Search results for: energy demand model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24550

Search results for: energy demand model

20230 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer

Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli

Abstract:

The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.

Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer

Procedia PDF Downloads 341
20229 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.

Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability

Procedia PDF Downloads 262
20228 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications

Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu

Abstract:

On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.

Keywords: cloud computing, CPU intensive applications, resource optimization, strategy

Procedia PDF Downloads 265
20227 Simulation Model of Biosensor Based on Gold Nanoparticles

Authors: Kholod Hajo

Abstract:

In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.

Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics

Procedia PDF Downloads 241
20226 Lean Airport Infrastructure Development: A Sustainable Solution for Integration of Remote Regions

Authors: Joeri N. Aulman

Abstract:

In the remote Indian region of Gulbarga a case study of lean airport infrastructure development is getting ‘cast in stone’; In April the first turbo-props will land, and the optimized terminal building will process its first passengers, using minimal square meters in a facility that is based on a complete dress-down of the core operational processes. Yet the solution that resulted from this case study has such elegance in its simplicity that it has emboldened the local administration to invest in its construction and thus secure this remote region’s connectivity to India’s growth story. This paper aims to provide further background to the Gulbarga case study and its relevance to remote region connectivity, covering the demand that was identified, its practical application and its regulatory context and relevance for today’s airport manager and local administrators. This embodies the scope of the paper. In summary, the paper will give airport managers and regional authorities an overview and background to innovative case studies of lean airport infrastructure developments which combine both optimized CAPEX and running costs/OPEX without losing sight of the aspirational nature of up and coming remote regions; a truly sustainable model.

Keywords: airport, CAPEX, lean, sustainable, air connectivity, remote regions

Procedia PDF Downloads 300
20225 Environmental Evaluation of Alternative/Renewable Fuels Technology

Authors: Muhammad Hadi Ibrahim

Abstract:

The benefits of alternative/renewable fuels in general and a study of the environmental impacts of biofuels in particular have been reviewed in this paper. It is a known fact that, energy generation using fossil fuel produces many important pollutants including; nitrogen oxides, hydrocarbons, soot, dust, smoke and other particulate harmful matter. It’s believed that if carbon dioxide levels continue to increase drastically, the planet will become warmer and will most likely result in a variety of negative impacts including; sea-level rise, extreme and unpredictable weather events and an increased frequency of draughts in inland agricultural zones. Biofuels such as alcohols, biogas, etc. appear to be more viable alternatives, especially for use as fuels in diesel engines. The substitution of fossil fuel through increased utilization of biofuels produced in a sustainable manner, can contribute immensely towards a cleaner environment, reduction in greenhouse gas emissions and mitigation of climate change. Stakeholders in the energy sector can be sensitized by the findings of the research study and to consider the possible adverse effects in developing technologies for the production and combustion of biofuels.

Keywords: emission, energy, renewable/alternative fuel, environment, pollution

Procedia PDF Downloads 190
20224 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical

Authors: Nai-Chia Chao, Meng-Chi Shih

Abstract:

Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.

Keywords: arts integration, co-working, children's musical

Procedia PDF Downloads 283
20223 Classification of Barley Varieties by Artificial Neural Networks

Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran

Abstract:

In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.

Keywords: physical properties, artificial neural networks, barley, classification

Procedia PDF Downloads 163
20222 Feasibility on Introducing an Alternative Solar Powered Propelling Mechanism for Multiday Fishing Boats in Sri Lanka

Authors: Oshada Gamage, Chamal Wimalasooriya, Chrismal Boteju, W. K. Wimalsiri

Abstract:

This paper presents a study on the feasibility of introducing a solar powered propelling mechanism to multi-day fishing boats as an alternative energy source. Since solar energy is readily available on the sea throughout the year, this free energy could be utilized to power multi-day fishing vessels. Multi-day boats have a large deck area where solar panels can be mounted above without much effort. This project involves studying the amount of power that can be generated using onboard solar panels and implementing an independent propelling system to run the boat. A chain drive system was designed to propel the boat, when the batteries are fully charged, from an electric motor using the same propeller. A 60 feet multi-day fishing boat built by a local boat manufacturer was chosen for the study. The service speed of the boat was around 6 knots with the electric motor, and the duration of cruising is 1 hour per day with around 11 hours of charging. 350-watt Mono-crystalline PV module, 75 kW HVH type motor, and 10 kWh lithium-ion battery packs were chosen for the study. From the calculations, it was obtained that the boat has 30 PV modules (10.5 kW), 5 batteries (47 kWh), The boat dimensions are 20 meter length of water line, 5.51 meter of beam, 1.8 meter of draught, and 77 ton of total displacement with the PV system net present value of USD 12445 for 20 years of operation and a payback period of around 8.2 years.

Keywords: multiday fishing boats, photovoltaic cells, solar energy, solar powered boat

Procedia PDF Downloads 135
20221 Numerical Investigation of Al2O3/Water Nanofluid Heat Transfer in a Microtube with Viscous Dissipation Effect

Authors: Misagh Irandoost Shahrestani, Hossein Shokouhmand, Mohammad Kalteh, Behrang Hasanpour

Abstract:

In this paper, nanofluid conjugate heat transfer through a microtube with viscous dissipation effect is investigated numerically. The fluid flow is considered as a laminar regime. A constant heat flux is applied on the microtube outer wall and the two ends of its wall are considered adiabatic. Conjugate heat transfer problem is solved and investigated for this geometry. It is shown that viscous dissipation effect which is induced by shear stresses can not be neglected in microtubes. Viscous heating behaves as an energy source in the fluid and affects the temperature distribution. The effect of Reynolds number, particle volume fraction and the nanoparticles diameter on the energy source are investigated and an attempt on establishing suitable equations for assessing the value of the energy source based on Re, Dp and Φ is performed and they are depicted as 3D diagrams. Finally, the significance of viscous dissipation and the influence of these parameters on convective heat transfer coefficient are studied.

Keywords: convective heat transfer coefficient, heat transfer, microtube, nanofluid, viscous dissipation

Procedia PDF Downloads 496
20220 Tackling the Value-Action-Gap: Improving Civic Participation Using a Holistic Behavioral Model Approach

Authors: Long Pham, Julia Blanke

Abstract:

An increasingly popular way of establishing citizen engagement within communities is through ‘city apps’. Currently, most of these mobile applications seem to be extensions of the existing communication media, sometimes merely replicating the information available on the classical city web sites, and therefore provide minimal additional impact on citizen behavior and engagement. In order to overcome this challenge, we propose to use a holistic behavioral model to generate dynamic and contextualized app content based on optimizing well defined city-related performance goals constrained by the proposed behavioral model. In this paper, we will show how the data collected by the CorkCitiEngage project in the Irish city of Cork can be utilized to calibrate aspects of the proposed model enabling the design of a personalized citizen engagement app aiming at positively influencing people’s behavior towards more active participation in their communities. We will focus on the important aspect of intentions to act, which is essential for understanding the reasons behind the common value-action-gap being responsible for the mismatch between good intentions and actual observable behavior, and will discuss how customized app design can be based on a rigorous model of behavior optimized towards maximizing well defined city-related performance goals.

Keywords: city apps, holistic behaviour model, intention to act, value-action-gap, citizen engagement

Procedia PDF Downloads 212
20219 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures

Authors: Mostafa Amirjan

Abstract:

In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.

Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy

Procedia PDF Downloads 441
20218 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling

Procedia PDF Downloads 322
20217 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 478
20216 Cleaner Production Options for Fishery Wastes Around Lake Tana-Ethiopia

Authors: Abate Getnet Demisash, Beshatu Taye Hatew, Ababo Geleta Gudisa

Abstract:

As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity and setting up cleaner production option for the site with experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area and some of the main reasons raised were they have no option than doing this for discharging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in generation rate of 72,822.61 kg per year which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33% and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization which involves biodiesel production was chosen as a potential method. Laboratory scale experiments were performed to produce renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p and 153°C flash points which shows the product has values in compliance with American Society for Testing and Materials (ASTM) standards.

Keywords: biodiesel, cleaner production, renewable energy, clean energy, waste to energy

Procedia PDF Downloads 126
20215 Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste

Authors: Nivedita Sharma

Abstract:

The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail.

Keywords: cellulase, xylanase, lignocellulose, bioethanol, microbial enzymes

Procedia PDF Downloads 81
20214 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation

Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab

Abstract:

This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.

Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation

Procedia PDF Downloads 122
20213 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure

Authors: Volodymyr Rombakh

Abstract:

This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.

Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress

Procedia PDF Downloads 76
20212 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 46
20211 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 312
20210 Effect of Operating Conditions on the Process Hydrogen Storage in Metal Hydride

Authors: A. Babou, Y. Kerboua Ziari, Y. Kerkoub

Abstract:

The risks of depletion of fossil fuel reserves and environmental problems caused by their consumption cause to consider alternative energy solutions. Hydrogen appears as a serious solution because its combustion produces only water. The objective of this study is to digitally analyze the effect of operating conditions on the process of absorption of hydrogen in a tank of metal hydride alloy Lanthanum - Nickel (LaNi 5). For this modeling of heat transfer and mass in the tank was carried .The results of numerical weather prediction are in good agreement with the experimental results.

Keywords: hydrogen, storage, energy, fuel, simulation

Procedia PDF Downloads 295
20209 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation

Authors: Ahmed H. Elkholy

Abstract:

The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.

Keywords: sinusoidal excitation, pump, shear stress, flow

Procedia PDF Downloads 302
20208 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers

Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy

Abstract:

In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.

Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology

Procedia PDF Downloads 85
20207 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 290
20206 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 157
20205 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy

Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy

Abstract:

The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.

Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability

Procedia PDF Downloads 226
20204 Analysis of Causality between Economic Growth and Carbon Emissions: The Case of Mexico 1971-2011

Authors: Mario Gómez, José Carlos Rodríguez

Abstract:

This paper analyzes the Environmental Kuznets Curve (EKC) hypothesis to test the causality relationship between economic activity, trade openness and carbon dioxide emissions in Mexico (1971-2011). The results achieved in this research show that there are three long-run relationships between production, trade openness, energy consumption and carbon dioxide emissions. The EKC hypothesis was not verified in this research. Indeed, it was found evidence of a short-term unidirectional causality from GDP and GDP squared to carbon dioxide emissions, from GDP, GDP squared and TO to EC, and bidirectional causality between TO and GDP. Finally, it was found evidence of long-term unidirectional causality from all variables to carbon emissions. These results suggest that a reduction in energy consumption, economic activity, or an increase in trade openness would reduce pollution.

Keywords: causality, cointegration, energy consumption, economic growth, environmental Kuznets curve

Procedia PDF Downloads 336
20203 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado

Authors: Ana Paula Camelo, Keila Sanches

Abstract:

The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.

Keywords: deforestation, geographically weighted regression, land use, spatial analysis

Procedia PDF Downloads 345
20202 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells

Authors: Saheed O. Akinwale, Olufemi A. Koya

Abstract:

Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.

Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness

Procedia PDF Downloads 219
20201 Effects of Compensation on Distribution System Technical Losses

Authors: B. Kekezoglu, C. Kocatepe, O. Arikan, Y. Hacialiefendioglu, G. Ucar

Abstract:

One of the significant problems of energy systems is to supply economic and efficient energy to consumers. Therefore studies has been continued to reduce technical losses in the network. In this paper, the technical losses analyzed for a portion of European side of Istanbul MV distribution network for different compensation scenarios by considering real system and load data and results are presented. Investigated system is modeled with CYME Power Engineering Software and optimal capacity placement has been proposed to minimize losses.

Keywords: distribution system, optimal capacitor placement, reactive power compensation, technical losses

Procedia PDF Downloads 656