Search results for: Gyro Orientation Measurement Unit (Gyro OMU)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5782

Search results for: Gyro Orientation Measurement Unit (Gyro OMU)

1372 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba

Authors: M. Shokry Rashwan

Abstract:

This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.

Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA

Procedia PDF Downloads 213
1371 Strategies for Improving and Sustaining Quality in Higher Education

Authors: Anshu Radha Aggarwal

Abstract:

Higher Education (HE) in the India has experienced a series of remarkable changes over the last fifteen years as successive governments have sought to make the sector more efficient and more accountable for investment of public funds. Rapid expansion in student numbers and pressures to widen Participation amongst non-traditional students are key challenges facing HE. Learning outcomes can act as a benchmark for assuring quality and efficiency in HE and they also enable universities to describe courses in an unambiguous way so as to demystify (and open up) education to a wider audience. This paper examines how learning outcomes are used in HE and evaluates the implications for curriculum design and student learning. There has been huge expansion in the field of higher education, both technical and non-technical, in India during the last two decades, and this trend is continuing. It is expected that another about 400 colleges and 300 universities will be created by the end of the 13th Plan Period. This has lead to many concerns about the quality of education and training of our students. Many studies have brought the issues ailing our curricula, delivery, monitoring and assessment. Govt. of India, (via MHRD, UGC, NBA,…) has initiated several steps to bring improvement in quality of higher education and training, such as National Skills Qualification Framework, making accreditation of institutions mandatory in order to receive Govt. grants, and so on. Moreover, Outcome-based Education and Training (OBET) has also been mandated and encouraged in the teaching/learning institutions. MHRD, UGC and NBAhas made accreditation of schools, colleges and universities mandatory w.e.f Jan 2014. Outcome-based Education and Training (OBET) approach is learner-centric, whereas the traditional approach has been teacher-centric. OBET is a process which involves the re-orientation/restructuring the curriculum, implementation, assessment/measurements of educational goals, and achievement of higher order learning, rather than merely clearing/passing the university examinations. OBET aims to bring about these desired changes within the students, by increasing knowledge, developing skills, influencing attitudes and creating social-connect mind-set. This approach has been adopted by several leading universities and institutions around the world in advanced countries. Objectives of this paper is to highlight the issues concerning quality in higher education and quality frameworks, to deliberate on the various education and training models, to explain the outcome-based education and assessment processes, to provide an understanding of the NAAC and outcome-based accreditation criteria and processes and to share best-practice outcomes-based accreditation system and process.

Keywords: learning outcomes, curriculum development, pedagogy, outcome based education

Procedia PDF Downloads 524
1370 The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ

Authors: Risdiana, D. Suhendar, S. Pratiwi, W. A. Somantri, T. Saragi

Abstract:

Superconductor is a promising material for future applications especially for energy saving because of their advantages properties such as zero electrical resistivity when they are cooled down to sufficiently low temperatures. However, the mechanism describing the role of physical properties in superconductor is far from being understood clearly, so that the application of this material for wider benefit in various industries is very limited. Most of superconductors are cuprate compounds, which has CuO2 as a conducting plane in their crystal structures. The study of physical properties through the partially substitution of impurity for Cu in superconducting cuprates has been one of great interests in relation to the mechanism of superconductivity. Different behaviors between the substitution of nonmagnetic impurity and magnetic impurity for Cu are observed. For examples, the superconductivity and Cu-spin fluctuations in the electron-doped system are suppressed through the substitution of magnetic Ni for Cu more markedly than through the substitution of nonmagnetic Zn for Cu, which is contrary to the result in the hole-doped system. Here, we reported the effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0.01, 0.02, and 0.05, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y. Some reasons for these results will be discussed.

Keywords: DC magnetic-susceptibility, electron mobility, Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ, normal state

Procedia PDF Downloads 348
1369 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 161
1368 Impact of Social Crisis on Property Market Performance and Evolving Strategy for Improved Property Transactions in Crisis Prone Environment: A Case Study of North Eastern Nigeria

Authors: Abdur Raheem, Ado Yakub

Abstract:

Urban violence in the form of ethnic and religious conflicts have been on the increase in many African cities in the recent years of which most of them are the result of intense and bitter competition for political power, the control of limited economic, social and environmental resources. In Nigeria, the emergence of the Boko Haram insurgency in most parts of the north eastern parts have ignited violence, bloodshed, refuge exodus and internal migration. Not only do the persistent attacks of the sect create widespread insecurity and fear, it has also stifled normal processes of trade and investments most especially real property investment which is acclaimed to accelerate the economic cycle, thus the need to evolve strategies for an improved property market in such areas. This paper, therefore, examines the impact of these social crisis on effective and efficient utilization of real properties as a resource towards the development of the economy, using a descriptive analysis approach where particular emphasis was based on trends in residential housing values; volume of estimated property transactions and real estate investment decisions by affected individuals. Findings indicate that social crisis in the affected areas have been a clog on the wheels of property development and investment as properties worth hundreds of millions have been destroyed thereby having great impact on property values. Based on these findings, recommendations were made to include the need to strategically continue investing in property during such times, the need for Nigerian government to establish an active conflict monitoring and management unit for prompt response, encourage community and neighbourhood policing to ameliorate security challenges in Nigeria.

Keywords: social crisis, property market, economy, resources, north-eastern Nigeria

Procedia PDF Downloads 322
1367 Study of the Influence of Non Genetic Factors Affecting over Nutrition Students in Ayutthaya Province, Thailand

Authors: Thananyada Buapian

Abstract:

Overnutrition is emerging as a morbid disease in developing and Westernized countries. Because of its comorbidity diseases, it is cost-effective to prevent and manage this disease earlier. In Thailand, this alarming disease has long been studied, but the prevalence is still higher than that in the past. Physicians should recognize it well and have a definite direction to face and combat this dangerous disease. Rapid changes in the tremendous figure of overnutrition students indicate that genetic factors are not the primary determinants since human genes have remained unchanged for a century. This study aims to assess the prevalence of overnutrition students and to investigate the non-genetic factors affecting over nutrition students. A cross-sectional school-based survey was conducted. A two-stage sampling was adopted. Respondents included 1,850 students in grades 4 to 6 in Ayutthaya Province. An anthropometric measurement and questionnaire were developed. Childhood over nutrition was defined as a weight-for-height Z-score above +2SD of NCHS/WHO references. About thirty three percent of the children were over nutrition in Ayutthaya province. Stepwise multiple logistic regression analysis showed that 8 statistically significant non genetic factors explain the variation of childhood over nutrition by 18 percent. Sex is the prime factor to explain the variation of childhood over nutrition, followed by duration of light physical activities, duration of moderate physical activities, having been breastfed, the presence of a healthy role model of the caregiver, number of siblings, birth order, and occupation of the caregiver, respectively. Non genetic factors, especially the subjects’ demographic and physical activities, as well as the caregivers’ background and family environment, should be considered in viable approach to remedy this health imbalance in children.

Keywords: non genetic factors, non-genetic, over nutrition, over nutrition students

Procedia PDF Downloads 272
1366 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 97
1365 Sensor Registration in Multi-Static Sonar Fusion Detection

Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin

Abstract:

In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.

Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem

Procedia PDF Downloads 169
1364 Contribution of NLRP3 Inflammasome to the Protective Effect of 5,14-HEDGE, A 20-HETE Mimetic, against LPS-Induced Septic Shock in Rats

Authors: Bahar Tunctan, Sefika Pinar Kucukkavruk, Meryem Temiz-Resitoglu, Demet Sinem Guden, Ayse Nihal Sari, Seyhan Sahan-Firat, Mahesh P. Paudyal, John R. Falck, Kafait U. Malik

Abstract:

We hypothesized that 20-hydroxyeicosatetraenoic acid (20-HETE) mimetics such as N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE) may be beneficial for preventing mortality due to inflammation induced by lipopolysaccharide (LPS). This study aims to assess the effect of 5,14-HEDGE on the LPS-induced changes in nucleotide binding domain and leucine-rich repeat protein 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)/pro-caspase-1 inflammasome. Rats were injected with saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. 5,14-HEDGE (30 mg/kg) was administered to rats 1 h after injection of saline or LPS. The rats were sacrificed 4 h after saline or LPS injection and kidney, heart, thoracic aorta, and superior mesenteric artery were isolated for measurement of caspase-1/11 p20, NLRP3, ASC, and β-actin proteins as well as interleukin-1β (IL-1β) levels. Blood pressure decreased by 33 mmHg and heart rate increased by 63 bpm in the LPS-treated rats. In the LPS-treated rats, tissue protein expression of caspase-1/11 p20, NLRP3, and ASC in addition to IL-1β levels were increased. 5,14-HEDGE prevented the LPS-induced changes. Our findings suggest that inhibition of renal, cardiac, and vascular formation/activity of NLRP3/ASC/pro-caspase-1 inflammasome involved in the protective effect of 5,14-HEDGE on LPS-induced septic shock in rats. This work was financially supported by the Mersin University (2015-AP3-1343) and USPHS NIH (PO1 HL034300).

Keywords: 5, 14-HEDGE, lipopolysaccharide, NLRP3, inflammasome, septic shock

Procedia PDF Downloads 295
1363 Inhibitory Attributes of Saudi Honey Against Hospital Acquired Methicillin Resistant Staph. aureus (MRSA) and Acinetobacter baumannii

Authors: Al-Hindi Rashad, Alotibi Ibrahim

Abstract:

The aim of this study was to examine the antibacterial activity of the peroxide components of some locally produced honeys: Toran, Zaitoon (Olive), Shaflah, Saha, Jizan, Rabea Aja, Fakhira, Sedr Aljanoob, Tenhat, Karath and Bareq against two of the drug resistant bacteria; i.e., methicillin resistant Staph. aureus (MRSA, ATCC 43330) and Acinetobacter baumannii. Measurement of the antibacterial activity of honey samples by using the agar well diffusion method was adopted as follows: by using turbidity standard McFaraland 0.5, suspensions of bacterial strains MRSA ATCC 43330 and Acinetobacter baumannii were prepared. By the spreading plate method, 100 µl of the suspension was inoculated onto Muller-Hinton agar medium. On the inoculated agar medium, five wells were made using a sterile cork borer (diameter 5 mm).100 µl of honey dilutions (10%, 30%, 50%, 70% and 100%) were used. The study indicated that the highly effective activity was in some local honey samples such as Toran honey against MRSA, and Shafalah honey against MRSA and Acinetobacter baumannii which showed bactericidal effects at concentrations 70 % to 100 % as well. The majority of local honey samples recorded bacteriostatic effects on MRSA and Acinetobacter baumannii at consternations 50 % and above. In conclusion this investigation indicated that in regard to the majority inhibitory effect on microorganisms, the existing of H2O2 in honey samples together with phenolic content greatly provide a strong antibacterial activities among different types of honey, because in some previous studies the H2O2 content of honey interacts with phenolic content and showed better inhibitory effect than in absent of H2O2.

Keywords: antibacterial activity, honey, hospital acquired, Saudi Arabia

Procedia PDF Downloads 492
1362 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 185
1361 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis

Authors: Ganbat Danaa, Chuluundorj Puntsag

Abstract:

The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.

Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability

Procedia PDF Downloads 67
1360 The Human Right to a Safe, Clean and Healthy Environment in Corporate Social Responsibility's Strategies: An Approach to Understanding Mexico's Mining Sector

Authors: Thalia Viveros-Uehara

Abstract:

The virtues of Corporate Social Responsibility (CSR) are explored widely in the academic literature. However, few studies address its link to human rights, per se; specifically, the right to a safe, clean and healthy environment. Fewer still are the research works in this area that relate to developing countries, where a number of areas are biodiversity hotspots. In Mexico, despite the rise and evolution of CSR schemes, grave episodes of pollution persist, especially those caused by the mining industry. These cases set up the question of the correspondence between the current CSR practices of mining companies in the country and their responsibility to respect the right to a safe, clean and healthy environment. The present study approaches precisely such a bridge, which until now has not been fully tackled in light of Mexico's 2011 constitutional human rights amendment and the United Nation's Guiding Principles on Business and Human Rights (UN Guiding Principles), adopted by the Human Rights Council in 2011. To that aim, it initially presents a contextual framework; it then explores qualitatively the adoption of human rights’ language in the CSR strategies of the three main mining companies in Mexico, and finally, it examines their standing with respect to the UN Guiding Principles. The results reveal that human rights are included in the RSE strategies of the analysed businesses, at least at the rhetoric level; however, they do not embrace the right to a safe, clean and healthy environment as such. Moreover, we conclude that despite the finding that corporations publicly express their commitment to respect human rights, some operational weaknesses that hamper the exercise of such responsibility persist; for example, the systematic lack of human rights impact assessments per mining unit, the denial of actual and publicly-known negative episodes on the environment linked directly to their operations, and the absence of effective mechanisms to remediate adverse impacts.

Keywords: corporate social responsibility, environmental impacts, human rights, right to a safe, clean and healthy environment, mining industry

Procedia PDF Downloads 329
1359 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 161
1358 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 160
1357 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders

Authors: Brad Stappenbelt

Abstract:

The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.

Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy

Procedia PDF Downloads 146
1356 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach

Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie

Abstract:

The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.

Keywords: ductile failure, cohesive model, GTN model, numerical simulation

Procedia PDF Downloads 149
1355 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System

Authors: Jacob T. Liberty, Wilfred I. Okonkwo

Abstract:

The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.

Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage

Procedia PDF Downloads 307
1354 Community Singing, a Pathway to Social Capital: A Cross-Cultural Comparative Assessment of the Benefits of Singing Communities in South Tyrol and South Africa

Authors: Johannes Van Der Sandt

Abstract:

This quantitative study investigates different approaches of community singing, in building social capital in South Tyrol, Italy, and South Africa. The impact of the various approaches of community singing is examined by investigating the main components of social capital, namely, social norms and obligations, social networks and associations and trust, and how these components are manifested in two different societies. The research is based on the premise that community singing is an important agent for the development of social capital. It seeks to establish in what form community singing can best enhance the social capital of communities in South Tyrol that are undergoing significant changes in the ways in which social capital is generally being generated on account of demographic, economic, technological and cultural changes. South Tyrol and South Africa share some similarities in the management of their multi-cultural composition. By comparing the different approaches to community singing in two multi-cultural societies, it is hoped to gain insight, and an understanding of the connections between culture, social cohesion, identity and therefore to be able to add to the understanding of the building of social capital through community singing. Participation in music contributes to the growth of social capital in communities, this is amongst others the finding of an ever increasing amount of research. In sociological discourses on social capital generation, the dimension of community music making is recognized as an important factor. Trust and mutual cooperation are products when people listen to each other, when they work or play together, and when they care about each other. This is how social capital develops as an important shared resource. Scholars of Community Music still do not agree on a short and concise definition for Community Music. For the purpose of this research, the author concurs with the definition of Community Music of the Community Music Activity commission of the International Society of Music Education as having the following characteristics: decentralization, accessibility, equal opportunity, and active participation in music-making. These principles are social and political ones, and there can be no doubt that community music activity is more than a purely musical one. Trust, shared norms and values civic and community involvement, networks, knowledge resources, contact with families and friends, and fellowship are key components in fostering group cohesion and social capital development in a community. The research will show that there is no better place for these factors to flourish than in a community singing group. Through this comparative study, it is the aim to identify, analyze and explain similarities and differences in approaches to community across societies that find themselves in a rapid transition from traditional cultural to global cultural habits characterized by a plurality of orientation points, with the aim to gain a better understanding of the various directions South Tyrolean singing culture can take.

Keywords: community music, multicultural, singing, social capital

Procedia PDF Downloads 283
1353 Functional Vision of Older People in Galician Nursing Homes

Authors: C. Vázquez, L. M. Gigirey, C. P. del Oro, S. Seoane

Abstract:

Early detection of visual problems plays a key role in the aging process. However, although vision problems are common among older people, the percentage of aging people who perform regular optometric exams is low. In fact, uncorrected refractive errors are one of the main causes of visual impairment in this group of the population. Purpose: To evaluate functional vision of older residents in order to show the urgent need of visual screening programs in Galician nursing homes. Methodology: We examined 364 older adults aged 65 years and over. To measure vision of the daily living, we tested distance and near presenting visual acuity (binocular visual acuity with habitual correction if warn, directional E-Snellen) Presenting near vision was tested at the usual working distance. We defined visual impairment (distance and near) as a presenting visual acuity less than 0.3. Exclusion criteria included immobilized residents unable to reach the USC Dual Sensory Loss Unit for visual screening. Association between categorical variables was performed using chi-square tests. We used Pearson and Spearman correlation tests and the variance analysis to determine differences between groups of interest. Results: 23,1% of participants have visual impairment for distance vision and 16,4% for near vision. The percentage of residents with far and near visual impairment reaches 8,2%. As expected, prevalence of visual impairment increases with age. No differences exist with regard to the level of functional vision between gender. Differences exist between age group respect to distance vision, but not in case of near vision. Conclusion: prevalence of visual impairment is high among the older people tested in this pilot study. This means a high percentage of older people with limitations in their daily life activities. It is necessary to develop an effective vision screening program for early detection of vision problems in Galician nursing homes.

Keywords: functional vision, elders, aging, nursing homes

Procedia PDF Downloads 408
1352 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics

Procedia PDF Downloads 321
1351 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
1350 Producing of Amorphous-Nanocrystalline Composite Powders

Authors: K. Tomolya, D. Janovszky, A. Sycheva, M. Sveda, A. Roosz

Abstract:

CuZrAl amorphous alloys have attracted high interest due to unique physical and mechanical properties, which can be enhanced by adding of Ni and Ti elements. It is known that this properties can be enhanced by crystallization of amorphous alloys creating nanocrystallines in the matrix. The present work intends to produce nanosized crystalline parti-cle reinforced amorphous matrix composite powders by crystallization of amorphous powders. As the first step the amorphous powders were synthe-tized by ball-milling of crystalline powders. (Cu49Zr45Al6) 80Ni10Ti10 and (Cu49Zr44Al7) 80Ni10Ti10 (at%) alloys were ball-milled for 12 hours in order to reach the fully amorphous structure. The impact en-ergy of the balls during milling causes the change of the structure in the powders. Scanning electron microscopical (SEM) images shows that the phases mixed first and then changed into a fully amorphous matrix. Furthermore, nanosized particles in the amorphous matrix were crystallized by heat treatment of the amorphous powders that was confirmed by TEM measurement. It was of importance to define the tem-perature when the amorphous phase starts to crystal-lize. Amorphous alloys have a special heating curve and characteristic temperatures, which can be meas-ured by differential scanning calorimetry (DSC). A typical DSC curve of an amorphous alloy exhibits an endothermic event characteristic of the equilibrium glass transition (Tg) and a distinct undercooled liquid region, followed by one or two exothermic events corresponding to crystallization processes (Tp). After measuring the DSC traces of the amorphous powders, the annealing temperatures should be determined between Tx and Tp. In our experiments several temperatures from the annealing temperature range were selected and de-pendency of crystallized nanoparticles fraction on their hardness was investigated.

Keywords: amorphous structure, composite, mechanical milling, powder, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electronmocroscopy (TEM)

Procedia PDF Downloads 450
1349 An Investigation of Item Bias in Free Boarding and Scholarship Examination in Turkey

Authors: Yeşim Özer Özkan, Fatma Büşra Fincan

Abstract:

Biased sample is a regression of an observation, design process and all of the specifications lead to tendency of a side or the situation of leaving from the objectivity. It is expected that, test items are answered by the students who come from different social groups and the same ability not to be different from each other. The importance of the expectation increases especially during student selection and placement examinations. For example, all of the test items should not be beneficial for just a male or female group. The aim of the research is an investigation of item bias whether or not the exam included in 2014 free boarding and scholarship examination in terms of gender variable. Data which belong to 5th, 6th, and 7th grade the secondary education students were obtained by the General Directorate of Measurement, Evaluation and Examination Services in Turkey. 20% students were selected randomly within 192090 students. Based on 38418 students’ exam paper were examined for determination item bias. Winsteps 3.8.1 package program was used to determine bias in analysis of data, according to Rasch Model in respect to gender variable. Mathematics items tests were examined in terms of gender bias. Firstly, confirmatory factor analysis was applied twenty-five math questions. After that, NFI, TLI, CFI, IFI, RFI, GFI, RMSEA, and SRMR were examined in order to be validity and values of goodness of fit. Modification index values of confirmatory factor analysis were examined and then some of the items were omitted because these items gave an error in terms of model conformity and conceptual. The analysis shows that in 2014 free boarding and scholarship examination exam does not include bias. This is an indication of the gender of the examination to be made in favor of or against different groups of students.

Keywords: gender, item bias, placement test, Rasch model

Procedia PDF Downloads 230
1348 Antenatal Factors Associated with Early Onset Neonatal Sepsis among Neonates 0-7 Days at Fort Portal Regional Referral Hospital

Authors: Moses Balina, Archbald Bahizi

Abstract:

Introduction: Early onset neonatal sepsis is a systemic infection in a newborn baby during the first week after birth and contributes to 50% of neonatal deaths each year. Risk factors for early onset neonatal sepsis, which can be maternal, health care provider, or health care facility associated, can be prevented with access to quality antenatal care. Objective: The objective of the study was to assess early onset neonatal sepsis and antenatal factors associated with Fort Portal Regional Referral Hospital. Methodology: A cross sectional study design was used. The study involved 60 respondents who were mothers of breastfeeding neonates being treated for early onset neonatal sepsis at Fort Portal Regional Referral Hospital neonatal intensive care unit. Simple random sampling was used to select study participants. Data were collected using questionnaires, entered in Stata 16, and analysed using logistic regression. Results: The prevalence of early onset neonatal sepsis at Fort Portal Regional Referral Hospital was 25%. Multivariate analysis revealed that institutional factors were the only antenatal factors found to be significantly associated with early onset neonatal sepsis at Fort Portal Regional Referral Hospital (p < 0.01). Bivariate analysis revealed that attending antenatal care at a health centre III or IV instead of a hospital (p = 0.011) and attending antenatal care in health care facilities with no laboratory investigations (p = 0.048) were risk factors for early onset neonatal sepsis in the newborn at Fort Portal Regional Referral Hospital. Conclusion: Antenatal factors were associated with early onset neonatal sepsis, and health care facility factors like lower level health centre and unavailability of quality laboratory investigations to pregnant women contributed to early onset neonatal sepsis in the newborn. Mentorships, equipping/stocking laboratories, and improving staffing levels were necessary to reduce early onset neonatal sepsis.

Keywords: antenatal factors, early onset neonatal sepsis, neonates 0-7 days, fort portal regional referral hospital

Procedia PDF Downloads 102
1347 Functional Vision of Older People with Cognitive Impairment Living in Galician Nursing Homes

Authors: C. Vázquez, L. M. Gigirey, C. P. del Oro, S. Seoane

Abstract:

Poor vision is common among older people, and several studies show connections between visual impairment and cognitive function. 15 older adult live in Galician Government nursing homes, and cognitive decline is one of the main reasons of admission. Objectives: (1) To evaluate functional far and near vision of older people with cognitive impairment. (2) To determine connections between visual and cognitive state of “our” residents. Methodology: A total of 364 older adults (aged 65 years or more) underwent a visual and cognitive screening. We tested presenting visual acuity (binocular visual acuity with habitual correction if warn) for distance and near vision (E-Snellen, usual working distance for near vision). Binocular presenting visual acuity less than 0.3 was used as cut point for diagnosis of visual impairment. Exclusion criteria included immobilized residents unable to reach the USC Dual Sensory Loss Unit for visual screening. To screen cognition we employed the mini-mental examination test (Spanish version). Analysis of categorical variables was performed using chi-square tests. We utilized Pearson and Spearman correlation tests and the variance analysis to determine differences between groups of interest (SPSS 19.0 version). Results: the percentage of residents with cognitive decline reaches 32.2% Prevalence of visual impairment for distance and near vision increases among those subjects with cognitive impairment respect those with normal cognition. Shift correlation exists between distance visual acuity and mini-mental test (age and sex controlled), and moderate association was found in case of near vision (p<0.01). Conclusion: First results shows that people with cognitive impairment have poor functional distance and near vision than those with normal cognition. Next step will be to analyse the individual contribution of distance and near vision loss on cognition.

Keywords: visual impairment, cognition, aging, nursing homes

Procedia PDF Downloads 428
1346 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 279
1345 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning

Authors: Jean Berger, Mohamed Barkaoui

Abstract:

Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.

Keywords: search path planning, false alarm, search-and-delivery, entropy, genetic algorithm

Procedia PDF Downloads 360
1344 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires

Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan

Abstract:

Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.

Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel

Procedia PDF Downloads 406
1343 Effect of Oxytocin on Cytosolic Calcium Concentration of Alpha and Beta Cells in Pancreas

Authors: Rauza Sukma Rita, Katsuya Dezaki, Yuko Maejima, Toshihiko Yada

Abstract:

Oxytocin is a nine-amino acid peptide synthesized in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Oxytocin promotes contraction of the uterus during birth and milk ejection during breast feeding. Although oxytocin receptors are found predominantly in the breasts and uterus of females, many tissues and organs express oxytocin receptors, including the pituitary, heart, kidney, thymus, vascular endothelium, adipocytes, osteoblasts, adrenal gland, pancreatic islets, and many cell lines. On the other hand, in pancreatic islets, oxytocin receptors are expressed in both α-cells and β-cells with stronger expression in α- cells. However, to our knowledge there are no reports yet about the effect of oxytocin on cytosolic calcium reaction on α and β-cell. This study aims to investigate the effect of oxytocin on α-cells and β-cells and its oscillation pattern. Islet of Langerhans from wild type mice were isolated by collagenase digestion. Isolated and dissociated single cells either α-cells or β-cells on coverslips were mounted in an open chamber and superfused in HKRB. Cytosolic concentration ([Ca2+]i) in single cells were measured by fura-2 microfluorimetry. After measurement of [Ca2+]i, α-cells were identified by subsequent immunocytochemical staining using an anti-glucagon antiserum. In β-cells, the [Ca2+]i increase in response to oxytocin was observed only under 8.3 mM glucose condition, whereas in α-cells, [Ca2+]i an increase induced by oxytocin was observed in both 2.8 mM and 8.3 mM glucose. The oscillation incidence was induced more frequently in β-cells compared to α-cells. In conclusion, the present study demonstrated that oxytocin directly interacts with both α-cells and β-cells and induces increase of [Ca2+]i and its specific patterns.

Keywords: α-cells, β-cells, cytosolic calcium concentration, oscillation, oxytocin

Procedia PDF Downloads 193