Search results for: consumption volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5807

Search results for: consumption volume

1547 Evaluation of Dynamic Log Files for Different Dose Rates in IMRT Plans

Authors: Saad Bin Saeed, Fayzan Ahmed, Shahbaz Ahmed, Amjad Hussain

Abstract:

The aim of this study is to evaluate dynamic log files (Dynalogs) at different dose rates by dose-volume histograms (DVH) and used as a (QA) procedure of IMRT. Seven patients of phase one head and neck cancer with similar OAR`s are selected randomly. Reference plans of dose rate 300 and 600 MU/Min with prescribed dose of 50Gy in 25 fractions for each patient is made. Dynalogs produced by delivery of reference plans processed by in-house MATLAB program which produces new field files contain actual positions of multi-leaf collimators (MLC`s) instead of planned positions in reference plans. Copies of reference plans are used to import new field files generated by MATLAB program and renamed as Dyn.plan. After dose calculations of Dyn.plans for different dose rates, DVH, and multiple linear regression tools are used to evaluate reference and Dyn.plans. The results indicate good agreement of correlation between different dose rate plans. The maximum dose difference among PTV and OAR`s are found to be less than 5% and 9% respectively. The study indicates the potential of dynalogs to be used as patient-specific QA of IMRT at different dose rate.

Keywords: IMRT, dynalogs, dose rate, DVH

Procedia PDF Downloads 523
1546 Use of Cobalt Graphene in Place of Platnium in Catalytic Converter

Authors: V. Srinivasan, S. M. Sriram Nandan

Abstract:

Today in the modern world the most important problem faced by the mankind is increasing the pollution in a very high rate. It affects the ecosystem of the environment and also aids to increase the greenhouse effect. The exhaust gases from the automobile is the major cause of a pollution. Automobiles have increased to a large number which has increased the pollution of our world to an alarming rate. There are two methods of controlling the pollution namely, pre-pollution control method and post-pollution control method. This paper is based on controlling the emission by post-pollution control method. The ratio of surface area of nanoparticles to the volume of the nanoparticles is inversely proportional to the radius of the nanoparticles. So decreasing the radius, this ratio is leading resulting in an increased rate of reaction and thus the concentration of the pollution is decreased. To achieve this objective, use of cobalt-graphene element is proposed. The proposed method is mainly to decrease the cost of platinum as it is expensive. This has a longer life than the platinum-based catalysts.

Keywords: automobile emissions, catalytic converter, cobalt-graphene, replacement of platinum

Procedia PDF Downloads 383
1545 Improving Preconception Health and Lifestyle Behaviours through Digital Health Intervention: The OptimalMe Program

Authors: Bonnie R. Brammall, Rhonda M. Garad, Helena J. Teede, Cheryce L. Harrison

Abstract:

Introduction: Reproductive aged women are at high-risk for accelerated weight gain and obesity development, with pregnancy recognised as a critical contributory life phase. Healthy lifestyle interventions during the preconception and antenatal period improve maternal and infant health outcomes. Yet, interventions from preconception through to postpartum and translation and implementation into real-world healthcare settings remain limited. OptimalMe is a randomised, hybrid implementation effectiveness study of evidence-based healthy lifestyle intervention. Here, we report engagement, acceptability of the intervention during preconception, and self-reported behaviour change outcomes as a result of the preconception phase of the intervention. Methods: Reproductive aged women who upgraded their private health insurance to include pregnancy and birth cover, signalling a pregnancy intention, were invited to participate. Women received access to an online portal with preconception health and lifestyle modules, goal-setting and behaviour change tools, monthly SMS messages, and two coaching sessions (randomised to video or phone) prior to pregnancy. Results: Overall n=527 expressed interest in participating. Of these, n=33 did not meet inclusion criteria, n=8 were not contactable for eligibility screening, and n=177 failed to engage after the screening, leaving n=309 who were enrolled in OptimalMe and randomised to intervention delivery method. Engagement with coaching sessions dropped by 25% for session two, with no difference between intervention groups. Women had a mean (SD) age of 31.7 (4.3) years and, at baseline, a self-reported mean BMI of 25.7 (6.1) kg/m², with 55.8% (n=172) of a healthy BMI. Behaviour was sub-optimal with infrequent self-weighing (38.1%), alcohol consumption prevalent (57.1%), sub-optimal pre-pregnancy supplementation (61.5%), and incomplete medical screening. Post-intervention 73.2% of women reported engagement with a GP for preconception care and improved lifestyle behaviour (85.5%), since starting OptimalMe. Direct pre-and-post comparison of individual participant data showed that of 322 points of potential change (up-to-date cervical screening, elimination of high-risk behaviours [alcohol, drugs, smoking], uptake of preconception supplements and improved weighing habits) 158 (49.1%) points of change were achieved. Health coaching sessions were found to improve accountability and confidence, yet further personalisation and support were desired. Engagement with video and phone sessions was comparable, having similar impacts on behaviour change, and both methods were well accepted and increased women's accountability. Conclusion: A low-intensity digital health and lifestyle program with embedded health coaching can improve the uptake of preconception care and lead to self-reported behaviour change. This is the first program of its kind to reach an otherwise healthy population of women planning a pregnancy. Women who were otherwise healthy showed divergence from preconception health and lifestyle objectives and benefited from the intervention. OptimalMe shows promising results for population-based behaviour change interventions that can improve preconception lifestyle habits and increase engagement with clinical health care for pregnancy preparation.

Keywords: preconception, pregnancy, preventative health, weight gain prevention, self-management, behaviour change, digital health, telehealth, intervention, women's health

Procedia PDF Downloads 84
1544 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 156
1543 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: natural convection in enclosure, inclined enclosure, Nusselt number, entropy generation analyze

Procedia PDF Downloads 252
1542 Functional Traits and Agroecosystem Multifunctionality in Summer Cover Crop Mixtures and Monocultures

Authors: Etienne Herrick

Abstract:

As an economically and ecologically feasible method for farmers to introduce greater diversity into their crop rotations, cover cropping presents a valuable opportunity for improving the sustainability of food production. Planted in-between cash crop growing seasons, cover crops serve to enhance agroecosystem functioning, rather than being destined for sale or consumption. In fact, cover crops may hold the capacity to deliver multiple ecosystem functions or services simultaneously (multifunctionality). Building upon this line of research will not only benefit society at present, but also support its continued survival through its potential for restoring depleted soils and reducing the need for energy-intensive and harmful external inputs like fertilizers and pesticides. This study utilizes a trait-based approach to explore the influence of inter- and intra-specific interactions in summer cover crop mixtures and monocultures on functional trait expression and ecosystem services. Functional traits that enhance ecosystem services related to agricultural production include height, specific leaf area (SLA), root, shoot ratio, leaf C and N concentrations, and flowering phenology. Ecosystem services include biomass production, weed suppression, reduced N leaching, N recycling, and support of pollinators. Employing a trait-based approach may allow for the elucidation of mechanistic links between plant structure and resulting ecosystem service delivery. While relationships between some functional traits and the delivery of particular ecosystem services may be readily apparent through existing ecological knowledge (e.g. height positively correlating with weed suppression), this study will begin to quantify those relationships so as to gain further understanding of whether and how measurable variation in functional trait expression across cover crop mixtures and monocultures can serve as a reliable predictor of variation in the types and abundances of ecosystem services delivered. Six cover crop species, including legume, grass, and broadleaf functional types, were selected for growth in six mixtures and their component monocultures based upon the principle of trait complementarity. The tricultures (three-way mixtures) are comprised of a legume, grass, and broadleaf species, and include cowpea/sudex/buckwheat, sunnhemp/sudex/buckwheat, and chickling vetch/oat/buckwheat combinations; the dicultures contain the same legume and grass combinations as above, without the buckwheat broadleaf. By combining species with expectedly complimentary traits (for example, legumes are N suppliers and grasses are N acquirers, creating a nutrient cycling loop) the cover crop mixtures may elicit a broader range of ecosystem services than that provided by a monoculture, though trade-offs could exist. Collecting functional trait data will enable the investigation of the types of interactions driving these ecosystem service outcomes. It also allows for generalizability across a broader range of species than just those selected for this study, which may aid in informing further research efforts exploring species and ecosystem functioning, as well as on-farm management decisions.

Keywords: agroecology, cover crops, functional traits, multifunctionality, trait complementarity

Procedia PDF Downloads 245
1541 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: activation parameters, creep mechanisms, high strength steels, low temperature creep

Procedia PDF Downloads 162
1540 Supply and Marketing of Floriculture in Ethiopia

Authors: Assefa Mitike Janko, Gosa Alemu

Abstract:

The review of supply and marketing of floriculture in Ethiopia was conducted to analyses the production potential and to know the marketing share of the country. The data was collected from secondary and primary. Ethiopia has been operating in the floriculture industry for over 20 years. As is the case in many developing countries, the major export items of Ethiopia are dominated by few agricultural products that earn very small amounts in the international market. Moreover, most of the exports are destined to only few countries. Given the highly capital intensive nature of production and processing, rose farming is not a smallholder activity. It is also important to note the extremely tightly controlled time dimension of the logistics process, given the product attributes desired and the fragility and perishability of the roses. Another characteristic of the Ethiopian floriculture sector is the lack of domestically produced inputs that flower producers can access. The export volume and value of cut-flowers accounts for a small proportion of the total exports of Ethiopia. In recent years the sector is showing improvements in terms of the quality and quantity of exports to the international market.

Keywords: roses, production, value chain, floriculture, supply

Procedia PDF Downloads 360
1539 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons

Authors: S. Ali, M. Baccar

Abstract:

In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.

Keywords: heat transfer, helical ribbons, hydrodynamic behavior, parametric study, SSHE, thermal behavior

Procedia PDF Downloads 206
1538 Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven

Authors: Belmiloud Mohamed Amine, Sad Chemloul Nord-Eddine

Abstract:

In this study we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity and the varying of the Richardson number on the variation of the average Nusselt number. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless governing equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to10. The Rayleigh number is fixed to Ra = 10000 and the Prandtl number is maintained constant Pr = 0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number and emissivity affect the average Nusselt number.

Keywords: mixed convection, square cavity, wall emissivity, lid-driven, numerical study

Procedia PDF Downloads 327
1537 Investigations of Thermo Fluid Characteristics of Copper Alloy Porous Heat Sinks by Forced Air Cooling

Authors: Ashish Mahalle, Kishore Borakhade

Abstract:

High porosity metal foams are excellent for heat dissipation. There use has been widened to include heat removal from high density microelectronics circuits. Other important applications have been found in compact heat exchangers for airborne equipment, regenerative and dissipative air cooled condenser towers, and compact heat sinks for power electronic. The low relative density, open porosity and high thermal conductivity of the cell edges, large accessible surface area per unit volume, and the ability to mix the cooling fluid make metal foam heat exchangers efficient, compact and light weight. This paper reports the thermal performance of metal foam for high heat dissipation. In experimentation metal foam samples of different pore diameters i.e. 35 µ, 20 µ, 12 µ, are analyzed for varying velocities and heat inputs. The study investigate the effect of various dimensionless no. like Re,Nu, Pr and heat transfer characteristics of basic flow configuration.

Keywords: pores, foam, effective thermal conductivity, permeability

Procedia PDF Downloads 299
1536 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants

Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst

Abstract:

Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.

Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles

Procedia PDF Downloads 179
1535 Anharmonic Behavior in BaTiO3: Investigation by Raman Spectroscopy

Authors: M. D. Fontana, I. Bejaoui Ouni, D. Chapron, H. Aroui

Abstract:

BaTiO3 (BT) is a well known ferroelectric material which has been thoroughly studied during several decades since it undergoes successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions on cooling. It has several ferroelectric properties that allow it to be a good material for electronic applications such as the design of ferroelectric memories and pyroelectric elements. In the present work, we report the analysis of temperature dependence of Raman frequency and damping of the A1 modes polarized along the FE c axis as well as the optical phonons E corresponding to the ionic motions in the plane normal to c. Measurements were carried out at different temperatures ranging from 298 to 408 K (tetragonal phase) within different scattering configurations. Spectroscopic parameters of BT have determined using a high resolution Raman spectrometer and a fitting program. All the first order frequency modes exhibit a quasi linear decrease as function of the temperature, except for the A1[TO1], E[TO2] and E[TO4] lines which reveal a parabolic dependence illustrating an anharmonic process. The phonon frequency downshifts and damping evolutions are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials.

Keywords: BaTiO3, Raman spectroscopy, frequency, damping, anharmonic potential

Procedia PDF Downloads 292
1534 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition

Authors: Hamed Djalal

Abstract:

The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.

Keywords: forced convection, pressure drop, thermal hydraulic analysis, vertical heated rectangular channel

Procedia PDF Downloads 147
1533 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 243
1532 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Authors: Bita Bayatsarmadi, Shi-Zhang Qiao

Abstract:

Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.

Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template

Procedia PDF Downloads 370
1531 Sustainability Communications Across Multi-Stakeholder Groups: A Critical Review of the Findings from the Hospitality and Tourism Sectors

Authors: Frederica Pettit

Abstract:

Contribution: Stakeholder involvement in CSR is essential to ensuring pro-environmental attitudes and behaviours across multi-stakeholder groups. Despite increased awareness of the benefits surrounding a collaborative approach to sustainability communications, its success is limited by difficulties engaging with active online conversations with stakeholder groups. Whilst previous research defines the effectiveness of sustainability communications; this paper contributes to knowledge through the development of a theoretical framework that explores the processes to achieving pro-environmental attitudes and behaviours in stakeholder groups. The research will also consider social media as an opportunity to communicate CSR information to all stakeholder groups. Approach: A systematic review was chosen to investigate the effectiveness of the types of sustainability communications used in the hospitality and tourism industries. The systematic review was completed using Web of Science and Scopus using the search terms “sustainab* communicat*” “effective or effectiveness,” and “hospitality or tourism,” limiting the results to peer-reviewed research. 133 abstracts were initially read, with articles being excluded for irrelevance, duplicated articles, non-empirical studies, and language. A total of 45 papers were included as part of the systematic review. 5 propositions were created based on the results of the systematic review, helping to develop a theoretical framework of the processes needed for companies to encourage pro-environmental behaviours across multi-stakeholder groups. Results: The theoretical framework developed in the paper determined the processes necessary for companies to achieve pro-environmental behaviours in stakeholders. The processes to achieving pro-environmental attitudes and behaviours are stakeholder-focused, identifying the need for communications to be specific to their targeted audience. Collaborative communications that enable stakeholders to engage with CSR information and provide feedback lead to a higher awareness of CSR shared visions and pro-environmental attitudes and behaviours. These processes should also aim to improve their relationships with stakeholders through transparency of CSR, CSR strategies that match stakeholder values and ethics whilst prioritizing sustainability as part of their job role. Alternatively, companies can prioritize pro-environmental behaviours using choice editing by mainstreaming sustainability as the only option. In recent years, there has been extensive research on social media as a viable source of sustainability communications, with benefits including direct interactions with stakeholders, the ability to enforce the authenticity of CSR activities and encouragement of pro-environmental behaviours. Despite this, there are challenges to implementing CSR, including difficulties controlling stakeholder criticisms, negative stakeholder influences and comments left on social media platforms. Conclusion: A lack of engagement with CSR information is a reoccurring reason for preventing pro-environmental attitudes and behaviours across stakeholder groups. Traditional CSR strategies contribute to this due to their inability to engage with their intended audience. Hospitality and tourism companies are improving stakeholder relationships through collaborative processes which reduce single-use plastic consumption. A collaborative approach to communications can lead to stakeholder satisfaction, leading to changes in attitudes and behaviours. Different sources of communications are accessed by different stakeholder groups, identifying the need for targeted sustainability messaging, creating benefits such as direct interactions with stakeholders, the ability to enforce the authenticity of CSR activities, and encouraging engagement with sustainability information.

Keywords: hospitality, pro-environmental attitudes and behaviours, sustainability communication, social media

Procedia PDF Downloads 131
1530 Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid

Authors: M. Alipanah, A. Ranjbar, E. Farnad, F. Alipanah

Abstract:

Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.

Keywords: entropy generation, natural convection, bejan number, nuselt number, nanofluid

Procedia PDF Downloads 483
1529 Friction and Wear Characteristics of Pongamia Oil Based Blended Lubricant at Different Load and Sliding Distance

Authors: Yashvir Singh

Abstract:

Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non -toxic and environmental friendly. This paper outlines the friction and wear characteristics of Pongamia oil (PO) contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, PO was blended in the ratios 15, 30 and 50% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 3.8 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms were abrasive and the adhesive wear. During testing, the lowest wear was found with the addition of 15% PO, and above this contamination, the wear rate was increased considerably. With increase in load, viscosity of all the bio-lubricants increases and meets the ISO VG 100 requirement at 40 oC except PB 50. The addition of PO in the base lubricant acted as a very good lubricant additive which reduced the friction and wear scar diameter during the test. It has been concluded that the PB 15 can act as an alternative lubricant to increase the mechanical efficiency at 3.8 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products.

Keywords: friction, load, pongamia oil, sliding velocity, wear

Procedia PDF Downloads 352
1528 Oil and Proteins of Sardine (Sardina Pilchardus) Compared with Casein or Mixture of Vegetable Oils Improves Dyslipidemia and Reduces Inflammation and Oxidative Stress in Hypercholesterolemic and Obese Rats

Authors: Khelladi Hadj Mostefa, Krouf Djamil, Taleb-Dida Nawel

Abstract:

Background: Obesity results from a prolonged imbalance between energy intake and energy expenditure, as depending on basal metabolic rate. Oils and proteins from sea have important therapeutic (such as obesity and hypercholesterolemia) and antioxidant effects. Sardine are a widely consumed fish in the Mediterranean region. Its consumption provides humans with various nutrients such as oils (rich in omega 3 plyunsaturated fatty acids)) and proteins. Methods: Sardine oil (SO) and sardine proteins (SP) were extracted and purified. Mixture of vegetable oils (olive-walnut-sunflower) were prepared from oils produced in Algeria. Eighteen wistar rats are fed a high fat diet enriched with 1% cholesterol for 30 days to induce obesity and hypercholesterolemia. The rats are divided into 3 groups. The first group consumes 20% sardine protein combined with 5% sardine oil (38% SFA (saturated fatty acids), 31% MIFA (monounsaturated fatty acids) and 31% PIFA (polyunsaturated fatty acids)) (SPso). The second group consumes 20% sardine protein combined with 5% of a mixture of vegetable oils (VO) containing 13% SFA, 58% MIFA and 29% PIFA (PSvo), and the third group consuming 20% casein combined with 5% of the mixture of vegetable oils and serves as a semi-synthetic reference (CASvo). Body weights and glycaemia are measured weekly After 28 days of experimentation, the rats are sacrificed, the blood and the liver removed. Serum assays of total cholesterol (TC) and triglycerides (TG) were performed by enzymatic colorimetric methods. Evaluation of lipid peroxidation was performed by assaying thiobarbituric acid reactive species (TBARS) and hydroperoxides values. The protein oxidation was performed by assaying carbonyl derivatives values. Finally, evaluation of antioxidant defense is made by measuring the activity of antioxidant enzymes, the superoxide dismutase (SOD) and the catalase (CAT).Results: After 28 days, the body weight (BW) of the rats increased significantly in SPso and SPvo groups compared to CAS group, by +11% and 7%, respectively. Cholesterolemia (TC) increased significantly in the SPso and SPvo groups compared to the CAS group (P<0.01), while triglyceridemia (TG) decreased significantly in the SPso group compared to SPvo and CAS groups (P<0.01). Albumin (marker of inflammation) increased in the PSs group compared to SPvo and CAS groups by +35% and +13%, respectively. The serum TBARS levels are -40% lower in SPso group compared to SPvo group, and they are -80% and -76% lower in SPso compared to SPvo and CAS groups, respectively. The level of carbonyls derivatives in the serum and liver are significantly reduced in the SPso group compared to the SPvo and CAS groups. Superoxide dismutase (SOD) activity decreased in liver of SPso group compared to SPvo group (P<0.01). While that of CAT is increased in liver tissue of SPso group compared to SPvo group (P<0.01). Conclusion: Sardine oil combined with sardine protein has a hypotriglyceridemic effect, reduces body weight, attenuates inflammation and seems to protect against lipid peroxidation and protein oxidation and increases antioxidant defense in hypercholesterolemic and obese rats. This could be in favor of a protective effect against obesity and cardiovascular diseases.

Keywords: rat, obesity, hypercholesterolemia, sardine protein, sardine oil, vegetable oils mixture, lipid peroxidation, protein oxidation, antioxidant defense

Procedia PDF Downloads 54
1527 Renovation Planning Model for a Shopping Mall

Authors: Hsin-Yun Lee

Abstract:

In this study, the pedestrian simulation VISWALK integration and application platform ant algorithms written program made to construct a renovation engineering schedule planning mode. The use of simulation analysis platform construction site when the user running the simulation, after calculating the user walks in the case of construction delays, the ant algorithm to find out the minimum delay time schedule plan, and add volume and unit area deactivated loss of business computing, and finally to the owners and users of two different positions cut considerations pick out the best schedule planning. To assess and validate its effectiveness, this study constructed the model imported floor of a shopping mall floor renovation engineering cases. Verify that the case can be found from the mode of the proposed project schedule planning program can effectively reduce the delay time and the user's walking mall loss of business, the impact of the operation on the renovation engineering facilities in the building to a minimum.

Keywords: pedestrian, renovation, schedule, simulation

Procedia PDF Downloads 403
1526 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: concrete, flexural strength, toughness, steel fibers

Procedia PDF Downloads 480
1525 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve

Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin

Abstract:

Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.

Keywords: laminar forced convection, curve pipe, return bend, nanufluid, CFD

Procedia PDF Downloads 290
1524 Rheological and Microstructural Characterization of Concentrated Emulsions Prepared by Fish Gelatin

Authors: Helen S. Joyner (Melito), Mohammad Anvari

Abstract:

Concentrated emulsions stabilized by proteins are systems of great importance in food, pharmaceutical and cosmetic products. Controlling emulsion rheology is critical for ensuring desired properties during formation, storage, and consumption of emulsion-based products. Studies on concentrated emulsions have focused on rheology of monodispersed systems. However, emulsions used for industrial applications are polydispersed in nature, and this polydispersity is regarded as an important parameter that also governs the rheology of the concentrated emulsions. Therefore, the objective of this study was to characterize rheological (small and large deformation behaviors) and microstructural properties of concentrated emulsions which were not truly monodispersed as usually encountered in food products such as margarines, mayonnaise, creams, spreads, and etc. The concentrated emulsions were prepared at different concentrations of fish gelatin (0.2, 0.4, 0.8% w/v in the whole emulsion system), oil-water ratio 80-20 (w/w), homogenization speed 10000 rpm, and 25oC. Confocal laser scanning microscopy (CLSM) was used to determine the microstructure of the emulsions. To prepare samples for CLSM analysis, FG solutions were stained by Fluorescein isothiocyanate dye. Emulsion viscosity profiles were determined using shear rate sweeps (0.01 to 100 1/s). The linear viscoelastic regions (LVRs) of the emulsions were determined using strain sweeps (0.01 to 100% strain) for each sample. Frequency sweeps were performed in the LVR (0.1% strain) from 0.6 to 100 rad/s. Large amplitude oscillatory shear (LAOS) testing was conducted by collecting raw waveform data at 0.05, 1, 10, and 100% strain at 4 different frequencies (0.5, 1, 10, and 100 rad/s). All measurements were performed in triplicate at 25oC. The CLSM results revealed that increased fish gelatin concentration resulted in more stable oil-in-water emulsions with homogeneous, finely dispersed oil droplets. Furthermore, the protein concentration had a significant effect on emulsion rheological properties. Apparent viscosity and dynamic moduli at small deformations increased with increasing fish gelatin concentration. These results were related to increased inter-droplet network connections caused by increased fish gelatin adsorption at the surface of oil droplets. Nevertheless, all samples showed shear-thinning and weak gel behaviors over shear rate and frequency sweeps, respectively. Lissajous plots, or plots of stress versus strain, and phase lag values were used to determine nonlinear behavior of the emulsions in LAOS testing. Greater distortion in the elliptical shape of the plots followed by higher phase lag values was observed at large strains and frequencies in all samples, indicating increased nonlinear behavior. Shifts from elastic-dominated to viscous dominated behavior were also observed. These shifts were attributed to damage to the sample microstructure (e.g. gel network disruption), which would lead to viscous-type behaviors such as permanent deformation and flow. Unlike the small deformation results, the LAOS behavior of the concentrated emulsions was not dependent on fish gelatin concentration. Systems with different microstructures showed similar nonlinear viscoelastic behaviors. The results of this study provided valuable information that can be used to incorporate concentrated emulsions in emulsion-based food formulations.

Keywords: concentrated emulsion, fish gelatin, microstructure, rheology

Procedia PDF Downloads 265
1523 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M. Adam, S. Masuri

Abstract:

Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS Fluent 14.

Keywords: turbulent flow, double forward, heat transfer, separation flow

Procedia PDF Downloads 454
1522 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid

Procedia PDF Downloads 376
1521 Biocarbon for High-Performance Supercapacitors Derived from the Wastewater Treatment of Sewage Sludge

Authors: Santhosh Ravichandran, F. J. Rodríguez-Varela

Abstract:

In this study, a biocarbon (BC) was made from sewage sludge from the water treatment plant (PTAR) in Saltillo, Coahuila, Mexico. The sludge was carbonized in water and then chemically activated by pyrolysis. The biocarbon was evaluated physicochemically using XRD, SEM-EDS, and FESEM. A broad (002) peak attributable to graphitic structures indicates that the material is amorphous. The resultant biocarbon has a high specific surface area (412 m2 g-1), a large pore volume (0.39 cm3 g-1), interconnected hierarchical porosity, and outstanding electrochemical performance. It is appropriate for high-performance supercapacitor electrode materials due to its high specific capacitance of 358 F g-1, great rate capability, and outstanding cycling stability (around 87% capacitance retention after 10,000 cycles, even at a high current density of 19 A g-1). In an aqueous solution, the constructed BC/BC symmetric supercapacitor exhibits increased super capacitor behavior with a high energy density of 29.5 Whkg-1. The concept provides an efficient method for producing high-performance electrode materials for supercapacitors from conventional water treatment biomass wastes.

Keywords: supercapacitors, carbon, material science, batteries

Procedia PDF Downloads 69
1520 Impact of Climate Change on Water Resources in Morocco

Authors: Abdelghani Qadem, Zouhair Qadem

Abstract:

Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change.

Keywords: morocco, climate change, water resources, impact, water scarcity

Procedia PDF Downloads 71
1519 SkyCar Rapid Transit System: An Integrated Approach of Modern Transportation Solutions in the New Queen Elizabeth Quay, Perth, Western Australia

Authors: Arfanara Najnin, Michael W. Roach, Jr., Dr. Jianhong Cecilia Xia

Abstract:

The SkyCar Rapid Transit System (SRT) is an innovative intelligent transport system for the sustainable urban transport system. This system will increase the urban area network connectivity and decrease urban area traffic congestion. The SRT system is designed as a suspended Personal Rapid Transit (PRT) system that travels under a guideway 5m above the ground. A driver-less passenger is via pod-cars that hang from slender beams supported by columns that replace existing lamp posts. The beams are setup in a series of interconnecting loops providing non-stop travel from beginning to end to assure journey time. The SRT forward movement is effected by magnetic motors built into the guideway. Passenger stops are at either at line level 5m above the ground or ground level via a spur guideway that curves off the main thoroughfare. The main objective of this paper is to propose an integrated Automated Transit Network (ATN) technology for the future intelligent transport system in the urban built environment. To fulfil the objective a 4D simulated model in the urban built environment has been proposed by using the concept of SRT-ATN system. The methodology for the design, construction and testing parameters of a Technology Demonstrator (TD) for proof of concept and a Simulator (S) has been demonstrated. The completed TD and S will provide an excellent proving ground for the next development stage, the SRT Prototype (PT) and Pilot System (PS). This paper covered by a 4D simulated model in the virtual built environment is to effectively show how the SRT-ATN system works. OpenSim software has been used to develop the model in a virtual environment, and the scenario has been simulated to understand and visualize the proposed SkyCar Rapid Transit Network model. The SkyCar system will be fabricated in a modular form which is easily transported. The system would be installed in increasingly congested city centers throughout the world, as well as in airports, tourist resorts, race tracks and other special purpose for the urban community. This paper shares the lessons learnt from the proposed innovation and provides recommendations on how to improve the future transport system in urban built environment. Safety and security of passengers are prime factors to be considered for this transit system. Design requirements to meet the safety needs to be part of the research and development phase of the project. Operational safety aspects would also be developed during this period. The vehicles, the track and beam systems and stations are the main components that need to be examined in detail for safety and security of patrons. Measures will also be required to protect columns adjoining intersections from errant vehicles in vehicular traffic collisions. The SkyCar Rapid Transit takes advantage of all current disruptive technologies; batteries, sensors and 4G/5G communication and solar energy technologies which will continue to reduce the costs and make the systems more profitable. SkyCar's energy consumption is extremely low compared to other transport systems.

Keywords: SkyCar, rapid transit, Intelligent Transport System (ITS), Automated Transit Network (ATN), urban built environment, 4D Visualization, smart city

Procedia PDF Downloads 206
1518 Magnetic Susceptibility Measurements of Urban Areas in Denizli City and Showing the Distributions of Heavy Metal Pollution

Authors: Ali Aydin

Abstract:

Three hundred and fifty soil samples were collected around the urban and residential area, for the purpose of a magnetic susceptibility study on pollution in Denizli City, Turkiye. Measurements of volume-specific magnetic susceptibility (к) and mass-specific magnetic susceptibility (χ) show a significant variation range from place to place collected soil samples. In this study, we did a primary magnetic study near the high heavy traffic pollution in a part of Denizli city, Turkiye which was said the most polluted city in Aegean Region of Turkey. The magnetic susceptibility measurements increased from the garden area to residential area and reached the high levels near the industrial areas of the city. Magnetic particle concentration and grain size sourced exhaust gasses, and other pollution sources increase with the increasing distance from a residential area, indicating the high traffic road area.

Keywords: magnetic susceptibility, pollution, magnetic particle, Denizli

Procedia PDF Downloads 284