Search results for: oriented network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5886

Search results for: oriented network

1566 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 192
1565 Functional Poly(Hedral Oligomeric Silsesquioxane) Nano-Spacer to Boost Quantum Resistive Vapour Sensors’ Sensitivity and Selectivity

Authors: Jean-Francois Feller

Abstract:

The analysis of the volatolome emitted by the human body with a sensor array (e-nose) is a method for clinical applications full of promises to make an olfactive fingerprint characteristic of people's health state. But the amount of volatile organic compounds (VOC) to detect, being in the range of parts per billion (ppb), and their diversity (several hundred) justifies developing ever more sensitive and selective vapor sensors to improve the discrimination ability of the e-nose, is still of interest. Quantum resistive vapour sensors (vQRS) made with nanostructured conductive polymer nanocomposite transducers have shown a great versatility in both their fabrication and operation to detect volatiles of interest such as cancer biomarkers. However, it has been shown that their chemo-resistive response was highly dependent on the quality of the inter-particular junctions in the percolated architecture. The present work investigates the effectiveness of poly(hedral oligomeric silsesquioxane) acting as a nanospacer to amplify the disconnectability of the conducting network and thus maximize the vQRS's sensitivity to VOC.

Keywords: volatolome, quantum resistive vapour sensor, nanostructured conductive polymer nanocomposites, olfactive diagnosis

Procedia PDF Downloads 19
1564 Aligning Cultural Practices through Information Exchange: A Taxonomy in Global Manufacturing Industry

Authors: Hung Nguyen

Abstract:

With the rise of global supply chain network, the choice of supply chain orientation is critical. The alignment between cultural similarity and supply chain information exchange could help identify appropriate supply chain orientations, which would differentiate the stronger competitors and performers from the weaker ones. Through developing a taxonomy, this study examined whether the choices of action programs and manufacturing performance differ depending on the levels of attainment cultural similarity and information exchange. This study employed statistical tests on a large-scale dataset consisting of 680 manufacturing plants from various cultures and industries. Firms need to align cultural practices with the level of information exchange in order to achieve good overall business performance. There appeared to be consistent three major orientations: the Proactive, the Initiative and the Reactive. Firms are experiencing higher payoffs from various improvements are the ones successful alignment in both information exchange and cultural similarity The findings provide step-by-step decision making for supply chain information exchange and offer guidance especially for global supply chain managers. In including both cultural similarity and information exchange, this paper adds greater comprehensiveness and richness to the supply chain literature.

Keywords: culture, information exchange, supply chain orientation, similarity

Procedia PDF Downloads 357
1563 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model

Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu

Abstract:

Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.

Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing

Procedia PDF Downloads 249
1562 Design and Implementation of Medium Access Control Based Routing on Real Wireless Sensor Networks Testbed

Authors: Smriti Agarwal, Ashish Payal, B. V. R. Reddy

Abstract:

IEEE 802.15.4 is a Low Rate Wireless Personal Area Networks (LR-WPAN) standard combined with ZigBee, which is going to enable new applications in Wireless Sensor Networks (WSNs) and Internet of Things (IoT) domain. In recent years, it has become a popular standard for WSNs. Wireless communication among sensor motes, enabled by IEEE 802.15.4 standard, is extensively replacing the existing wired technology in a wide range of monitoring and control applications. Researchers have proposed a routing framework and mechanism that interacts with the IEEE 802.15.4 standard using software platform. In this paper, we have designed and implemented MAC based routing (MBR) based on IEEE 802.15.4 standard using a hardware platform “SENSEnuts”. The experimental results include data through light and temperature sensors obtained from communication between PAN coordinator and source node through coordinator, MAC address of some modules used in the experimental setup, topology of the network created for simulation and the remaining battery power of the source node. Our experimental effort on a WSN Testbed has helped us in bridging the gap between theoretical and practical aspect of implementing IEEE 802.15.4 for WSNs applications.

Keywords: IEEE 802.15.4, routing, WSN, ZigBee

Procedia PDF Downloads 404
1561 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 53
1560 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution

Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong

Abstract:

The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.

Keywords: particulate, air pollution, wireless communication, sensor

Procedia PDF Downloads 366
1559 Development of the Family Capacity of Management of Patients with Autism Spectrum Disorder Diagnosis

Authors: Marcio Emilio Dos Santos, Kelly C. F. Dos Santos

Abstract:

Caregivers of patients diagnosed with ASD are subjected to high stress situations due to the complexity and multiple levels of daily activities that require the organization of events, behaviors and socioemotional situations, such as immediate decision making and in public spaces. The cognitive and emotional requirement needed to fulfill this caregiving role exceeds the regular cultural process that adults receive in their process of preparation for conjugal and parental life. Therefore, in many cases, caregivers present a high level of overload, poor capacity to organize and mediate the development process of the child or patient about their care. Aims: Improvement in the cognitive and emotional capacities related to the caregiver function, allowing the reduction of the overload, the feeling of incompetence and the characteristic level of stress, developing a more organized conduct and decision making more oriented towards the objectives and procedural gains necessary for the integral development of the patient with diagnosis of ASD. Method: The study was performed with 20 relatives, randomly selected from a total of 140 patients attended. The family members were submitted to the Wechsler Adult Intelligence Scale III intelligence test and the Family assessment Management Measure (FaMM) questionnaire as a previous evaluation. Therapeutic activity in a small group of family members or caregivers, with weekly frequency, with a minimum workload of two hours, using the Feuerstein Instrumental Enrichment Cognitive Development Program - Feuerstein Instrumental Enrichment for ten months. Reapplication of the previous tests to verify the gains obtained. Results and Discussion: There is a change in the level of caregiver overload, improvement in the results of the Family assessment Management Measure and highlight to the increase of performance in the cognitive aspects related to problem solving, planned behavior and management of behavioral crises. These results lead to the discussion of the need to invest in the integrated care of patients and their caregivers, mainly by enabling cognitively to deal with the complexity of Autism. This goes beyond the simple therapeutic orientation about adjustments in family and school routines. The study showed that when the caregiver improves his/her capacity of management, the results of the treatment are potentiated and there is a reduction of the level of the caregiver's overload. Importantly, the study was performed for only ten months and the number of family members attended in the study (n = 20) needs to be expanded to have statistical strength.

Keywords: caregiver overload, cognitive development program ASD caregivers, feuerstein instrumental enrichment, family assessment management measure

Procedia PDF Downloads 126
1558 A Bayesian Network Approach to Customer Loyalty Analysis: A Case Study of Home Appliances Industry in Iran

Authors: Azam Abkhiz, Abolghasem Nasir

Abstract:

To achieve sustainable competitive advantage in the market, it is necessary to provide and improve customer satisfaction and Loyalty. To reach this objective, companies need to identify and analyze their customers. Thus, it is critical to measure the level of customer satisfaction and Loyalty very carefully. This study attempts to build a conceptual model to provide clear insights of customer loyalty. Using Bayesian networks (BNs), a model is proposed to evaluate customer loyalty and its consequences, such as repurchase and positive word-of-mouth. BN is a probabilistic approach that predicts the behavior of a system based on observed stochastic events. The most relevant determinants of customer loyalty are identified by the literature review. Perceived value, service quality, trust, corporate image, satisfaction, and switching costs are the most important variables that explain customer loyalty. The data are collected by use of a questionnaire-based survey from 1430 customers of a home appliances manufacturer in Iran. Four scenarios and sensitivity analyses are performed to run and analyze the impact of different determinants on customer loyalty. The proposed model allows businesses to not only set their targets but proactively manage their customer behaviors as well.

Keywords: customer satisfaction, customer loyalty, Bayesian networks, home appliances industry

Procedia PDF Downloads 138
1557 Conceptual Model Providing More Information on the Contact Situation between Crime Victim and the Police

Authors: M. Inzunza

Abstract:

In contemporary society, victims of crime has been given more recognition, which have contributed to advancing the knowledge on the effects of crime. There exists a complexity of who gets the status of victim and that the typology of good versus bad can interfere with the contact situation of the victim with the police. The aim of this study is to identify the most central areas affecting the contact situation between crime victims and the police to develop a conceptual model to be useful empirically. By considering previously documented problem areas and different theoretical domains, a conceptual model has been developed. Preliminary findings suggest that an area that should be given attention is to get a better understanding of the victim, not only in terms of demographics but also in terms of risk behavior and social network. This area has been considered to influence the status of the crime victim. Another domain of value is the type of crime and the context of the incident in more detail. The police officer approach style in the contact situation is also a pertinent area that is influenced by how the police based victim services are organized and how individual police officers are suited for the mission. Suitability includes constructs from empathy models adapted to the police context and especially focusing on sub-constructs such as perspective taking. Discussion will focus on how these findings can be operationalized in practice and how they are used in ongoing empirical studies.

Keywords: empathy, perspective taking, police contact, victim of crime

Procedia PDF Downloads 136
1556 Perception of Nurses and Caregivers on Fall Preventive Management for Hospitalized Children Based on Ecological Model

Authors: Mirim Kim, Won-Oak Oh

Abstract:

Purpose: The purpose of this study was to identify hospitalized children's fall risk factors, fall prevention status and fall prevention strategies recognized by nurses and caregivers of hospitalized children and present an ecological model for fall preventive management in hospitalized children. Method: The participants of this study were 14 nurses working in medical institutions and having more than one year of child care experience and 14 adult caregivers of children under 6 years of age receiving inpatient treatment at a medical institution. One to one interview was attempted to identify their perception of fall preventive management. Transcribed data were analyzed through latent content analysis method. Results: Fall risk factors in hospitalized children were 'unpredictable behavior', 'instability', 'lack of awareness about danger', 'lack of awareness about falls', 'lack of child control ability', 'lack of awareness about the importance of fall prevention', 'lack of sensitivity to children', 'untidy environment around children', 'lack of personalized facilities for children', 'unsafe facility', 'lack of partnership between healthcare provider and caregiver', 'lack of human resources', 'inadequate fall prevention policy', 'lack of promotion about fall prevention', 'a performanceism oriented culture'. Fall preventive management status of hospitalized children were 'absence of fall prevention capability', 'efforts not to fall', 'blocking fall risk situation', 'limit the scope of children's activity when there is no caregiver', 'encourage caregivers' fall prevention activities', 'creating a safe environment surrounding hospitalized children', 'special management for fall high risk children', 'mutual cooperation between healthcare providers and caregivers', 'implementation of fall prevention policy', 'providing guide signs about fall risk'. Fall preventive management strategies of hospitalized children were 'restrain dangerous behavior', 'inspiring awareness about fall', 'providing fall preventive education considering the child's eye level', 'efforts to become an active subject of fall prevention activities', 'providing customed fall prevention education', 'open communication between healthcare providers and caregivers', 'infrastructure and personnel management to create safe hospital environment', 'expansion fall prevention campaign', 'development and application of a valid fall assessment instrument', 'conversion of awareness about safety'. Conclusion: In this study, the ecological model of fall preventive management for hospitalized children reflects various factors that directly or indirectly affect the fall prevention of hospitalized children. Therefore, these results can be considered as useful baseline data for developing systematic fall prevention programs and hospital policies to prevent fall accident in hospitalized children. Funding: This study was funded by the National Research Foundation of South Korea (grant number NRF-2016R1A2B1015455).

Keywords: fall down, safety culture, hospitalized children, risk factors

Procedia PDF Downloads 163
1555 Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network

Authors: Dong-Cheol Jeong, Jookyung Lee, Yu Hyeon Ro, Changsik Song

Abstract:

The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway.

Keywords: terpyridine, photocatalyst, self-assebly, metal-ligand

Procedia PDF Downloads 308
1554 Identifying Metabolic Pathways Associated with Neuroprotection Mediated by Tibolone in Human Astrocytes under an Induced Inflammatory Model

Authors: Daniel Osorio, Janneth Gonzalez, Andres Pinzon

Abstract:

In this work, proteins and metabolic pathways associated with the neuroprotective response mediated by the synthetic neurosteroid tibolone under a palmitate-induced inflammatory model were identified by flux balance analysis (FBA). Three different metabolic scenarios (‘healthy’, ‘inflamed’ and ‘medicated’) were modeled over a gene expression data-driven constructed tissue-specific metabolic reconstruction of mature astrocytes. Astrocyte reconstruction was built, validated and constrained using three open source software packages (‘minval’, ‘g2f’ and ‘exp2flux’) released through the Comprehensive R Archive Network repositories during the development of this work. From our analysis, we predict that tibolone executes their neuroprotective effects through a reduction of neurotoxicity mediated by L-glutamate in astrocytes, inducing the activation several metabolic pathways with neuroprotective actions associated such as taurine metabolism, gluconeogenesis, calcium and the Peroxisome Proliferator Activated Receptor signaling pathways. Also, we found a tibolone associated increase in growth rate probably in concordance with previously reported side effects of steroid compounds in other human cell types.

Keywords: astrocytes, flux balance analysis, genome scale metabolic reconstruction, inflammation, neuroprotection, tibolone

Procedia PDF Downloads 222
1553 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads

Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan

Abstract:

Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.

Keywords: stream speed, urban roads, machine learning, traffic flow

Procedia PDF Downloads 69
1552 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 124
1551 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 74
1550 Intrinsic Contradictions in Entrepreneurship Development and Self-Development

Authors: Revaz Gvelesiani

Abstract:

The problem of compliance between the state economic policy and entrepreneurial policy of businesses is primarily manifested in the contradictions related to the congruence between entrepreneurship development and self-development strategies. Among various types (financial, monetary, social, etc.) of the state economic policy aiming at the development of entrepreneurship, economic order policy is of special importance. Its goal is to set the framework for both public and private economic activities and achieve coherence between the societal value system and the formation of the economic order framework. Economic order policy, in its turn, involves intrinsic contradiction between the social and the competitive order. Competitive order is oriented on the principle of success, while social order _ on the criteria of need satisfaction, which contradicts, at least partly, to the principles of success. Thus within the economic order policy, on the one hand, the state makes efforts to form social order and expand its frontiers, while, on the other hand, market is determined to establish functioning competitive order and ensure its realization. Locating the adequate spaces for and setting the rational border between the state (social order) and the private (competitive order) activities, represents the phenomenon of the decisive importance from the entrepreneurship development strategy standpoint. In the countries where the above mentioned spaces and borders are “set” correctly, entrepreneurship agents (small, medium-sized and large businesses) achieve great success by means of seizing the respective segments and maintaining the leading positions in the internal, the European and the world markets for a long time. As for the entrepreneurship self-development strategy, above all, it involves: •market identification; •interactions with consumers; •continuous innovations; •competition strategy; •relationships with partners; •new management philosophy, etc. The analysis of compliance between the entrepreneurship strategy and entrepreneurship culture should be the reference point for any kind of internationalization in order to avoid shocks of cultural nature and the economic backwardness. Stabilization can be achieved only when the employee actions reflect the existing culture and the new contents of culture (targeted culture) is turned into the implicit consciousness of the personnel. The future leaders should learn how to manage different cultures. Entrepreneurship can be managed successfully if its strategy and culture are coherent. However, not rarely enterprises (organizations) show various forms of violation of both personal and team actions. If personal and team non-observances appear as the form of influence upon the culture, it will lead to global destruction of the system and structure. This is the entrepreneurship culture pathology that complicates to achieve compliance between the entrepreneurship strategy and entrepreneurship culture. Thus, the intrinsic contradictions of entrepreneurship development and self-development strategies complicate the task of reaching compliance between the state economic policy and the company entrepreneurship policy: on the one hand, there is a contradiction between the social and the competitive order within economic order policy and on the other hand, the contradiction exists between entrepreneurship strategy and entrepreneurship culture within entrepreneurship policy.

Keywords: economic order policy, entrepreneurship, development contradictions, self-development contradictions

Procedia PDF Downloads 328
1549 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding

Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed

Abstract:

The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.

Keywords: bleeding, asphalt film thickness differential, Anfis Modeling

Procedia PDF Downloads 269
1548 Evolutionary Advantages of Loneliness with an Agent-Based Model

Authors: David Gottlieb, Jason Yoder

Abstract:

The feeling of loneliness is not uncommon in modern society, and yet, there is a fundamental lack of understanding in its origins and purpose in nature. One interpretation of loneliness is that it is a subjective experience that punishes a lack of social behavior, and thus its emergence in human evolution is seemingly tied to the survival of early human tribes. Still, a common counterintuitive response to loneliness is a state of hypervigilance, resulting in social withdrawal, which may appear maladaptive to modern society. So far, no computational model of loneliness’ effect during evolution yet exists; however, agent-based models (ABM) can be used to investigate social behavior, and applying evolution to agents’ behaviors can demonstrate selective advantages for particular behaviors. We propose an ABM where each agent contains four social behaviors, and one goal-seeking behavior, letting evolution select the best behavioral patterns for resource allocation. In our paper, we use an algorithm similar to the boid model to guide the behavior of agents, but expand the set of rules that govern their behavior. While we use cohesion, separation, and alignment for simple social movement, our expanded model adds goal-oriented behavior, which is inspired by particle swarm optimization, such that agents move relative to their personal best position. Since agents are given the ability to form connections by interacting with each other, our final behavior guides agent movement toward its social connections. Finally, we introduce a mechanism to represent a state of loneliness, which engages when an agent's perceived social involvement does not meet its expected social involvement. This enables us to investigate a minimal model of loneliness, and using evolution we attempt to elucidate its value in human survival. Agents are placed in an environment in which they must acquire resources, as their fitness is based on the total resource collected. With these rules in place, we are able to run evolution under various conditions, including resource-rich environments, and when disease is present. Our simulations indicate that there is strong selection pressure for social behavior under circumstances where there is a clear discrepancy between initial resource locations, and against social behavior when disease is present, mirroring hypervigilance. This not only provides an explanation for the emergence of loneliness, but also reflects the diversity of response to loneliness in the real world. In addition, there is evidence of a richness of social behavior when loneliness was present. By introducing just two resource locations, we observed a divergence in social motivation after agents became lonely, where one agent learned to move to the other, who was in a better resource position. The results and ongoing work from this project show that it is possible to glean insight into the evolutionary advantages of even simple mechanisms of loneliness. The model we developed has produced unexpected results and has led to more questions, such as the impact loneliness would have at a larger scale, or the effect of creating a set of rules governing interaction beyond adjacency.

Keywords: agent-based, behavior, evolution, loneliness, social

Procedia PDF Downloads 94
1547 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 185
1546 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance

Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria

Abstract:

This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.

Keywords: plasma antenna, fluorescent tube, CST, plasma parameters

Procedia PDF Downloads 385
1545 A Review of Current Trends in Grid Balancing Technologies

Authors: Kulkarni Rohini D.

Abstract:

While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies.

Keywords: flow batteries, grid balancing, hydrogen batteries, power storage, solar

Procedia PDF Downloads 69
1544 Superior Wear Performance of CoCrNi Matrix Composite Reinforced with Quasi-Continuously Networked Graphene Nanosheets and In-Situ Carbide

Authors: Wenting Ye

Abstract:

The biological materials evolved in nature generally exhibit interpenetrating network structures, which may offer useful inspiration for the architectural design of wear-resistant composites. Here, a strategy for designing self-lubricating medium entropy alloy (MEA) composites with high strength and excellent anti-wear performance was proposed through quasi-continuously networked in-situ carbides and graphene nanosheets. The discontinuous coating of graphene on the MEA powder surface inhibits continuous metallurgy bonding of the MEA powders during sintering, generating the typical quasi-continuously networked architecture. A good combination of mechanical properties with high fracture strength over 2 GPa and large compressive plasticity over 30% benefits from metallurgy bonding that prevents crack initiation and extension. The wear rate of an order of 10-6 m3N-1m-1 ascribing to an amorphous-crystalline nanocomposite surface, tribo-film induced by graphene, as well as the gradient worn subsurface during friction was achieved by the MEA composite, which is an order of magnitude lower than the unreinforced MEA matrix.

Keywords: in-situ carbide, tribological behavior, medium entropy alloy matrix composite, graphene

Procedia PDF Downloads 31
1543 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
1542 Next-Generation Lunar and Martian Laser Retro-Reflectors

Authors: Simone Dell'Agnello

Abstract:

There are laser retroreflectors on the Moon and no laser retroreflectors on Mars. Here we describe the design, construction, qualification and imminent deployment of next-generation, optimized laser retroreflectors on the Moon and on Mars (where they will be the first ones). These instruments are positioned by time-of-flight measurements of short laser pulses, the so-called 'laser ranging' technique. Data analysis is carried out with PEP, the Planetary Ephemeris Program of CfA (Center for Astrophysics). Since 1969 Lunar Laser Ranging (LLR) to Apollo/Lunokhod laser retro-reflector (CCR) arrays supplied accurate tests of General Relativity (GR) and new gravitational physics: possible changes of the gravitational constant Gdot/G, weak and strong equivalence principle, gravitational self-energy (Parametrized Post Newtonian parameter beta), geodetic precession, inverse-square force-law; it can also constraint gravitomagnetism. Some of these measurements also allowed for testing extensions of GR, including spacetime torsion, non-minimally coupled gravity. LLR has also provides significant information on the composition of the deep interior of the Moon. In fact, LLR first provided evidence of the existence of a fluid component of the deep lunar interior. In 1969 CCR arrays contributed a negligible fraction of the LLR error budget. Since laser station range accuracy improved by more than a factor 100, now, because of lunar librations, current array dominate the error due to their multi-CCR geometry. We developed a next-generation, single, large CCR, MoonLIGHT (Moon Laser Instrumentation for General relativity high-accuracy test) unaffected by librations that supports an improvement of the space segment of the LLR accuracy up to a factor 100. INFN also developed INRRI (INstrument for landing-Roving laser Retro-reflector Investigations), a microreflector to be laser-ranged by orbiters. Their performance is characterized at the SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab, INFN-LNF, Frascati, Italy) for their deployment on the lunar surface or the cislunar space. They will be used to accurately position landers, rovers, hoppers, orbiters of Google Lunar X Prize and space agency missions, thanks to LLR observations from station of the International Laser Ranging Service in the USA, in France and in Italy. INRRI was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars) EDM (Entry, descent and landing Demonstration Module), deployed on the Schiaparelli lander and is proposed for the ExoMars 2020 Rover. Based on an agreement between NASA and ASI (Agenzia Spaziale Italiana), another microreflector, LaRRI (Laser Retro-Reflector for InSight), was delivered to JPL (Jet Propulsion Laboratory) and integrated on NASA’s InSight Mars Lander in August 2017 (launch scheduled in May 2018). Another microreflector, LaRA (Laser Retro-reflector Array) will be delivered to JPL for deployment on the NASA Mars 2020 Rover. The first lunar landing opportunities will be from early 2018 (with TeamIndus) to late 2018 with commercial missions, followed by opportunities with space agency missions, including the proposed deployment of MoonLIGHT and INRRI on NASA’s Resource Prospectors and its evolutions. In conclusion, we will extend significantly the CCR Lunar Geophysical Network and populate the Mars Geophysical Network. These networks will enable very significantly improved tests of GR.

Keywords: general relativity, laser retroreflectors, lunar laser ranging, Mars geodesy

Procedia PDF Downloads 269
1541 Contribution of Research to Innovation Management in the Traditional Fruit Production

Authors: Camille Aouinaït, Danilo Christen, Christoph Carlen

Abstract:

Introduction: Small and Medium-sized Enterprises (SMEs) are facing different challenges such as pressures on environmental resources, the rise of downstream power, and trade liberalization. Remaining competitive by implementing innovations and engaging in collaborations could be a strategic solution. In Switzerland, the Federal Institute for Research in Agriculture (Agroscope), the Federal schools of technology (EPFL and ETHZ), Cantonal universities and Universities of Applied Sciences (UAS) can provide substantial inputs. UAS were developed with specific missions to match the labor markets and society needs. Research projects produce patents, publications and improved networks of scientific expertise. The study’s goal is to measure the contribution of UAS and research organization to innovation and the impact of collaborations with partners in the non-academic environment in Swiss traditional fruit production. Materials and methods: The European projects Traditional Food Network to improve the transfer of knowledge for innovation (TRAFOON) and Social Impact Assessment of Productive Interactions between science and society (SIAMPI) frame the present study. The former aims to fill the gap between the needs of traditional food producing SMEs and innovations implemented following European projects. The latter developed a method to assess the impacts of scientific research. On one side, interviews with market players have been performed to make an inventory of needs of Swiss SMEs producing apricots and berries. The participative method allowed matching the current needs and the existing innovations coming from past European projects. Swiss stakeholders (e.g. producers, retailers, an inter-branch organization of fruits and vegetables) directly rated the needs on a five-Likert scale. To transfer the knowledge to SMEs, training workshops have been organized for apricot and berries actors separately, on specific topics. On the other hand, a mapping of a social network is drawn to characterize the links between actors, with a focus on the Swiss canton of Valais and UAS Valais Wallis. Type and frequency of interactions among actors have identified thanks to interviews. Preliminary results: A list of 369 SMEs needs grouped in 22 categories was produced with 37 fulfilled questionnaires. Swiss stakeholders rated 31 needs very important. Training workshops on apricot are focusing on varietal innovations, storage, disease (bacterial blight), pest (Drosophila suzukii), sorting and rootstocks. Entrepreneurship was targeted through trademark discussions in berry production. The UAS Valais Wallis collaborated on a few projects with Agroscope along with industries, at European and national levels. Political and public bodies interfere with the central area of agricultural vulgarization that induces close relationships between the research and the practical side. Conclusions: The needs identified by Swiss stakeholders are becoming part of training workshops to incentivize innovations. The UAS Valais Wallis takes part in collaboration projects with the research environment and market players that bring innovations helping SMEs in their contextual environment. Then, a Strategic Research and Innovation Agenda will be created in order to pursue research and answer the issues facing by SMEs.

Keywords: agriculture, innovation, knowledge transfer, university and research collaboration

Procedia PDF Downloads 393
1540 The Coaching on Lifestyle Intervention (CooL): Preliminary Results and Implementation Process

Authors: Celeste E. van Rinsum, Sanne M. P. L. Gerards, Geert M. Rutten, Ien A. M. van de Goor, Stef P. J. Kremers

Abstract:

Combined lifestyle interventions have shown to be effective in changing and maintaining behavioral lifestyle changes and reducing overweight and obesity. A lifestyle coach is expected to promote lifestyle changes in adults related to physical activity and diet. The present Coaching on Lifestyle (CooL) study examined participants’ physical activity level, dietary behavioral, and motivational changes immediately after the intervention and at 1.5 years after baseline. In CooL intervention a lifestyle coach coaches individuals from eighteen years and older with (a high risk of) obesity in group and individual sessions. In addition a process evaluation was conducted in order to examine the implementation process and to be able to interpret the changes within the participants. This action-oriented research has a pre-post design. Participants of the CooL intervention (N = 200) completed three questionnaires: at baseline, immediately after the intervention (on average after 44 weeks), and at 1.5 years after baseline. T-tests and linear regressions were conducted to test self-reported changes in physical activity (IPAQ), dietary behaviors, their quality of motivation for physical activity (BREQ-3) and for diet (REBS), body mass index (BMI), and quality of life (EQ-5D-3L). For the process evaluation, we used individual and group interviews, observations and document analyses to gain insight in the implementation process (e.g. the recruitment) and how the intervention was valued by the participants, lifestyle coaches, and referrers. The study is currently ongoing and therefore the results presented here are preliminary. On average, the participants that finished the intervention and those that have completed the long-term measurement improved their level of vigorous-intense physical activity, sedentary behavior, sugar-sweetened beverage consumption and BMI. Mixed results were observed in motivational regulation for physical activity and nutrition. Moreover, an improvement on the quality of life dimension anxiety/depression was found, also in the long-term. All the other constructs did not show significant change over time. The results of the process evaluation have shown that recruitment of clients was difficult. Participants evaluated the intervention positively and the lifestyle coaches have continuously adapted the structure and contents of the intervention throughout the study period, based on their experiences and feedback from research. Preliminary results indicate that the CooL-intervention may have beneficial effects on overweight and obese participants in terms of energy balance-related behaviors, weight reduction, and quality of life. Recruitment of participants and embedding the position of the lifestyle coach in traditional care structures is challenging.

Keywords: combined lifestyle intervention, effect evaluation, lifestyle coaching, process evaluation, overweight, the Netherlands

Procedia PDF Downloads 228
1539 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz

Abstract:

The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing the handover procedure while the user is on the move. However, the dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and handover failure because of short time of stay of the user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. Multi-tier small cells network is considered in this work. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method has decreased the candidate small cell list, unnecessary handovers, handover failure, and short time of stay cells compared to the competitive method.

Keywords: handover, HetNets, multi-attribute decision making, small cells

Procedia PDF Downloads 119
1538 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data

Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou

Abstract:

In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.

Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution

Procedia PDF Downloads 107
1537 Networks, Regulations and Public Action: The Emerging Experiences of Sao Paulo

Authors: Lya Porto, Giulia Giacchè, Mario Aquino Alves

Abstract:

The paper aims to describe the linkage between government and civil society proposing a study on agro-ecological agriculture policy and urban action in São Paulo city underling the main achievements obtained. The negotiation processes between social movements and the government (inputs) and its results on political regulation and public action for Urban Agriculture (UA) in São Paulo city (outputs) have been investigated. The method adopted is qualitative, with techniques of semi-structured interviews, participant observation, and documental analysis. The authors conducted 30 semi-structured interviews with organic farmers, activists, governmental and non-governmental managers. Participant observation was conducted in public gardens, urban farms, public audiences, democratic councils, and social movements meetings. Finally, public plans and laws were also analyzed. São Paulo city with around 12 million inhabitants spread out in a 1522 km2 is the economic capital of Brazil, marked by spatial and socioeconomic segregation, currently aggravated by environmental crisis, characterized by water scarcity, pollution, and climate changes. In recent years, Urban Agriculture (UA) social movements gained strength and struggle for a different city with more green areas, organic food production, and public occupation. As the dynamics of UA occurs by the action of multiple actresses and institutions that struggle to build multiple senses on UA, the analysis will be based on literature about solidarity economy, governance, public action and networks. Those theories will mark out the analysis that will emphasize the approach of inter-subjectivity built between subjects, as well as the hybrid dynamics of multiple actors and spaces in the construction of policies for UA. Concerning UA we identified four main typologies based on land ownership, main function (economic or activist), form of organization of the space, and type of production (organic or not). The City Hall registers 500 productive unities of agriculture, with around 1500 producers, but researcher estimated a larger number of unities. Concerning the social movements we identified three categories that differ in goals and types of organization, but all of them work by networks of activists and/or organizations. The first category does not consider themselves as a movement, but a network. They occupy public spaces to grow organic food and to propose another type of social relations in the city. This action is similar to what became known as the green guerrillas. The second is configured as a movement that is structured to raise awareness about agro-ecological activities. The third one is a network of social movements, farmers, organizations and politicians that work focused on pressure and negotiation with executive and legislative government to approve regulations and policies on organic and agro-ecological Urban Agriculture. We conclude by highlighting how the interaction among institutions and civil society produced important achievements for recognition and implementation of UA within the city. Some results of this process are awareness for local production, legal and institutional recognition of the rural zone around the city into the planning tool, the investment on organic school public procurements, the establishment of participatory management of public squares, the inclusion of UA on Municipal Strategic Plan and Master Plan.

Keywords: public action, policies, agroecology, urban and peri-urban agriculture, Sao Paulo

Procedia PDF Downloads 293