Search results for: semiconductor optical measuring equipment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5010

Search results for: semiconductor optical measuring equipment

630 Measuring the Effect of a Music Therapy Intervention in a Neonatal Intensive Care Unit in Spain

Authors: Pablo González Álvarez, Anna Vinaixa Vergés, Paula Sol Ventura, Paula Fernández, Mercè Redorta, Gemma Ginovart Galiana, Maria Méndez Hernández

Abstract:

Context: The use of music therapy is gaining popularity worldwide, and it has shown positive effects in neonatology. Hospital Germans Trias i Pujol has recently established a music therapy unit and initiated a project in their neonatal intensive care unit (NICU). Research Aim: The aim of this study is to measure the effect of a music therapy intervention in the NICU of Hospital Germans Trias i Pujol in Spain. Methodology: The study will be an observational analytical case-control study. All newborns admitted to the neonatology unit, both term and preterm, and their parents will be offered a session of music therapy. Data will be collected from families who receive at least two music therapy sessions. Maternal and paternal anxiety levels will be measured through a pre- and post-intervention test. Findings: The study aims to demonstrate the benefits and acceptance of music therapy by patients, parents, and healthcare workers in the neonatal unit. The findings are expected to show a reduction in maternal and paternal anxiety levels following the music therapy sessions. Theoretical Importance: This study contributes to the growing body of literature on the effectiveness of music therapy in neonatal care. It will provide evidence of the acceptance and potential benefits of music therapy in reducing anxiety levels in both parents and babies in the NICU setting. Data Collection: Data will be collected from families who receive at least two music therapy sessions. This will include pre- and post-intervention test results to measure anxiety levels. Analysis Procedures: The collected data will be analyzed using appropriate statistical methods to determine the impact of music therapy on reducing anxiety levels in parents. Questions Addressed: - What is the effect of music therapy on maternal anxiety levels? - What is the effect of music therapy on paternal anxiety levels? - What is the acceptability and perceived benefits of music therapy among patients and healthcare workers in the NICU? Conclusion: The study aims to provide evidence supporting the value of music therapy in the neonatal intensive care unit. It seeks to demonstrate the positive effect of music therapy on reducing anxiety levels among parents.

Keywords: neonatology, music therapy, neonatal intensive care unit, babies, parents

Procedia PDF Downloads 32
629 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 61
628 The Importance of the Phases of Information, Diagnosis, Planning, Intervention and Management in a Historic Center

Authors: Giovanni Duran Polo

Abstract:

Demonstrate the importance of the stages such as Information, Diagnosis, Management, and Intervention is fundamental to have a historical, live, and quality inhabited center. One of the major actions to take is to promote the concept of the management of a historic center with harmonious development. For that, concerned actors should strengthen the concept that said historic center may be the neighborhood of all and for all. The centers of historical cities, presented as any other urban area, social, environmental issues etc; yet they get added value that have no other city neighborhoods. The equity component, either by the urban plan, or environmental quality offered properties of architectural, landscape or some land uses are the differentiating element, while the tool that makes them attractive face pressure exerted by new housing developments or shopping centers. That's why through the experience of working in historical centers, they are declared the actions in heritage areas. This paper will show how the encounter with each of these places are trying to take the phases of information, to gather all the data needed to be closer to the territory with specific data, diagnosis; which allowed the actors to see what state they were, felt how the heart is related to the rest of the city, show what problems affected the situation and what potential it had to compete in a global market. Also, to discuss the importance of the organization, as it is legal and normative basis for it have an order and a concept, when you know what can and what cannot, in an area where the citizen has many myth or history, when he wanted to intervene in protected buildings. It is also appropriate to show how it could develop the intervention phase, where the shares on the tangible elements and intervention for the protection of the heritage property are executed. The management is the final phase which will carry out all that was raised on paper, it's time to orient, explain, persuade, promote, and encourage citizens to take care of the heritage. It is profitable and also an obligation and it is not an insurmountable burden. It has to be said this is the time to pull all the cards to make the historical center and heritage becoming more alive today. It is the moment to make it more inhabited and to transformer it into a quality place, so citizens will cherish and understand the importance of such a place. Inhabited historical centers, endowments and equipment required, with trade quality, with constant cultural offer, with well-preserved buildings and tidy, modern and safe public spaces are always attractive for tourism, but first of all, the place should be conceived for citizens, otherwise everything will be doomed to failure.

Keywords: development, diagnosis, heritage historic center, intervention, management, patrimony

Procedia PDF Downloads 382
627 The Quantitative Analysis of the Influence of the Superficial Abrasion on the Lifetime of the Frog Rail

Authors: Dong Jiang

Abstract:

Turnout is the essential equipment on the railway, which also belongs to one of the strongest demanded infrastructural facilities of railway on account of the more seriously frog rail failures. In cooperation with Germany Company (DB Systemtechnik AG), our research team focuses on the quantitative analysis about the frog rails to predict their lifetimes. Moreover, the suggestions for the timely and effective maintenances are made to improve the economy of the frog rails. The lifetime of the frog rail depends strongly on the internal damage of the running surface until the breakages occur. On the basis of Hertzian theory of the contact mechanics, the dynamic loads of the running surface are calculated in form of the contact pressures on the running surface and the equivalent tensile stress inside the running surface. According to material mechanics, the strength of the frog rail is determined quantitatively in form of the Stress-cycle (S-N) curve. Under the interaction between the dynamic loads and the strength, the internal damage of the running surface is calculated by means of the linear damage hypothesis of the Miner’s rule. The emergence of the first Breakage on the running surface is to be defined as the failure criterion that the damage degree equals 1.0. From the microscopic perspective, the running surface of the frog rail is divided into numerous segments for the detailed analysis. The internal damage of the segment grows slowly in the beginning and disproportionately quickly in the end until the emergence of the breakage. From the macroscopic perspective, the internal damage of the running surface develops simply always linear along the lifetime. With this linear growth of the internal damages, the lifetime of the frog rail could be predicted simply through the immediate introduction of the slope of the linearity. However, the superficial abrasion plays an essential role in the results of the internal damages from the both perspectives. The influences of the superficial abrasion on the lifetime are described in form of the abrasion rate. It has two contradictory effects. On the one hand, the insufficient abrasion rate causes the concentration of the damage accumulation on the same position below the running surface to accelerate the rail failure. On the other hand, the excessive abrasion rate advances the disappearance of the head hardened surface of the frog rail to result in the untimely breakage on the surface. Thus, the relationship between the abrasion rate and the lifetime is subdivided into an initial phase of the increased lifetime and a subsequent phase of the more rapid decreasing lifetime with the continuous growth of the abrasion rate. Through the compensation of these two effects, the critical abrasion rate is discussed to reach the optimal lifetime.

Keywords: breakage, critical abrasion rate, frog rail, internal damage, optimal lifetime

Procedia PDF Downloads 193
626 Community Re-Integrated Soldiers’ Perceptions of Barriers and Facilitators to A Home-Based Physical Rehabilitation Programme Following Lower-Limb Amputation

Authors: Ashan Wijekoon, Abi Beane, Subashini Jayawardana

Abstract:

Background: Soldiers' physical rehabilitation and long term health status has been hindered due to limited investment in and access to rehabilitation services. Home-based rehabilitation programmes could offer a potentially feasible alternative to facilitate long-term recovery. Objectives: To explore Sri Lankan soldiers' perceptions of barriers and facilitators to a home-based physical rehabilitation programme.Methods and Materials: We conducted qualitative semi-structured interviews with community re-integrated army veterans who had undergone unilateral lower limb amputation following war related trauma. Veterans were identified from five districts of Sri Lanka, based on a priori knowledge of veteran community settlements (Disabled Category Registry) obtained from Directorate of Rehabilitation, MoD, Sri Lanka. Individuals were stratified for purposive selection. The interview guide was developed from existing methods and adapted for context. Verbatim transcripts of interviews were analyzed for emerging themes using an inductive approach. Following consent, participants met the researcher (AW- a trained physiotherapist fluent in Sinhalese). Results: Twenty-five Interviews were conducted, totaling 7.2 hours of new data (Mean±SD: 0.28±0.11). All participants were male, aged 30-55 years (Mean±SD: 46.1±7.4), and had experienced traumatic amputation as a result of conflict. Twenty-four sub themes were identified. Inadequate space for exercises, absence of equipment and assistance to conduct the exercises at home, alongside absence of community healthcare services were all barriers. Burden of comorbidities, including chronic pain and disability level, were also barriers. Social support systems, including soldier societies, family, and kinship with other amputees, were seen as facilitators to an at-home programme. Motivation for independence was a strong indicator of engagement. Conclusion: Environment, chronic pain, and absence of well-established community health services were key barriers. Family and soldier support was a facilitator. Engagement with community healthcare providers (physiotherapist and primary care physicians) will be essential to the success of an at-home rehabilitation program.

Keywords: physical rehabilitation, home-based, soldiers, disability, lower-limb amputation, qualitative

Procedia PDF Downloads 153
625 Dogs Chest Homogeneous Phantom for Image Optimization

Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano

Abstract:

In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.

Keywords: radiation protection, phantom, veterinary radiology, computed radiography

Procedia PDF Downloads 405
624 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants

Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver

Abstract:

This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.

Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants

Procedia PDF Downloads 339
623 Characterization of Aerosol Droplet in Absorption Columns to Avoid Amine Emissions

Authors: Hammad Majeed, Hanna Knuutila, Magne Hilestad, Hallvard Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem.Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. Results: As an example a droplet of initial size of 3 microns, initially containing a 5M MEA, solution is exposed to an atmosphere free of MEA. Composition of the gas phase and temperature is changing with respect to time throughout the absorber.

Keywords: amine solvents, emissions, global climate change, simulation and modelling, aerosol generation

Procedia PDF Downloads 248
622 Fabrication of Carbon Nanoparticles and Graphene Using Pulsed Laser Ablation

Authors: Davoud Dorranian, Hajar Sadeghi, Elmira Solati

Abstract:

Carbon nanostructures in various forms were synthesized using pulsed laser ablation of a graphite target in different liquid environment. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7-ns pulse width is employed to irradiate the solid target in water, acetone, alcohol, and cetyltrimethylammonium bromide (CTAB). Then the effect of the liquid environment on the characteristic of carbon nanostructures produced by laser ablation was investigated. The optical properties of the carbon nanostructures were examined at room temperature by UV–Vis-NIR spectrophotometer. The crystalline structure of the carbon nanostructures was analyzed by X-ray diffraction (XRD). The morphology of samples was investigated by field emission scanning electron microscope (FE-SEM). Transmission electron microscope (TEM) was employed to investigate the form of carbon nanostructures. Raman spectroscopy was used to determine the quality of carbon nanostructures. Results show that different carbon nanostructures such as nanoparticles and few-layer graphene were formed in various liquid environments. The UV-Vis-NIR absorption spectra of samples reveal that the intensity of absorption peak of nanoparticles in alcohol is higher than the other liquid environments due to the larger number of nanoparticles in this environment. The red shift of the absorption peak of the sample in acetone confirms that produced carbon nanoparticles in this liquid are averagely larger than the other medium. The difference in the intensity and shape of the absorption peak indicated the effect of the liquid environment in producing the nanoparticles. The XRD pattern of the sample in water indicates an amorphous structure due to existence the graphene sheets. X-ray diffraction pattern shows that the degree of crystallinity of sample produced in CTAB is higher than the other liquid environments. Transmission electron microscopy images reveal that the generated carbon materials in water are graphene sheet and in the other liquid environments are graphene sheet and spherical nanostructures. According to the TEM images, we have the larger amount of carbon nanoparticles in the alcohol environment. FE-SEM micrographs indicate that in this liquids sheet like structures are formed however in acetone, produced sheets are adhered and these layers overlap with each other. According to the FE-SEM micrographs, the surface morphology of the sample in CTAB was coarser than that without surfactant. From Raman spectra, it can be concluded the distinct shape, width, and position of the graphene peaks and corresponding graphite source.

Keywords: carbon nanostructures, graphene, pulsed laser ablation, graphite

Procedia PDF Downloads 297
621 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap

Authors: Nikolai N. Bogolubov, Andrey V. Soldatov

Abstract:

Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.

Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom

Procedia PDF Downloads 254
620 Intersubjectivity of Forensic Handwriting Analysis

Authors: Marta Nawrocka

Abstract:

In each of the legal proceedings, in which expert evidence is carried out, a major concern is the assessment of the evidential value of expert reports. Judicial institutions, while making decisions, rely heavily on the expert reports, because they usually do not possess 'special knowledge' from a certain fields of science which makes it impossible for them to verify the results presented in the processes. In handwriting studies, the standards of analysis are developed. They unify procedures used by experts in comparing signs and in constructing expert reports. However, the methods used by experts are usually of a qualitative nature. They rely on the application of knowledge and experience of expert and in effect give significant range of margin in the assessment. Moreover, the standards used by experts are still not very precise and the process of reaching the conclusions is poorly understood. The above-mentioned circumstances indicate that expert opinions in the field of handwriting analysis, for many reasons, may not be sufficiently reliable. It is assumed that this state of affairs has its source in a very low level of intersubjectivity of measuring scales and analysis procedures, which consist elements of this kind of analysis. Intersubjectivity is a feature of cognition which (in relation to methods) indicates the degree of consistency of results that different people receive using the same method. The higher the level of intersubjectivity is, the more reliable and credible the method can be considered. The aim of the conducted research was to determine the degree of intersubjectivity of the methods used by the experts from the scope of handwriting analysis. 30 experts took part in the study and each of them received two signatures, with varying degrees of readability, for analysis. Their task was to distinguish graphic characteristics in the signature, estimate the evidential value of the found characteristics and estimate the evidential value of the signature. The obtained results were compared with each other using the Alpha Krippendorff’s statistic, which numerically determines the degree of compatibility of the results (assessments) that different people receive under the same conditions using the same method. The estimation of the degree of compatibility of the experts' results for each of these tasks allowed to determine the degree of intersubjectivity of the studied method. The study showed that during the analysis, the experts identified different signature characteristics and attributed different evidential value to them. In this scope, intersubjectivity turned out to be low. In addition, it turned out that experts in various ways called and described the same characteristics, and the language used was often inconsistent and imprecise. Thus, significant differences have been noted on the basis of language and applied nomenclature. On the other hand, experts attributed a similar evidential value to the entire signature (set of characteristics), which indicates that in this range, they were relatively consistent.

Keywords: forensic sciences experts, handwriting analysis, inter-rater reliability, reliability of methods

Procedia PDF Downloads 135
619 Using Photogrammetric Techniques to Map the Mars Surface

Authors: Ahmed Elaksher, Islam Omar

Abstract:

For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.

Keywords: mars, photogrammetry, MOLA, HiRISE

Procedia PDF Downloads 47
618 The Role of Situational Attribution Training in Reducing Automatic In-Group Stereotyping in Females

Authors: Olga Mironiuk, Małgorzata Kossowska

Abstract:

The aim of the present study was to investigate the influence of Situational Attribution Training on reducing automatic in-group stereotyping in females. The experiment was conducted with the control of age and level of prejudice. 90 female participants were randomly assigned to two conditions: experimental and control group (each group was also divided into younger- and older-aged condition). Participants from the experimental condition were subjected to more extensive training. In the first part of the experiment, the experimental group took part in the first session of Situational Attribution Training while the control group participated in the Grammatical Training Control. In the second part of the research both groups took part in the Situational Attribution Training (which was considered as the second training session for the experimental group and the first one for the control condition). The training procedure was based on the descriptions of ambiguous situations which could be explained using situational or dispositional attributions. The participant’s task was to choose the situational explanation from two alternatives, out of which the second one presented the explanation based on neutral or stereotypically associated with women traits. Moreover, the experimental group took part in the third training session after two- day time delay, in order to check the persistence of the training effect. The main hypothesis stated that among participants taking part in the more extensive training, the automatic in-group stereotyping would be less frequent after having finished training sessions. The effectiveness of the training was tested by measuring the response time and the correctness of answers: the longer response time for the examples where one of two possible answers was based on the stereotype trait and higher correctness of answers was considered to be a proof of the training effectiveness. As the participants’ level of prejudice was controlled (using the Ambivalent Sexism Inventory), it was also assumed that the training effect would be weaker for participants revealing a higher level of prejudice. The obtained results did not confirm the hypothesis based on the response time: participants from the experimental group responded faster in case of situations where one of the possible explanations was based on stereotype trait. However, an interesting observation was made during the analysis of the answers’ correctness: regardless the condition and age group affiliation, participants made more mistakes while choosing the situational explanations when the alternative was based on stereotypical trait associated with the dimension of warmth. What is more, the correctness of answers was higher in the third training session for the experimental group in case when the alternative of situational explanation was based on the stereotype trait associated with the dimension of competence. The obtained results partially confirm the effectiveness of the training.

Keywords: female, in-group stereotyping, prejudice, situational attribution training

Procedia PDF Downloads 166
617 Estimation of Delay Due to Loading–Unloading of Passengers by Buses and Reduction of Number of Lanes at Selected Intersections in Dhaka City

Authors: Sumit Roy, A. Uddin

Abstract:

One of the significant reasons that increase the delay time in the intersections at heterogeneous traffic condition is a sudden reduction of the capacity of the roads. In this study, the delay for this sudden capacity reduction is estimated. Two intersections at Dhaka city were brought in to thestudy, i.e., Kakrail intersection, and SAARC Foara intersection. At Kakrail intersection, the sudden reduction of capacity in the roads is seen at three downstream legs of the intersection, which are because of slowing down or stopping of buses for loading and unloading of passengers. At SAARC Foara intersection, sudden reduction of capacity was seen at two downstream legs. At one leg, it was due to loading and unloading of buses, and at another leg, it was for both loading and unloading of buses and reduction of the number of lanes. With these considerations, the delay due to intentional stoppage or slowing down of buses and reduction of the number of lanes for these two intersections are estimated. Here the delay was calculated by two approaches. The first approach came from the concept of shock waves in traffic streams. Here the delay was calculated by determining the flow, density, and speed before and after the sudden capacity reduction. The second approach came from the deterministic analysis of queues. Here the delay is calculated by determining the volume, capacity and reduced capacity of the road. After determining the delay from these two approaches, the results were compared. For this study, the video of each of the two intersections was recorded for one hour at the evening peak. Necessary geometric data were also taken to determine speed, flow, and density, etc. parameters. The delay was calculated for one hour with one-hour data at both intersections. In case of Kakrail intersection, the per hour delay for Kakrail circle leg was 5.79, and 7.15 minutes, for Shantinagar cross intersection leg they were 13.02 and 15.65 minutes, and for Paltan T intersection leg, they were 3 and 1.3 minutes for 1st and 2nd approaches respectively. In the case of SAARC Foara intersection, the delay at Shahbag leg was only due to intentional stopping or slowing down of busses, which were 3.2 and 3 minutes respectively for both approaches. For the Karwan Bazar leg, the delays for buses by both approaches were 5 and 7.5 minutes respectively, and for reduction of the number of lanes, the delays for both approaches were 2 and 1.78 minutes respectively. Measuring the delay per hour for the Kakrail leg at Kakrail circle, it is seen that, with consideration of the first approach of delay estimation, the intentional stoppage and lowering of speed by buses contribute to 26.24% of total delay at Kakrail circle. If the loading and unloading of buses at intersection is made forbidden near intersection, and any other measures for loading and unloading of passengers are established far enough from the intersections, then the delay at intersections can be reduced at significant scale, and the performance of the intersections can be enhanced.

Keywords: delay, deterministic queue analysis, shock wave, passenger loading-unloading

Procedia PDF Downloads 164
616 The Antioxidant Gel Mask Supplies Of Bitter Melon's Extract ( Momordica charantia Linn.)

Authors: N. S. Risqina, G. Edijanti, P. S. Nurita, L. Endang, R. A. Siti, R. Tri

Abstract:

Skin is an important and vital organs and also as a mirror of health and life. Facial skin care is one of the main emphasis to get the beautiful, healthy, and fresh skin. Potentially antioxidant phenolic compounds shows, antimutagen, antitumor, anti-inflammatory, and anti-cancer. Flavonoids are a group of polyphenolic compounds that have the nature of free radicals, inhibiting the oxidative and hydrolytic enzymes as well as anti-inflammatory. Bitter melon (Momordica charantia Linn) is a plant that contains flavonoids, and phenolic antioxidant activity. Bitter melon has strong antioxidant activity that can counteract the free radicals.These compounds can prevent free radicals that cause premature aging. Gel masks including depth cleansing is the cosmetics which work in depth and could raise the dead skin cells. Measurement of antioxidant activity of the extract and gel mask is done by using the immersion method of DPPH. IC50 value of ethanol extract of bitter melon fruit of 287.932 ppm. The preparation of gel mask bitter melon fruit extract, necessary to test the effectiveness of antioxidants using DPPH method is done by measuring the inhibition of DPPH and using UV spectrophotometer at the wavelength of maximum DPPH solution. Tests conducted at the beginning and end of the evaluation (day 0 and day 28). The purpose of this study is to determine the antioxidant activity of the bitter melon's extract and to determine the antioxidant activity of ethanol extract gel mask pare in varying concentrations, ie 1xIC100 (0.295%), 2xIC100 (0.590%) and 4xIC100 (1.180%). Evaluation of physical properties of the preparation on (Day-0,7,14,21, and 28) and evaluation of antioxidant activity (day 0 and 28). Data were analyzed using One Way ANOVA to determine differences in the physical properties of each formula. The statistical results showed that differences in the formula and storage time affects the adhesion, dispersive power, dry time and pH it is shown on a significant value of p <0.05, but longer storage does not affect the pH because the significance value p> 0,05. The antioxidant test showed that there are differences in antioxidant activity in all formulas. Measurement of antioxidant activity of bitter melon fruit extract gel mask on day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas day 28 consecutive 130 411, 495 ppm, and 53239.806 95561.645 ppm ppm. The Conclusions drawn that there are antioxidant activity in preparation gel mask of bitter melon fruit extract. The antioxidant activity of bitter melon fruit extract gel mask on the day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas on day 28 of antioxidant activity gel mask bitter melon fruit extract with a concentration of 0.295%, 0.590%, and 1.180% in succession, namely: 130,411.495 ppm, ppm 95561.645 and 53239.806 ppm.

Keywords: antioxdant, bitter melon, gel mask, IC50

Procedia PDF Downloads 457
615 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási

Abstract:

For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).

Keywords: selenium, ICP-MS, food, food raw material

Procedia PDF Downloads 488
614 Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell

Authors: Deborah Eric, Abbas Ahmad Khan

Abstract:

Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size.

Keywords: perovskite, intermediate bandgap, quantum dots, miniband formation

Procedia PDF Downloads 151
613 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System

Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa

Abstract:

G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.

Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics

Procedia PDF Downloads 78
612 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada

Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman

Abstract:

Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.

Keywords: HAND, DTM, rapid floodplain, simplified conceptual models

Procedia PDF Downloads 132
611 Study of Oxidative Processes in Blood Serum in Patients with Arterial Hypertension

Authors: Laura M. Hovsepyan, Gayane S. Ghazaryan, Hasmik V. Zanginyan

Abstract:

Hypertension (HD) is the most common cardiovascular pathology that causes disability and mortality in the working population. Most often, heart failure (HF), which is based on myocardial remodeling, leads to death in hypertension. Recently, endothelial dysfunction (EDF) or a violation of the functional state of the vascular endothelium has been assigned a significant role in the structural changes in the myocardium and the occurrence of heart failure in patients with hypertension. It has now been established that tissues affected by inflammation form increased amounts of superoxide radical and NO, which play a significant role in the development and pathogenesis of various pathologies. They mediate inflammation, modify proteins and damage nucleic acids. The aim of this work was to study the processes of oxidative modification of proteins (OMP) and the production of nitric oxide in hypertension. In the experimental work, the blood of 30 donors and 33 patients with hypertension was used. For the quantitative determination of OMP products, the based on the reaction of the interaction of oxidized amino acid residues of proteins and 2,4-dinitrophenylhydrazine (DNPH) with the formation of 2,4-dinitrophenylhydrazones, the amount of which was determined spectrophotometrically. The optical density of the formed carbonyl derivatives of dinitrophenylhydrazones was recorded at different wavelengths: 356 nm - aliphatic ketone dinitrophenylhydrazones (KDNPH) of neutral character; 370 nm - aliphatic aldehyde dinirophenylhydrazones (ADNPH) of neutral character; 430 nm - aliphatic KDNFG of the main character; 530 nm - basic aliphatic ADNPH. Nitric oxide was determined by photometry using Grace's solution. Adsorption was measured on a Thermo Scientific Evolution 201 SF at a wavelength of 546 nm. Thus, the results of the studies showed that in patients with arterial hypertension, an increased level of nitric oxide in the blood serum is observed, and there is also a tendency to an increase in the intensity of oxidative modification of proteins at a wavelength of 270 nm and 363 nm, which indicates a statistically significant increase in aliphatic aldehyde and ketone dinitrophenylhydrazones. The increase in the intensity of oxidative modification of blood plasma proteins in the studied patients, revealed by us, actually reflects the general direction of free radical processes and, in particular, the oxidation of proteins throughout the body. A decrease in the activity of the antioxidant system also leads to a violation of protein metabolism. The most important consequence of the oxidative modification of proteins is the inactivation of enzymes.

Keywords: hypertension (HD), oxidative modification of proteins (OMP), nitric oxide (NO), oxidative stress

Procedia PDF Downloads 81
610 In Vivo Antiulcer and Anti-Helicobacter pylori Activity of Geraniol on Acetic Acid plus Helicobacter pylori Induced Ulcer in Rats

Authors: Subrat Kumar Bhattamisra, Vivian Lee Yean Yan, Chin Koh Lee, Chew Hui Kuean, Yun Khoon Liew, Mayuren Candasamy

Abstract:

Geraniol, an acyclic monoterpenoid is the main active constituent in the essential oils of rose and palmorosa. Antioxidant, antibacterial, anticancer and antiulcer activity of geraniol was reported by many researchers. The present investigation was designed to study in vivo antiulcer and anti-Helicobacter pylori activity of geraniol. Antiulcer and anti-H. pylori activity of geraniol was evaluated on acetic acid plus H. pylori induced ulcer in rats. Acetic acid (0.03 mL) was injected to the sub-serosal layer of the stomach through laparotomy under anaesthesia. Orogastric inoculation of H. pylori (ATCC 43504) was done twice daily for 7 days. Geraniol (15 and 30 mg/kg), vehicle and standard drugs (Amoxicillin, 50 mg/kg; clarithromycin, 25 mg/kg & omeprazole, 20 mg/kg) was administered twice daily for 14 days. Antiulcer activity of geraniol was examined by the determination of gastric ulcer index, measuring the volume of gastric juice, pH and total acidity, myeloperoxidase activity and histopathological examination. Histopathological investigation for the presence of inflammation, white blood cell infiltration, edema, the mucosal damage was studied. The presence of H. pylori was detected by placing a biopsy sample from antral part of the stomach into rapid urease test. Ulcer index in H. pylori inoculated control group was 4.13 ± 0.85 and was significantly (P < 0.05) lowered in geraniol (30 mg/kg) and reference drug treated group. Geraniol increase the pH of the gastric juice (2.18 ± 0.13 in control vs. 4.14 ± 0.57 in geraniol 30mg/kg) and lower total acidity significantly (P < 0.01) in geraniol (15 & 30 mg/kg). Myeloperoxidase (MPO) activity was measured in stomach homogenate of all the groups. H. pylori control group has significant (P < 0.05) increase in MPO activity compared to normal control group. Geraniol (30 mg/kg) was showed significant (P < 0.05) and most effective among all the groups. Histopathological examination of rat stomach was scored and the total score for H. pylori control group was 8. After geraniol (30 mg/kg) and reference drug treatment, the histopathological score was significantly decreased and it was observed to be 3.5 and 2.0 respectively. Percentage inhibition of H. pylori infection in geraniol (30 mg/kg) and reference drug were found to be 40% and 50% respectively whereas, 100% infection in H. pylori control group was observed. Geraniol exhibited significant antiulcer and anti- H. pylori activity in the rats. Thus, geraniol has the potential for the further development as an effective medication in treating H. pylori associated ulcer.

Keywords: geraniol, helicobacter pylori atcc 43504, myeloperoxidase, ulcer

Procedia PDF Downloads 327
609 Spark Plasma Sintering/Synthesis of Alumina-Graphene Composites

Authors: Nikoloz Jalabadze, Roin Chedia, Lili Nadaraia, Levan Khundadze

Abstract:

Nanocrystalline materials in powder condition can be manufactured by a number of different methods, however manufacture of composite materials product in the same nanocrystalline state is still a problem because the processes of compaction and synthesis of nanocrystalline powders go with intensive growth of particles – the process which promotes formation of pieces in an ordinary crystalline state instead of being crystallized in the desirable nanocrystalline state. To date spark plasma sintering (SPS) has been considered as the most promising and energy efficient method for producing dense bodies of composite materials. An advantage of the SPS method in comparison with other methods is mainly low temperature and short time of the sintering procedure. That finally gives an opportunity to obtain dense material with nanocrystalline structure. Graphene has recently garnered significant interest as a reinforcing phase in composite materials because of its excellent electrical, thermal and mechanical properties. Graphene nanoplatelets (GNPs) in particular have attracted much interest as reinforcements for ceramic matrix composites (mostly in Al2O3, Si3N4, TiO2, ZrB2 a. c.). SPS has been shown to fully densify a variety of ceramic systems effectively including Al2O3 and often with improvements in mechanical and functional behavior. Alumina consolidated by SPS has been shown to have superior hardness, fracture toughness, plasticity and optical translucency compared to conventionally processed alumina. Knowledge of how GNPs influence sintering behavior is important to effectively process and manufacture process. In this study, the effects of GNPs on the SPS processing of Al2O3 are investigated by systematically varying sintering temperature, holding time and pressure. Our experiments showed that SPS process is also appropriate for the synthesis of nanocrystalline powders of alumina-graphene composites. Depending on the size of the molds, it is possible to obtain different amount of nanopowders. Investigation of the structure, physical-chemical, mechanical and performance properties of the elaborated composite materials was performed. The results of this study provide a fundamental understanding of the effects of GNP on sintering behavior, thereby providing a foundation for future optimization of the processing of these promising nanocomposite systems.

Keywords: alumina oxide, ceramic matrix composites, graphene nanoplatelets, spark-plasma sintering

Procedia PDF Downloads 360
608 A Rare Case of Myometrial Ectopic

Authors: Madeleine Cox

Abstract:

Objective: Discussion of diagnosis and management options for myometrial ectopic pregnancy Case: A 30 yo G1P0 presented to the emergency department with vaginal bleeding for the last 4 days. She had a positive home urine pregnancy test, confirmed with a serum HCG. When she presented for an ultrasound, there was no intrauterine pregnancy, no evidence of adnexal pregnancy, however, the anterior myometrium of the uterus was noted to be markedly abnormal. When she presented to the emergency department of a busy tertiary hospital in Queensland, she had a small amount of vaginal bleeding, was anxious but well, observations normal. Repeat blood testes demonstrated a serum HCG of 9246 IU/L, haemoglobin of 143g/L. The patient had an interesting history of a right oophorectomy and open myomectomy in another country. A repeat ultrasound again showed an abnormality within the myometrium of the uterus, which was initially reported as concerning for an AVM, or potentially invasive gestational trophoblastic disease. An MRI was organised 2 days later, which demonstrated a intramural/subserosal irregularity in the right lateral body measuring 35x38x42mm with peripheral enhancement and central cystic components, favouring a myometrial ectopic most likely at the site of previous myomectomy. Alternative diagnosis of AVM, GTD were considered less likely. After discussion with the patient, IV methotrexate was administered as an in patient 4 days after her initial presentation to emergency. After this, her HCG fell to 1236 IU/L on day 6 post treatment. Weekly reviews showed stable ultrasound appearances with a steadily dropping HCG level. A repeat MRI was performed 3 weeks after methotrexate administration which confirmed involution of the myometrial ectopic, however, showed ongoing progression of vascularity surrounding the site. Despite resolution of HCG, the patient persisted to have ongoing bleeding associated with this and went to have uterine artery embolisation. Follow up ultrasound showed resolution of abnormal vascularity and negative HCG levels. Conclusion: Myometrial ectopic pregnancies are a rare occurrence and require a multidisciplinary approach to achieve timely management for these patients. This patient was in a very well resourced setting with excellent access to Interventional Radiology and specialist Radiologists who could work together with the Obstetrics, Gynaecology, and Maternal Fetal Medicine team to provide multiple options of management which preserved her fertility. This case has a very good outcome, with the patient being referred back to our service 12 months later with an early intrauterine pregnancy.

Keywords: ectopic, pregnancy, miscarriage, gynaecology

Procedia PDF Downloads 109
607 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Authors: Tomoko Fukuyama, Osamu Senbu

Abstract:

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Keywords: capacitance, conductance, prestressed concrete, susceptance

Procedia PDF Downloads 401
606 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season

Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada

Abstract:

A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).

Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model

Procedia PDF Downloads 527
605 Measuring the Economic Impact of Cultural Heritage: Comparative Analysis of the Multiplier Approach and the Value Chain Approach

Authors: Nina Ponikvar, Katja Zajc Kejžar

Abstract:

While the positive impacts of heritage on a broad societal spectrum have long been recognized and measured, the economic effects of the heritage sector are often less visible and frequently underestimated. At macro level, economic effects are usually studied based on one of the two mainstream approach, i.e. either the multiplier approach or the value chain approach. Consequently, there is limited comparability of the empirical results due to the use of different methodological approach in the literature. Furthermore, it is also not clear on which criteria the used approach was selected. Our aim is to bring the attention to the difference in the scope of effects that are encompassed by the two most frequent methodological approaches to valuation of economic effects of cultural heritage on macroeconomic level, i.e. the multiplier approach and the value chain approach. We show that while the multiplier approach provides a systematic, theory-based view of economic impacts but requires more data and analysis, the value chain approach has less solid theoretical foundations and depends on the availability of appropriate data to identify the contribution of cultural heritage to other sectors. We conclude that the multiplier approach underestimates the economic impact of cultural heritage, mainly due to the narrow definition of cultural heritage in the statistical classification and the inability to identify part of the contribution of cultural heritage that is hidden in other sectors. Yet it is not possible to clearly determine whether the value chain method overestimates or underestimates the actual economic impact of cultural heritage since there is a risk that the direct effects are overestimated and double counted, but not all indirect and induced effects are considered. Accordingly, these two approaches are not substitutes but rather complementary. Consequently, a direct comparison of the estimated impacts is not possible and should not be done due to the different scope. To illustrate the difference of the impact assessment of the cultural heritage, we apply both approaches to the case of Slovenia in the 2015-2022 period and measure the economic impact of cultural heritage sector in terms of turnover, gross value added and employment. The empirical results clearly show that the estimation of the economic impact of a sector using the multiplier approach is more conservative, while the estimates based on value added capture a much broader range of impacts. According to the multiplier approach, each euro in cultural heritage sector generates an additional 0.14 euros in indirect effects and an additional 0.44 euros in induced effects. Based on the value-added approach, the indirect economic effect of the “narrow” heritage sectors is amplified by the impact of cultural heritage activities on other sectors. Accordingly, every euro of sales and every euro of gross value added in the cultural heritage sector generates approximately 6 euros of sales and 4 to 5 euros of value added in other sectors. In addition, each employee in the cultural heritage sector is linked to 4 to 5 jobs in other sectors.

Keywords: economic value of cultural heritage, multiplier approach, value chain approach, indirect effects, slovenia

Procedia PDF Downloads 62
604 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities

Authors: Jilbert Novelero, Oliver Mariano

Abstract:

In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.

Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis

Procedia PDF Downloads 102
603 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 142
602 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings

Authors: Michalis Michael, Mauro Overend

Abstract:

Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).

Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort

Procedia PDF Downloads 50
601 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling

Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang

Abstract:

Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.

Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle

Procedia PDF Downloads 110