporum f. sp. cubense, soil rhizosphere

Procedia PDF Downloads 311
1207 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method

Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati

Abstract:

An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.

Keywords: cell-centered finite volume method, coupled solver, exponential differencing scheme (EDS), physical influence scheme (PIS), pressure weighted interpolation method (PWIM), skew upwind differencing scheme (SUDS)

Procedia PDF Downloads 286
1206 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro

Authors: Rafael Zhindon Almeida

Abstract:

Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.

Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models

Procedia PDF Downloads 106
1205 Exploitation of Endophytes for the Management of Plant Pathogens

Authors: N. P. Eswara Reddy, S. Thahir Basha

Abstract:

Here, we report the success stories of potential leaf, seed and root endophytes against soil borne as well as foliar plant pathogens which are nutritionally adequate and safe for consumption. Endophytes are the microorganisms that reside asymptomatically in the tissues of higher plants are a robust source of potential biocontrol agents and it is presumed that the survival ability of endophytes may be better when compared to phylloplane microflora. Of all the 68 putative leaf endophytes, the endophytes viz., EB9 (100%), and EB35 (100%) which were superior in controlling Colletotrichum gloeosporioides causing mango anthracnose were identified as Brevundimonas bullata (EB09) and Bacillus thuringiensis (EB35) and further delayed in ripening of mango fruits up to 21 days. As a part, the seed endophyte GSE-4 was identified as Archoromobacter spp. against Sclerotium rolfsii causing stem rot of groundnut and the root endophyte REB-8 against Rhizoctonia bataticola causing dry root rot of chickpea was identified as Bacillus subtilis. Both recorded least percent disease incidence (PDI) and increased plant growth promotion, respectively. Further, the novel Bacillus subtilis (SEB-2) against Macrophomina pahseolina causing charcoal rot of sunflower provides an ample scope for exploring the endophytes at large scale. The talc-based formulations of these endophytes developed can be commercialized after toxicological studies. At the bottom line these unexplored endophytes are the need of the hour against aggressive plant pathogens and to maintain the quality and abundance of food and feed and also to fetch marginal economy to the farmers will be discussed.

Keywords: endophytes, plant pathogens, commercialization, abundance of food

Procedia PDF Downloads 421
1204 Effect of Naameh Landfill (Lebanon) on Groundwater Quality of the Surrounding Area

Authors: Rana Sawaya, Jalal Halwani, Isam Bashour, Nada Nehme

Abstract:

Mismanagement of municipal solid wastes in Lebanon might lead to serious environmental problems, especially that a big portion of mixed wastes including putrescible is transferred to Naameh landfill. One of the consequences of municipal solid waste deposition is the production of landfill leachate, which if unproperly treated will threaten the main crucial matrices such as soil, water, and air. The main aim of this one of a kind study is to assess the risk posed to groundwater as a result of leachate infiltration on off-site wells especially after stoppage of Naameh landfill's operation end of the year 2016 and initiation of the capping process which is still ongoing and will be finalized in December 2019. For this purpose, nine representative points around the landfill were selected to undergo physicochemical and microbial analysis on a seasonal basis (every three months). The study extended from the year 2014 until the end of the year 2016 (closure of Naameh landfill). The preliminary data obtained are statistically analyzed using the Statistical Package for Social Sciences (SPSS) and was found in conformity with international and Lebanese norms. Thus, the study will be extended an additional year, especially after the finalization of capping and the results obtained, will enable us to propose new techniques and tools (treatment systems) in water resources management depending on the direction of its usage (domestic, irrigation, drinking).

Keywords: contamination, groundwater, leachate, Lebanon, solid waste

Procedia PDF Downloads 135
1203 Optimal Geothermal Borehole Design Guided By Dynamic Modeling

Authors: Hongshan Guo

Abstract:

Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.

Keywords: geothermal borehole, MPC, dynamic modeling, simulation

Procedia PDF Downloads 288
1202 Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration

Authors: F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang

Abstract:

The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced.

Keywords: information entropy, radiation pressure acceleration, Rayleigh-Taylor instability, transverse instability

Procedia PDF Downloads 348
1201 Identification of Text Domains and Register Variation through the Analysis of Lexical Distribution in a Bangla Mass Media Text Corpus

Authors: Mahul Bhattacharyya, Niladri Sekhar Dash

Abstract:

The present research paper is an experimental attempt to investigate the nature of variation in the register in three major text domains, namely, social, cultural, and political texts collected from the corpus of Bangla printed mass media texts. This present study uses a corpus of a moderate amount of Bangla mass media text that contains nearly one million words collected from different media sources like newspapers, magazines, advertisements, periodicals, etc. The analysis of corpus data reveals that each text has certain lexical properties that not only control their identity but also mark their uniqueness across the domains. At first, the subject domains of the texts are classified into two parameters namely, ‘Genre' and 'Text Type'. Next, some empirical investigations are made to understand how the domains vary from each other in terms of lexical properties like both function and content words. Here the method of comparative-cum-contrastive matching of lexical load across domains is invoked through word frequency count to track how domain-specific words and terms may be marked as decisive indicators in the act of specifying the textual contexts and subject domains. The study shows that the common lexical stock that percolates across all text domains are quite dicey in nature as their lexicological identity does not have any bearing in the act of specifying subject domains. Therefore, it becomes necessary for language users to anchor upon certain domain-specific lexical items to recognize a text that belongs to a specific text domain. The eventual findings of this study confirm that texts belonging to different subject domains in Bangla news text corpus clearly differ on the parameters of lexical load, lexical choice, lexical clustering, lexical collocation. In fact, based on these parameters, along with some statistical calculations, it is possible to classify mass media texts into different types to mark their relation with regard to the domains they should actually belong. The advantage of this analysis lies in the proper identification of the linguistic factors which will give language users a better insight into the method they employ in text comprehension, as well as construct a systemic frame for designing text identification strategy for language learners. The availability of huge amount of Bangla media text data is useful for achieving accurate conclusions with a certain amount of reliability and authenticity. This kind of corpus-based analysis is quite relevant for a resource-poor language like Bangla, as no attempt has ever been made to understand how the structure and texture of Bangla mass media texts vary due to certain linguistic and extra-linguistic constraints that are actively operational to specific text domains. Since mass media language is assumed to be the most 'recent representation' of the actual use of the language, this study is expected to show how the Bangla news texts reflect the thoughts of the society and how they leave a strong impact on the thought process of the speech community.

Keywords: Bangla, corpus, discourse, domains, lexical choice, mass media, register, variation

Procedia PDF Downloads 176
1200 Localization of Pyrolysis and Burning of Ground Forest Fires

Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov

Abstract:

This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.

Keywords: forest fire, barrier water lines, pyrolysis front, flame front

Procedia PDF Downloads 140
1199 Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise

Authors: Aïssa Rezzoug

Abstract:

This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.

Keywords: flood, groundwater rise, Jeddah, tide

Procedia PDF Downloads 122
1198 The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 322
1197 Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing

Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta

Abstract:

Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis.

Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay

Procedia PDF Downloads 59
1196 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 103
1195 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search

Authors: Wenbo Wang, Yi-Fang Brook Wu

Abstract:

The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.

Keywords: fact checking, claim verification, deep learning, natural language processing

Procedia PDF Downloads 64
1194 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 69
1193 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: chromosomes, cropping, genetic algorithm, genes

Procedia PDF Downloads 431
1192 Innovative Housing Construction Technologies in Slum Upgrading

Authors: Edmund M. Muthigani

Abstract:

Innovation in the construction industry has been characterized by new products and processes especially in slum upgrading. The need for low cost housing has motivated stakeholders to think outside the box in coming up with solutions. This paper explored innovative construction technologies that have been used in slum upgrading. The main objectives of the paper was to examine innovations in the construction housing sector and to show how incremental derived demand for decent housing has led to adoption of innovative technologies and materials. Systematic literature review was used to review studies on innovative construction technologies in slum upgrading. The review revealed slow process of innovations in the construction industry due to risk aversion by firms and the hesitance to adopt by firms and individuals. Low profit margins in low cost housing and lack of sufficient political support remain the major hurdles to innovative techniques adoption that can actualize right to decent housing. Conventional construction materials have remained unaffordable to many people and this has negated them decent housing. This has necessitated exploration of innovative materials to realize low cost housing. Stabilized soil blocks and sisal-cement roofing blocks are some of the innovative construction materials that have been utilized in slum upgrading. These innovative materials have not only lowered the cost of production of building elements but also eased costs of transport as the raw materials to produce them are readily available in or within the slum sites. Despite their shortcomings in durability and compressive strength, they have proved worthwhile in slum upgrading. Production of innovative construction materials and use of innovative techniques in slum upgrading also provided employment to the locals.

Keywords: construction, housing, innovation, slum, technology

Procedia PDF Downloads 216
1191 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 214
1190 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement

Procedia PDF Downloads 171
1189 Evaluation of Ceres Wheat and Rice Model for Climatic Conditions in Haryana, India

Authors: Mamta Rana, K. K. Singh, Nisha Kumari

Abstract:

The simulation models with its soil-weather-plant atmosphere interacting system are important tools for assessing the crops in changing climate conditions. The CERES-Wheat & Rice vs. 4.6 DSSAT was calibrated and evaluated for one of the major producers of wheat and rice state- Haryana, India. The simulation runs were made under irrigated conditions and three fertilizer applications dose of N-P-K to estimate crop yield and other growth parameters along with the phenological development of the crop. The genetic coefficients derived by iteratively manipulating the relevant coefficients that characterize the phenological process of wheat and rice crop to the best fit match between the simulated and observed anthesis, physological maturity and final grain yield. The model validated by plotting the simulated and remote sensing derived LAI. LAI product from remote sensing provides the edge of spatial, timely and accurate assessment of crop. For validating the yield and yield components, the error percentage between the observed and simulated data was calculated. The analysis shows that the model can be used to simulate crop yield and yield components for wheat and rice cultivar under different management practices. During the validation, the error percentage was less than 10%, indicating the utility of the calibrated model for climate risk assessment in the selected region.

Keywords: simulation model, CERES-wheat and rice model, crop yield, genetic coefficient

Procedia PDF Downloads 307
1188 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 82
1187 Rheological Characterization of Polysaccharide Extracted from Camelina Meal as a New Source of Thickening Agent

Authors: Mohammad Anvari, Helen S. Joyner (Melito)

Abstract:

Camelina sativa (L.) Crantz is an oilseed crop currently used for the production of biofuels. However, the low price of diesel and gasoline has made camelina an unprofitable crop for farmers, leading to declining camelina production in the US. Hence, the ability to utilize camelina byproduct (defatted meal) after oil extraction would be a pivotal factor for promoting the economic value of the plant. Camelina defatted meal is rich in proteins and polysaccharides. The great diversity in the polysaccharide structural features provides a unique opportunity for use in food formulations as thickeners, gelling agents, emulsifiers, and stabilizers. There is currently a great degree of interest in the study of novel plant polysaccharides, as they can be derived from readily accessible sources and have potential application in a wide range of food formulations. However, there are no published studies on the polysaccharide extracted from camelina meal, and its potential industrial applications remain largely underexploited. Rheological properties are a key functional feature of polysaccharides and are highly dependent on the material composition and molecular structure. Therefore, the objective of this study was to evaluate the rheological properties of the polysaccharide extracted from camelina meal at different conditions to obtain insight on the molecular characteristics of the polysaccharide. Flow and dynamic mechanical behaviors were determined under different temperatures (5-50°C) and concentrations (1-6% w/v). Additionally, the zeta potential of the polysaccharide dispersion was measured at different pHs (2-11) and a biopolymer concentration of 0.05% (w/v). Shear rate sweep data revealed that the camelina polysaccharide displayed shear thinning (pseudoplastic) behavior, which is typical of polymer systems. The polysaccharide dispersion (1% w/v) showed no significant changes in viscosity with temperature, which makes it a promising ingredient in products requiring texture stability over a range of temperatures. However, the viscosity increased significantly with increased concentration, indicating that camelina polysaccharide can be used in food products at different concentrations to produce a range of textures. Dynamic mechanical spectra showed similar trends. The temperature had little effect on viscoelastic moduli. However, moduli were strongly affected by concentration: samples exhibited concentrated solution behavior at low concentrations (1-2% w/v) and weak gel behavior at higher concentrations (4-6% w/v). These rheological properties can be used for designing and modeling of liquid and semisolid products. Zeta potential affects the intensity of molecular interactions and molecular conformation and can alter solubility, stability, and eventually, the functionality of the materials as their environment changes. In this study, the zeta potential value significantly decreased from 0.0 to -62.5 as pH increased from 2 to 11, indicating that pH may affect the functional properties of the polysaccharide. The results obtained in the current study showed that camelina polysaccharide has significant potential for application in various food systems and can be introduced as a novel anionic thickening agent with unique properties.

Keywords: Camelina meal, polysaccharide, rheology, zeta potential

Procedia PDF Downloads 246
1186 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys

Procedia PDF Downloads 147