Search results for: lead-free perovskite solar cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5014

Search results for: lead-free perovskite solar cell

664 Traumatic Chiasmal Syndrome Following Traumatic Brain Injury

Authors: Jiping Cai, Ningzhi Wangyang, Jun Shao

Abstract:

Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality that leads to structural and functional damage in several parts of the brain, such as cranial nerves, optic nerve tract or other circuitry involved in vision and occipital lobe, depending on its location and severity. As a result, the function associated with vision processing and perception are significantly affected and cause blurred vision, double vision, decreased peripheral vision and blindness. Here two cases complaining of monocular vision loss (actually temporal hemianopia) due to traumatic chiasmal syndrome after frontal head injury were reported, and were compared the findings with individual case reports published in the literature. Reported cases of traumatic chiasmal syndrome appear to share some common features, such as injury to the frontal bone and fracture of the anterior skull base. The degree of bitemporal hemianopia and visual loss acuity have a variable presentation and was not necessarily related to the severity of the craniocerebral trauma. Chiasmal injury may occur even in the absence bony chip impingement. Isolated bitemporal hemianopia is rare and clinical improvement usually may not occur. Mechanisms of damage to the optic chiasm after trauma include direct tearing, contusion haemorrhage and contusion necrosis, and secondary mechanisms such as cell death, inflammation, edema, neurogenesis impairment and axonal damage associated with TBI. Beside visual field test, MRI evaluation of optic pathways seems to the strong objective evidence to demonstrate the impairment of the integrity of visual systems following TBI. Therefore, traumatic chiasmal syndrome should be considered as a differential diagnosis by both neurosurgeons and ophthalmologists in patients presenting with visual impairment, especially bitemporal hemianopia after head injury causing frontal and anterior skull base fracture.

Keywords: bitemporal hemianopia, brain injury, optic chiasma, traumatic chiasmal syndrome.

Procedia PDF Downloads 79
663 Development of Strategy for Enhanced Production of Industrial Enzymes by Microscopic Fungi in Submerged Fermentation

Authors: Zhanara Suleimenova, Raushan Blieva, Aigerim Zhakipbekova, Inkar Tapenbayeva, Zhanar Narmuratova

Abstract:

Green processes are based on innovative technologies that do not negatively affect the environment. Industrial enzymes originated from biological systems can effectively contribute to sustainable development through being isolated from microorganisms which are fermented using primarily renewable resources. Many widespread microorganisms secrete a significant amount of biocatalysts into the environment, which greatly facilitates the task of their isolation and purification. The ability to control the enzyme production through the regulation of their biosynthesis and the selection of nutrient media and cultivation conditions allows not only to increase the yield of enzymes but also to obtain enzymes with certain properties. In this regard, large potentialities are embedded in immobilized cells. Enzyme production technology in a secreted active form enabling industrial application on an economically feasible scale has been developed. This method is based on the immobilization of enzyme producers on a solid career. Immobilizing has a range of advantages: decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, the ability of various enzymes' simultaneous production, etc. Design of proposed equipment gives the opportunity to increase the activity of immobilized cell culture filtrate comparing to free cells, growing in periodic culture conditions. Such technology allows giving a 10-times raise in culture productivity, to prolong the process of fungi cultivation and periods of active culture liquid generation. Also, it gives the way to improve the quality of filtrates (to make them more clear) and exclude time-consuming processes of recharging fermentative vials, that require manual removing of mycelium.

Keywords: industrial enzymes, immobilization, submerged fermentation, microscopic fungi

Procedia PDF Downloads 141
662 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 389
661 Photochemical Behaviour of Carbamazepine in Natural Waters

Authors: Fanny Desbiolles, Laure Malleret, Isabelle Laffont-Schwob, Christophe Tiliacos, Anne Piram, Mohamed Sarakha, Pascal Wong-Wah-Chung

Abstract:

Pharmaceuticals in the environment have become a very hot topic in the recent years. This interest is related to the large amounts dispensed and to their release in urine or faeces from treated patients, resulting in their ubiquitous presence in water resources and wastewater treatment plants (WWTP) effluents. Thereby, many studies focused on the prediction of pharmaceuticals’ behaviour, to assess their fate and impacts in the environment. Carbamazepine is a widely consumed psychotropic pharmaceutical, thus being one of the most commonly detected drugs in the environment. This organic pollutant was proved to be persistent, especially with respect to its non-biodegradability, rendering it recalcitrant to usual biological treatment processes. Consequently, carbamazepine is very little removed in WWTP with a maximum abatement rate of 5 % and is then often released in natural surface waters. To better assess the environmental fate of carbamazepine in aqueous media, its photochemical transformation was undertaken in four natural waters (two French rivers, the Berre salt lagoon, Mediterranean Sea water) representative of coastal and inland water types. Kinetic experiments were performed in the presence of light using simulated solar irradiation (Xe lamp 300W). Formation of short-lifetime species was highlighted using chemical trap and laser flash photolysis (nanosecond). Identification of transformation by-products was assessed by LC-QToF-MS analyses. Carbamazepine degradation was observed after a four-day exposure and an abatement of 20% maximum was measured yielding to the formation of many by-products. Moreover, the formation of hydroxyl radicals (•OH) was evidenced in waters using terephthalic acid as a probe, considering the photochemical instability of its specific hydroxylated derivative. Correlations were implemented using carbamazepine degradation rate, estimated hydroxyl radical formation and chemical contents of waters. In addition, laser flash photolysis studies confirmed •OH formation and allowed to evidence other reactive species, such as chloride (Cl2•-)/bromine (Br2•-) and carbonate (CO3•-) radicals in natural waters. Radicals mainly originate from dissolved phase and their occurrence and abundance depend on the type of water. Rate constants between reactive species and carbamazepine were determined by laser flash photolysis and competitive reactions experiments. Moreover, LC-QToF-MS analyses of by-products help us to propose mechanistic pathways. The results will bring insights to the fate of carbamazepine in various water types and could help to evaluate more precisely potential ecotoxicological effects.

Keywords: carbamazepine, kinetic and mechanistic approaches, natural waters, photodegradation

Procedia PDF Downloads 380
660 Correlation of Leptin with Clinico-Pathological Features of Breast Cancer

Authors: Saad Al-Shibli, Nasser Amjad, Muna Al Kubaisi, Norra Harun, Shaikh Mizan

Abstract:

Leptin is a multifunctional hormone produced mainly by adipocyte. Leptin and its receptor have long been found associated with breast cancer. The main aim of this study is to investigate the correlation between Leptin/Leptin receptor and the clinicopathological features of breast cancer. Blood samples for ELISA, tissue samples from tumors and adjacent breast tissue were taken from 51 women with breast cancer with a control group of 40 women with a negative mammogram. Leptin and Leptin receptor in the tissues were estimated by immunohistochemistry (IHC). They were localized at the subcellular level by immunocytochemistry using transmission electron microscopy (TEM). Our results showed significant difference in serum leptin level between control and the patient group, but no difference between pre and post-operative serum leptin levels in the patient group. By IHC, we found that the majority of the breast cancer cells studied, stained positively for leptin and leptin receptors with co-expression of leptin and its receptors. No significant correlation was found between leptin/leptin receptors expression with the race, menopausal status, lymph node metastasis, estrogen receptor expression, progesterone receptor expression, HER2 expression and tumor size. Majority of the patients with distant metastasis were associated with high leptin and leptin receptor expression. TEM views both Leptin and Leptin receptor were found highly concentrated within and around the nucleus of the cancer breast cells, indicating nucleus is their principal seat of actions while the adjacent breast epithelial cells showed that leptin gold particles are scattered all over the cell with much less than that of the cancerous cells. However, presence of high concentration of leptin does not necessarily prove its over-expression, because it could be internalized from outside by leptin receptor in the cells. In contrast, leptin receptor is definitely over-expressed in the ductal breast cancer cells. We conclude that reducing leptin levels, blocking its downstream tissue specific signal transduction, and/or blocking the upstream leptin receptor pathway might help in prevention and therapy of breast cancer.

Keywords: breast cancer, expression, leptin, leptin receptors

Procedia PDF Downloads 139
659 Drug-Based Nanoparticles: Comparative Study of the Effect Drug Type on Release Kinetics and Cell Viability

Authors: Chukwudalu C. Nwazojie, Wole W. Soboyejo, John Obayemi, Ali Salifu Azeko, Sandra M. Jusu, Chinyerem M. Onyekanne

Abstract:

The conventional methods for the diagnosis and treatment of breast cancer include bulk systematic mammography, ultrasound, dynamic contrast-enhanced fast 3D gradient-echo (GRE) magnetic resonance imaging (MRI), surgery, chemotherapy, and radiotherapy. However, nanoparticles and drug-loaded polymer microspheres for disease (cancer) targeting and treatment have enormous potential to enhance the approaches that are used today. The goal is to produce an implantable biomedical device for localized breast cancer drug delivery within Africa and the world. The main advantage of localized delivery is that it reduces the amount of drug that is needed to have a therapeutic effect. Polymer blends of poly (D,L-lactide-co-glycolide) (PLGA) and polycaprolactone (PCL), which are biodegradable, is used as a drug excipient. This work focuses on the development of PLGA-PCL (poly (D,L-lactide-co-glycolide) (PLGA) blended with based injectable drug microspheres and are loaded with anticancer drugs (prodigiosin (PG), and paclitaxel (PTX) control) and also the conjugated forms of the drug functionalized with LHRH (luteinizing hormone-releasing hormone) (PG-LHRH, and PTX- LHRH control), using a single-emulsion solvent evaporation technique. The encapsulation was done in the presence of PLGA-PCL (as a polymer matrix) and poly-(vinyl alcohol) (PVA) (as an emulsifier). Comparative study of the various drugs release kinetics and degradation mechanisms of the PLGA-PCL with an encapsulated drug is achieved, and the implication of this study is for the potential application of prodigiosin PLGA-PCL loaded microparticles for controlled delivery of cancer drug and treatment to prevent the regrowth or locoregional recurrence, following surgical resection of triple-negative breast tumor.

Keywords: cancer, polymers, drug kinetics, nanoparticles

Procedia PDF Downloads 100
658 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 34
657 Associations of Gene Polymorphism of IL-17 a (C737T) with Its Level in Patients with Erysipelas Kazakh Population

Authors: Nazira B. Bekenova, Lydia A. Mukovozova, Andrej M. Grjibovski, Alma Z. Tokayeva, Yerbol M. Smail, Nurlan E. Aukenov

Abstract:

Erysipelas is an infectious disease with socio-economic significance and prone to prolonged recurrent course (30%). Contribution of genetic factors, in particular the gene polymorphism of cytokines, can be essential in disease etiology and pathogenesis. Interleukin – 17 A are produced by T helpers of 17 type and plays a key role in development of local inflammation process. Local inflammatory process is a dominant in the clinic of erysipelas. Established that the skin and mucosas are primary areas of migration (homing) Th17-cell and their cytokines are stimulate the barrier function of the epithelium. We studied associations between gene polymorphism of IL-17A (C737T) rs 8193036 and IL-17A level in patients with erysipelas Kazakh population. Altogether, 90 cases with erysipelas and 90 healthy controls from an ethnic Kazakh population comprised the sample. Cases were identified at Clinical Infectious Diseases Hospital of Semey (Kazakhstan). The IL-17A (rs8193036) polymorphism was analyzed by a real time polymerase chain reaction. Plasma levels of IL-17 A were assessed by immuneenzyme analysis method using ‘Vector-Best’ test-system (Russia). Differences in levels of IL-17 A between CC, TT, CT groups were studied using Kruskal — Wallis test. Pairwise comparisons were performed using Mann-Whitney tests with Bonferroni correction (New significance level was set to 0.025). We found, that in patients with erysipelas with CC genotype the level of IL-17 A was higher (p= 0, 010) compared to the carriers of CT genotype. When compared the level of IL – 17 A between the patients with TT genotype and patients with CC genotype, also between the patients with CT genotype and patients with TT genotype statistically significant differences are not revealed (p = 0.374 and p = 0.043, respectively). Comparisons of IL-17 A plasma levels between the CC and CT genotypes, between the CC and TT genotypes, and between the TT and CT in healthy patients did not reveal significant differences (p = 0, 291). Therefore, we are determined the associations of gene polymorphism of IL-17 A (C737T) with its level in patients erysipelas carriers CC genotype.

Keywords: erysipelas, interleukin – 17 A, Kazakh, polymorphism

Procedia PDF Downloads 435
656 Anti-Obesity Activity of Garcinia xanthochymus: Biochemical Characterization and In vivo Studies in High Fat Diet-Rat Model

Authors: Mahesh M. Patil, K. A. Anu-Appaiah

Abstract:

Overweight and obesity is a serious medical problem, increasing in prevalence, and affecting millions worldwide. Investigators have been trying from decades to articulate the burden of obesity and related risk factors. To answer this problem, we suggest a new therapeutic anti-obesity compounds from Garcinia xanthochymus fruit. However, there is little published scientific information on non-hydroxycitric acid Garcinia species. Our findings include biochemical characterization of the fruit; in vivo toxicity and bio-efficacy study of G. xanthochymus in high fat diet wistar rat model. We observed that Garcinia pericarp is a rich source of organic acids, polyphenols, mono- (40.63%) and poly-unsaturated fatty acids (16.45%; omega-3: 10.02%). Toxicological studies have showed that Garcinia is safe and had no observed adverse effect level up to 400 mg/kg/day. Body weight and food intake was significantly (P<0.05) reduced in oral gavage treated rats (sonicated Garcinia powder) in 13 weeks. Subcutaneous fat was significantly (P<0.05) reduced in Garcinia treated rats. Hepatocytes significantly (p<0.05) overexpressed sterol regulatory element binding protein 2, liver X receptor- α, liver X receptor- β, lipoprotein lipase and monoacylglycerol lipase. Fatty acid binding protein 1 and peroxisome proliferator activated receptor- α were down regulated as assessed by real time qPCR. Currently our research is focused on the adipocyte obesity related gene expressions, effect of Garcinia on 3T3-adipocyte cell lines and high fat diet induced mice model. This in vivo pre-clinical data suggests that G. xanthochymus may have clinical utility for the treatment of obesity. However, further studies are required to establish its potency.

Keywords: Garcinia xanthochymus, anti-obesity, high fat diet, real time qPCR

Procedia PDF Downloads 252
655 Nitrate Photoremoval in Water Using Nanocatalysts Based on Ag / Pt over TiO2

Authors: Ana M. Antolín, Sandra Contreras, Francesc Medina, Didier Tichit

Abstract:

Introduction: High levels of nitrates (> 50 ppm NO3-) in drinking water are potentially risky to human health. In the recent years, the trend of nitrate concentration in groundwater is rising in the EU and other countries. Conventional catalytic nitrate reduction processes into N2 and H2O lead to some toxic intermediates and by-products, such as NO2-, NH4+, and NOx gases. Alternatively, photocatalytic nitrate removal using solar irradiation and heterogeneous catalysts is a very promising and ecofriendly technique. It has been scarcely performed and more research on highly efficient catalysts is still needed. In this work, different nanocatalysts supported on Aeroxide Titania P25 (P25) have been prepared varying: 0.5-4 % wt. Ag); Pt (2, 4 % wt.); Pt precursor (H2PtCl6/K2PtCl6); and impregnation order of both metals. Pt was chosen in order to increase the selectivity to N2 and decrease that to NO2-. Catalysts were characterized by nitrogen physisorption, X-Ray diffraction, UV-visible spectroscopy, TEM and X Ray-Photoelectron Spectroscopy. The aim was to determine the influence of the composition and the preparation method of the catalysts on the conversion and selectivity in the nitrate reduction, as well as going through an overall and better understanding of the process. Nanocatalysts synthesis: For the mono and bimetallic catalysts preparation, wise-drop wetness impregnation of the precursors (AgNO3, H2PtCl6, K2PtCl6) followed by a reduction step (NaBH4) was used to obtain the metal colloids. Results and conclusions: Denitration experiments were performed in a 350 mL PTFE batch reactor under inert standard operational conditions, ultraviolet irradiations (λ=254 nm (UV-C); λ=365 nm (UV-A)), and presence/absence of hydrogen gas as a reducing agent, contrary to most studies using oxalic or formic acid. Samples were analyzed by Ionic Chromatography. Blank experiments using respectively P25 (dark conditions), hydrogen only and UV irradiations without hydrogen demonstrated a clear influence of the presence of hydrogen on nitrate reduction. Also, they demonstrated that UV irradiation increased the selectivity to N2. Interestingly, the best activity was obtained under ultraviolet lamps, especially at a closer wavelength to visible light irradiation (λ = 365 nm) and H2. 2% Ag/P25 leaded to the highest NO3- conversion among the monometallic catalysts. However, nitrite quantities have to be diminished. On the other hand, practically no nitrate conversion was observed with the monometallics based on Pt/P25. Therefore, the amount of 2% Ag was chosen for the bimetallic catalysts. Regarding the bimetallic catalysts, it is observed that the metal impregnation order, amount and Pt precursor highly affects the results. Higher selectivity to the desirable N2 gas is obtained when Pt was firstly added, especially with K2PtCl6 as Pt precursor. This suggests that when Pt is secondly added, it covers the Ag particles, which are the most active in this reaction. It could be concluded that Ag allows the nitrate reduction step to nitrite, and Pt the nitrite reduction step toward the desirable N2 gas.

Keywords: heterogeneous catalysis, hydrogenation, nanocatalyst, nitrate removal, photocatalysis

Procedia PDF Downloads 272
654 The Elimination of Fossil Fuel Subsidies from the Road Transportation Sector and the Promotion of Electro Mobility: The Ecuadorian Case

Authors: Henry Acurio, Alvaro Corral, Juan Fonseca

Abstract:

In Ecuador, subventions on fossil fuels for the road transportation sector have always been part of its economy throughout time, mainly because of demagogy and populism from political leaders. It is clearly seen that the government cannot maintain the subsidies anymore due to its commercial balance and its general state budget; subsidies are a key barrier to implementing the use of cleaner technologies. However, during the last few months, the elimination of subsidies has been done gradually with the purpose of reaching international prices. It is expected that with this measure, the population will opt for other means of transportation, and in a certain way, it will promote the use of private electric vehicles and public, e.g., taxis and buses (urban transport). Considering the three main elements of sustainable development, an analysis of the social, economic, and environmental impacts of eliminating subsidies will be generated at the country level. To achieve this, four scenarios will be developed in order to determine how the subsidies will contribute to the promotion of electro-mobility: 1) A Business as Usual (BAU) scenario; 2) the introduction of 10 000 electric vehicles by 2025; 3) the introduction of 100 000 electric vehicles by 2030; 4) the introduction of 750 000 electric vehicles by 2040 (for all the scenarios, buses, taxis, lightweight duty vehicles, and private vehicles will be introduced, as it is established in the National Electro Mobility Strategy for Ecuador). The Low Emissions Analysis Platform (LEAP) will be used, and it will be suitable to determine the cost for the government in terms of importing derivatives for fossil fuels and the cost of electricity to power the electric fleet that can be changed. The elimination of subventions generates fiscal resources for the state that can be used to develop other kinds of projects that will benefit Ecuadorian society. It will definitely change the energy matrix, and it will provide energy security for the country; it will be an opportunity for the government to incentivize a greater introduction of renewable energies, e.g., solar, wind, and geothermal. At the same time, it will also reduce greenhouse gas emissions (GHG) from the transportation sector, considering its mitigation potential, which as a result, will ameliorate the inhabitant quality of life by improving the quality of air, therefore reducing respiratory diseases associated with exhaust emissions, consequently, achieving sustainability, the Sustainable Development Goals (SDGs), and complying with the agreements established in the Paris Agreement COP 21 in 2015. Electro-mobility in Latin America and the Caribbean can only be achieved by the implementation of the right policies by the central government, which need to be accompanied by a National Urban Mobility Policy (NUMP), and can encompass a greater vision to develop holistic, sustainable transport systems at local governments.

Keywords: electro mobility, energy, policy, sustainable transportation

Procedia PDF Downloads 81
653 Probiotic Potential and Antimicrobial Activity of Enterococcus faecium Isolated from Chicken Caecal and Fecal Samples

Authors: Salma H. Abu Hafsa, A. Mendonca, B. Brehm-Stecher, A. A. Hassan, S. A. Ibrahim

Abstract:

Enterococci are important inhabitants of the animal intestine and are widely used in probiotic products. A probiotic strain is expected to possess several desirable properties in order to exert beneficial effects. Therefore, the objective of this study was to isolate and characterize strains of Enterococcus sp. from chicken cecal and fecal samples to determine potential probiotic properties. Enterococci were isolated from thirty one chicken cecal and fecal samples collected from a local farm. In vitro studies were performed to assess antibacterial activity (using agar well diffusion and cell free supernatant broth technique against Salmonella enterica serotype Enteritidis), susceptibility to antibiotics (amoxycillin, cotrimoxazole, chloramphenicol, cefuroxime, ceftriaxone, ciprofloxacin, and nalidixic acid), survival in acidic conditions, resistance to bile salts, and their survival during simulated gastric juice conditions at pH 2.5. Isolates were identified using biochemical and molecular assays (API 50 CHL, and API ZYM kits followed by 16S rDNA gene sequence analysis). Two strains were identified, of which, Enteroccocus faecium was capable of inhibiting the growth of S. enteritidis and was susceptible to a wide range of antibiotics. In addition, the isolated strain exhibited significant resistance under highly acidic conditions (pH=2.5) for 8 hours and survived well in bile salt at 0.2% for 24 hours and showing ability to survive in the presence of simulated gastric juice at pH 2.5. Based on these results, the E. faecium isolate fulfills some of the criteria to be considered as a probiotic strain and therefore, could be used as a feed additive with good potential for controlling S. enteritidis in chickens. However, in vivo studies are needed to determine the safety of the strain.

Keywords: acid tolerance, antimicrobial activity, Enterococcus faecium, probiotic

Procedia PDF Downloads 397
652 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development

Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam

Abstract:

The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.

Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae

Procedia PDF Downloads 117
651 Bioclimatic Devices in the Historical Rural Building: A Carried out Analysis on Some Rural Architectures in Puglia

Authors: Valentina Adduci

Abstract:

The developing research aims to define in general the criteria of environmental sustainability of rural buildings in Puglia and particularly in the manor farm. The main part of the study analyzes the relationship / dependence between the rural building and the landscape which, after many stratifications, results clearly identified and sometimes also characterized in a positive way. The location of the manor farm, in fact, is often conditioned by the infrastructural network and by the structure of the agricultural landscape. The manor farm, without the constraints due to the urban pattern’s density, was developed in accordance with a logical settlement that gives priority to the environmental aspects. These vernacular architectures are the most valuable example of how our ancestors have planned their dwellings according to nature. The 237 farms, analysis’ object, have been reported in cartography through the GIS system; a symbol has been assigned to each of them to identify the architectural typology and a different color for the historical period of construction. A datasheet template has been drawn up, and it has made possible a deeper understanding of each manor farm. This method provides a faster comparison of the most recurring characters in all the considered buildings, except for those farms which benefited from special geographical conditions, such as proximity to the road network or waterways. Below there are some of the most frequently constants derived from the statistical study of the examined buildings: southeast orientation of the main facade; placement of the sheep pen on the ground tilted and exposed to the south side; larger windowed surface on the south elevation; smaller windowed surface on the north elevation; presence of shielding vegetation near the more exposed elevations to the solar radiation; food storage’s rooms located on the ground floor or in the basement; animal shelter located in north side of the farm; presence of tanks and wells, sometimes combined with a very accurate channeling storm water system; thick layers of masonry walls, inside of which were often obtained hollow spaces to house stairwells or depots for the food storage; exclusive use of local building materials. The research aims to trace the ancient use of bioclimatic constructive techniques in the Apulian rural architecture and to define those that derive from an empirical knowledge and those that respond to an already encoded design. These constructive expedients are especially useful to obtain an effective passive cooling, to promote the natural ventilation and to built ingenious systems for the recovery and the preservation of rainwater and are still found in some of the manor farms analyzed, most of them are, today, in a serious state of neglect.

Keywords: bioclimatic devices, farmstead, rural landscape, sustainability

Procedia PDF Downloads 383
650 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 220
649 The Cleavage of DNA by the Anti-Tumor Drug Bleomycin at the Transcription Start Sites of Human Genes Using Genome-Wide Techniques

Authors: Vincent Murray

Abstract:

The glycopeptide bleomycin is used in the treatment of testicular cancer, Hodgkin's lymphoma, and squamous cell carcinoma. Bleomycin damages and cleaves DNA in human cells, and this is considered to be the main mode of action for bleomycin's anti-tumor activity. In particular, double-strand breaks are thought to be the main mechanism for the cellular toxicity of bleomycin. Using Illumina next-generation DNA sequencing techniques, the genome-wide sequence specificity of bleomycin-induced double-strand breaks was determined in human cells. The degree of bleomycin cleavage was also assessed at the transcription start sites (TSSs) of actively transcribed genes and compared with non-transcribed genes. It was observed that bleomycin preferentially cleaved at the TSSs of actively transcribed human genes. There was a correlation between the degree of this enhanced cleavage at TSSs and the level of transcriptional activity. Bleomycin cleavage is also affected by chromatin structure and at TSSs, the peaks of bleomycin cleavage were approximately 200 bp apart. This indicated that bleomycin was able to detect phased nucleosomes at the TSSs of actively transcribed human genes. The genome-wide cleavage pattern of the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin was also investigated in human cells. As found for bleomycin, these bleomycin analogues also preferentially cleaved at the TSSs of actively transcribed human genes. The cytotoxicity (IC₅₀ values) of these bleomycin analogues was determined. It was found that the degree of enhanced cleavage at TSSs was inversely correlated with the IC₅₀ values of the bleomycin analogues. This suggested that the level of cleavage at the TSSs of actively transcribed human genes was important for the cytotoxicity of bleomycin and analogues. Hence this study provided a deeper understanding of the cellular processes involved in the cancer chemotherapeutic activity of bleomycin.

Keywords: anti-tumour activity, bleomycin analogues, chromatin structure, genome-wide study, Illumina DNA sequencing

Procedia PDF Downloads 120
648 Identification of the Key Enzyme of Roseoflavin Biosynthesis

Authors: V. Konjik, J. Schwartz, R. Sandhoff, M. Mack

Abstract:

The rising number of multi-resistant pathogens demands the development of new antibiotics in order to reduce the lethal risk of infections. Here, we investigate roseoflavin, a vitamin B2 analogue which is produced by Streptomyces davawensis and Streptomyces cinnabarinus. We consider roseoflavin to be a 'Trojan horse' compound. Its chemical structure is very similar to riboflavin but in fact it is a toxin. Furthermore, it is a clever strategy with regard to the delivery of an antibiotic to its site of action but also with regard to the production of this chemical: The producer cell has only to convert a vitamin (which is already present in the cytoplasm) into a vitamin analog. Roseoflavin inhibits the activity of Flavin depending proteins, which makes up to 3.5 % of predicted proteins in organisms sequenced so far. We sequentially knocked out gene clusters and later on single genes in order to find the ones which are involved in the roseoflavin biosynthesis. Consequently, we identified the gene rosB, coding for the protein carrying out the first step of roseoflavin biosynthesis, starting form Flavin mononucleotide. Here we show, that the protein RosB has so far unknown features. It is per se an oxidoreductase, a decarboxylase and an aminotransferase, all rolled into one enzyme. A screen of cofactors revealed needs of oxygen, NAD+, thiamine and glutamic acid to carry out its function. Surprisingly, thiamine is not only needed for the decaboxylation step, but also for the oxidation of 8-demethyl-8-formyl Flavin mononucleotide. We had managed to isolate three different Flavin intermediates with different oxidation states, which gave us a mechanistic insight of RosB functionality. Our work points to a so far new function of thiamine in Streptomyces davawensis. Additionally, RosB could be extremely useful for chemical synthesis. Careful engineering of RosB may allow the site-specific replacement of methyl groups by amino groups in polyaromatic compounds of commercial interest. Finally, the complete clarification of the roseoflavin biosynthesis opens the possibility of engineering cost-effective roseoflavin producing strains.

Keywords: antibiotic, flavin analogue, roseoflavin biosynthesis, vitamin B2

Procedia PDF Downloads 243
647 Increase of the Nanofiber Degradation Rate Using PCL-PEO and PCL-PVP as a Shell in the Electrospun Core-Shell Nanofibers Using the Needleless Blades

Authors: Matej Buzgo, Erico Himawan, Ksenija JašIna, Aiva Simaite

Abstract:

Electrospinning is a versatile and efficient technology for producing nanofibers for biomedical applications. One of the most common polymers used for the preparation of nanofibers for regenerative medicine and drug delivery applications is polycaprolactone (PCL). PCL is a biocompatible and bioabsorbable material that can be used to stimulate the regeneration of various tissues. It is also a common material used for the development of drug delivery systems by blending the polymer with small active molecules. However, for many drug delivery applications, e.g. cancer immunotherapy, PCL biodegradation rate that may exceed 9 months is too long, and faster nanofiber dissolution is needed. In this paper, we investigate the dissolution and small molecule release rates of PCL blends with two hydrophilic polymers: polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP). We show that adding hydrophilic polymer to the PCL reduces the water contact angle, increases the dissolution rate, and strengthens the interactions between the hydrophilic drug and polymer matrix that further sustain its release. Finally using this method, we were also able to increase the nanofiber degradation rate when PCL-PEO and PCL-PVP were used as a shell in the electrospun core-shell nanofibers and spread up the release of active proteins from their core. Electrospinning can be used for the preparation of the core-shell nanofibers, where active ingredients are encapsulated in the core and their release rate is regulated by the shell. However, such fibers are usually prepared by coaxial electrospinning that is an extremely low-throughput technique. An alternative is emulsion electrospinning that could be upscaled using needleless blades. In this work, we investigate the possibility of using emulsion electrospinning for encapsulation and sustained release of the growth factors for the development of the organotypic skin models. The core-shell nanofibers were prepared using the optimized formulation and the release rate of proteins from the fibers was investigated for 2 weeks – typical cell culture conditions.

Keywords: electrospinning, polycaprolactone (PCL), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP)

Procedia PDF Downloads 273
646 Phenotypical and Genotypical Diagnosis of Cystic Fibrosis in 26 Cases from East and South Algeria

Authors: Yahia Massinissa, Yahia Mouloud

Abstract:

Cystic fibrosis (CF), the most common lethal genetic disease in the Europe population, is caused by mutations in the transmembrane conductance regulator gene (CFTR). It affects most organs including an epithelial tissue, base of hydroelectrolytic transepithelial transport, notably that aerial ways, the pancreas, the biliary ways, the intestine, sweat glands and the genital tractus. The gene whose anomalies are responsible of the cystic fibrosis codes for a protein Cl channel named CFTR (cystic fibrosis transmembrane conductance regulator) that exercises multiple functions in the cell, one of the most important in control of sodium and chlorine through epithelia. The deficient function translates itself notably by an abnormal production of viscous secretion that obstructs the execrator channels of this target organ: one observes then a dilatation, an inflammation and an atrophy of these organs. It also translates itself by an increase of the concentration in sodium and in chloride in sweat, to the basis of the sweat test. In order to do a phenotypical and genotypical diagnosis at a part of the Algerian population, our survey has been carried on 16 patients with evocative symptoms of the cystic fibrosis at that the clinical context has been confirmed by a sweat test. However, anomalies of the CFTR gene have been determined by electrophoresis in gel of polyacrylamide of the PCR products (polymerase chain reaction), after enzymatic digestion, then visualized to the ultraviolet (UV) after action of the ethidium bromide. All mutations detected at the time of our survey have already been identified at patients attained by this pathology in other populations of the world. However, the important number of found mutation with regard to the one of the studied patients testifies that the origin of this big clinical variability that characterizes the illness in the consequences of an enormous diversity of molecular defects of the CFTR gene.

Keywords: cystic fibrosis, CFTR gene, polymorphism, algerian population, sweat test, genotypical diagnosis

Procedia PDF Downloads 310
645 Quantification and Evaluation of Tumors Heterogeneity Utilizing Multimodality Imaging

Authors: Ramin Ghasemi Shayan, Morteza Janebifam

Abstract:

Tumors are regularly inhomogeneous. Provincial varieties in death, metabolic action, multiplication and body part are watched. There’s expanding proof that strong tumors may contain subpopulations of cells with various genotypes and phenotypes. These unmistakable populaces of malignancy cells can connect during a serious way and may contrast in affectability to medications. Most tumors show organic heterogeneity1–3 remembering heterogeneity for genomic subtypes, varieties inside the statement of development variables and genius, and hostile to angiogenic factors4–9 and varieties inside the tumoural microenvironment. These can present as contrasts between tumors in a few people. for instance, O6-methylguanine-DNA methyltransferase, a DNA fix compound, is hushed by methylation of the quality advertiser in half of glioblastoma (GBM), adding to chemosensitivity, and improved endurance. From the outset, there includes been specific enthusiasm inside the usage of dissemination weighted imaging (DWI) and dynamic complexity upgraded MRI (DCE-MRI). DWI sharpens MRI to water dispersion inside the extravascular extracellular space (EES) and is wiped out with the size and setup of the cell populace. Additionally, DCE-MRI utilizes dynamic obtaining of pictures during and after the infusion of intravenous complexity operator. Signal changes are additionally changed to outright grouping of differentiation permitting examination utilizing pharmacokinetic models. PET scan modality gives one of a kind natural particularity, permitting dynamic or static imaging of organic atoms marked with positron emanating isotopes (for example, 15O, 18F, 11C). The strategy is explained to a colossal radiation portion, which points of confinement rehashed estimations, particularly when utilized together with PC tomography (CT). At long last, it's of incredible enthusiasm to quantify territorial hemoglobin state, which could be joined with DCE-CT vascular physiology estimation to create significant experiences for understanding tumor hypoxia.

Keywords: heterogeneity, computerized tomography scan, magnetic resonance imaging, PET

Procedia PDF Downloads 146
644 Feasibility of Phenolic Acids Rich Fraction from Gynura procumbens as Potential Antihyperlipidemic Agent

Authors: Vikneswaran Murugaiyah, Sultan Ayesh Mohammed Saghir, Kisantini Murugesu, Mohd. Zaini Asmawi, Amirin Sadikun

Abstract:

Gynura procumbens is a popular medicinal plant used as a folk medicine in Southeast Asia to treat kidney diseases, diabetes mellitus and hyperlipidemia. The present study aims to investigate the antihyperlipidemic potential of phenolic acids rich fraction (PARF) from G. procumbens in chemically-induced acute and high fat diet-induced chronic hyperlipidemic rats. Ethanolic extract of G. procumbens leaves exhibited significant reductions in total cholesterol (TC) and triglycerides (TG) levels (P < 0.01 and P < 0.001, respectively) of poloxamer 407-induced rats compared to hyperlipidemic control after 58 h of treatment. Upon bioactivity guided fractionation the antihyperlipidemic activity was found to be concentrated in the PARF, which significantly reduced the TC and TG levels (P < 0.001). HPLC analysis revealed that 3,5-dicaffeoylquinic acid; 4,5-dicaffeoylquinic acid and chlorogenic acid are the major compounds in the PARF. Likewise, chlorogenic acid (60 mg/kg) exhibited significant reductions in TC and TG levels of hyperlipidemic rats (P < 0.001). Both chlorogenic acid and PARF significantly reduced LDL, VLDL and atherogenic index (P<0.01), while PARF increased the HDL (P < 0.01) compared to hyperlipidemic control. Both were found to be not cytotoxic against normal and cancer cell lines. In addition, LD50 of orally administered PARF was more than 5,000 mg/kg. Further investigation in high fat diet-induced chronic hyperlipidemic rats revealed that chronic administration of PARF dose-dependently restored the increase in lipids parameters. In summary, the phenolic acids rich fraction of G. procumbens leaves showed promising antihyperlipidemic effect in both chemically- and diet-induced hyperlipidemic rats that warrants further elucidation on its mechanisms of action.

Keywords: Antihyperlipidemic, Gynura procumbens, phenolic acids, chlorogenic acid, poloxamer-407, high fat diet

Procedia PDF Downloads 231
643 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 120
642 Prevalence, Isolation and Identification of Feline Panleukopaenia Virus from Wild Felids in Nandankanan Zoo, Odisha

Authors: Arun Kharate, Sarata Kumar Sahu, Susen Kumar Panda, Niranjan Sahoo, H. K. Panda

Abstract:

In the present study, an attempt has been made for isolation and identification of feline panleukopaenia virus (FPLV) from wild felids of Nandankanan zoo, Odisha, India, along with prevalence study of FPLV. Fecal samples collected from wild felids (26 tigers, 22 lions, 5 leopards, 3 hyenas, 1 jaguar, 2 foxes and 1 wild cat) were subjected to hemagglutinnation test and fluorescent antibody test. In hemagglutinnation test 13 (50%) samples from tiger, 14 (63.63%) samples from lions, 1 (20%) sample from leopards, 1 (50%) from fox, 3 (100%) samples from hyenas and 1 (100%) sample from wild cat were positive. On fluorescent antibody test (FAT), 15 (57.69%) samples from tiger, 18 (81.81%) from lions, 2 (40%) from leopards, 1 (50%) from fox, 3 (100%) from hyenas and 1 (100%) from wild cat were positive. FPLV was isolated using MDBK cell line and preliminary characterization was done on the basis of characteristic cytopathic effect. The virus samples were quantified through titration in MDBK cells. Serological confirmation of FPLV isolates was carried out by HI test, micro-SNT and indirect-ELISA. Physico-chemical characters like pH and temperature resistance along molecular identification using specific FPLV primers was carried out. Seroprevalence study of 36 serum samples employing HI test, micro SNT and indirect-ELISA revealed prevalence of 38.8, 44.4 and 72.2% respectively. During study period an adult tigress and a tiger cub died suspected of feline panleukopenia. The necropsy findings in both animals showed hemorrhagic gastroenteritis. The cytological examination revealed presence of intranuclear inclusion bodies in the intestinal epithelial cells. Spleen, mesenteric lymph node and intestine were positive for feline panleukopenia by FAT. The investigation revealed that feline panleukopenia was prevalent in wild felines of Nandankanan zoo.

Keywords: Feline panleukopenia, fluorescent antibody test, hemagglutination test, indirect-ELISA, Nandankanan zoo

Procedia PDF Downloads 326
641 Antimicrobial, Antioxidant and Cytotoxic Activities of Cleoma viscosa Linn. Crude Extracts

Authors: Suttijit Sriwatcharakul

Abstract:

The bioactivity studies from the weed ethanolic crude extracts from leaf, stem, pod and root of wild spider flower; Cleoma viscosa Linn. were analyzed for the growth inhibition of 6 bacterial species; Salmonella typhimurium TISTR 5562, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus TISTR 1466, Streptococcus epidermidis ATCC 1228, Escherichia coli DMST 4212 and Bacillus subtilis ATCC 6633 with initial concentration crude extract of 50 mg/ml. The agar well diffusion results found that the extracts inhibit only gram positive bacteria species; S. aureus, S. epidermidis and B. subtilis. The minimum inhibition concentration study with gram positive strains revealed that leaf crude extract give the best result of the lowest concentration compared with other plant parts to inhibit the growth of S. aureus, S. epidermidis and B. subtilis at 0.78, 0.39 and lower than 0.39 mg/ml, respectively. The determination of total phenolic compounds in the crude extracts exhibited the highest phenolic content was 10.41 mg GAE/g dry weight in leaf crude extract. Analyzed the efficacy of free radical scavenging by using DPPH radical scavenging assay with all crude extracts showed value of IC50 of leaf, stem, pod and root crude extracts were 8.32, 12.26, 21.62 and 35.99 mg/ml, respectively. Studied cytotoxicity of crude extracts on human breast adenocarcinoma cell line by MTT assay found that pod extract had the most cytotoxicity CC50 value, 32.41 µg/ml. Antioxidant activity and cytotoxicity of crude extracts exhibited that the more increase of extract concentration, the more activities indicated. According to the bioactivities results, the leaf crude extract of Cleoma viscosa Linn. is the most interesting plant part for further work to search the beneficial of this weed.

Keywords: antimicrobial, antioxidant activity, Cleoma viscosa Linn., cytotoxicity test, total phenolic compound

Procedia PDF Downloads 272
640 Effect of Insulin versus Green Tea on the Parotid Gland of Streptozotocin Induced Diabetic Rats

Authors: H. El-Messiry, M. El-Zainy, D. Ghazy

Abstract:

Diabetes is a metabolic disease that results in a variety of oral health complications. Green tea is a natural antioxidant proved to have powerful effects against diabetes. The aim of this study was to compare between the effect of insulin and green tea on the Parotid gland of streptozotocin induced diabetic Albino rats by using light and transmission electron microscopy. Forty male Albino rats were divided into control group and diabetic groups. The diabetic group received a single injection of 40 mg/kg of streptozotocin intra-peritoneal under anesthesia and was further subdivided into three subgroups: The diabetic untreated subgroup which was untreated for two weeks, the insulin treated subgroup which has received insulin subcutaneously in a daily dose of 5 IU/kg body weight/day for two weeks and a green tea treated subgroup received a daily dose of 1 ml/ 100 gm body weight intragastrically for two weeks. Rats were terminated and parotid glands were dissected and processed for light and transmission electron microscopic examination. Histological examination of the diabetic untreated subgroup revealed acinar cells with pyknotic and hyperchromatic nuclei with cytoplasmic vacuolations. Ultrastructurally, acinar cells showed nuclear pleomorphism, dilated rough endoplasmic reticulum and swollen mitochondria with damaged cristae. Inflammatory cell infiltration was detected both histologically and ultrastructurally. Ducts showed signs of degeneration with loss of their normal outline and stagnated secretion within the lumen. However, insulin and green tea treated subgroups showed minimal degenerative damage and were almost similar to the control with minimal changes. Treatment of the parotid gland of the streptozotocin induced diabetic rats with GT was closely comparable to the traditional insulin therapy in reducing signs of histological and ultrastructural damage.

Keywords: diabetes, green tea, insulin, parotid

Procedia PDF Downloads 177
639 Radial Variation of Anatomical Characteristics in Three Native Fast-Growing Species Growing in South Kalimantan, Indonesia

Authors: Wiwin Tyas Istikowati, Futoshi Ishiguri, Haruna Aisho, Budi Sutiya, Imam Wahyudi, Kazuya Iizuka, Shinso Yokota

Abstract:

The objective of this study was to investigate the anatomical characteristics of three native fast-growing species, terap (Artocarpus elasticus Reinw. ex Blume), medang (Neolitsea latifolia (Blume) S. Moore), and balik angin (Alphitonia excelsa (Fenzel) Reissek ex Benth) growing in the secondary forest in South Kalimantan, Indonesia for evaluating the possibility of tree breeding for wood quality. Cell lengths were investigated for 5 trees in each species at several different height positions (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 m above the ground). The mean values of fiber and vessel element lengths in terap, medang, and balik angin were 1.52 and 0.44, 1.16 and 0.53, and 1.02 and 0.49 mm, respectively. Fiber length in terap and balik angin gradually increased from pith to bark, whereas it increased up to 2 cm and then became nearly constant to the bark in medang. Vessel element length was almost constant from pith to bark in terap and balik angin, while slightly increased from pith to bark in medang. Fiber length in terap has a fluctuation pattern from ground level to top of the tree. It decreased up to 3 m above the ground, increased up to 5 m, and then decreased to the top of the tree. On the other hand, vessel element length slightly increased up to 5 m above the ground, and then decreased to the top of the tree. Both fiber and vessel element lengths in medang were almost constant from ground level to top of the tree, whereas decreased from ground level to top of the tree in balik angin. Significant difference at 1% level among trees was found in both fiber and vessel element length in both radial and longitudinal directions for terap and medang. Based on obtained results, it is concluded that the wood quality in fiber and vessel element lengths of terap and medang can be improved by tree breeding programs.

Keywords: anatomical properties, fiber length, vessel elements length, fast-growing species

Procedia PDF Downloads 348
638 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects

Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon

Abstract:

Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.

Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle

Procedia PDF Downloads 248
637 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation

Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um

Abstract:

In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.

Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube

Procedia PDF Downloads 201
636 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.

Keywords: energy system, district heating, sustainable business strategies, sustainable development

Procedia PDF Downloads 169
635 Drought Alters the Expression of a Candidate Zea Mays P-Coumarate 3-Hydroxylase Gene and Caffeic Acid Biosynthesis

Authors: Zintle Kolo, Ndiko Ludidi

Abstract:

The enzymatic activity of p-coumarate 3-hydroxylase (C3H) synthesize caffeic acid from p-coumaric acid. We recently showed that exogenously applied caffeic acid confers salinity tolerance in soybean (Glycine max) by inducing antioxidant enzymatic activity to promote enhanced scavenging or reactive oxygen species, thus limiting salinity-induced oxidative stress. Recent evidence also establishes that pre-treatment of plants with exogenously supplied caffeic acid improves plant tolerance to osmotic stress by improving plant antioxidant capacity and enhancing biosynthesis of compatible solutes. We aimed to identify a C3H in maize (Zea mays) and evaluate the effect of drought on the spatial and temporal expression of the gene encoding the candidate maize C3H (ZmC3H). Primary sequence analysis shows that ZmC3H shares 71% identity with an Arabidopsis thaliana C3H that is implicated in the control of Arabidopsis cell expansion, growth, and responses to stress. In silico ZmC3H promoter analysis reveals the presence of cis-acting elements that interact with transcription factors implicated in plant responses to drought. Spatial expression analysis by semi-quantitative RT-PCR shows that ZmC3H is expressed in both leaves and roots under normal conditions. However, drought represses the expression of ZmC3H in leaves whereas it up-regulates its expression in roots. These changes in ZmC3H expression correlate with the changes in the content of caffeic acid in maize in response to drought. We illustrate the implications of these changes in the expression of the gene in relation to maize responses to drought and discuss the potential of regulating caffeic acid biosynthesis towards genetic improvement of maize tolerance to drought stress. These findings have implications for food security because of the potential of the implications of the study for drought tolerance in maize.

Keywords: caffeic acid, drought-responsive expression, maize drought tolerance, p-coumarate 3-hydroxylase

Procedia PDF Downloads 472