Search results for: wet chemical ablation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4590

Search results for: wet chemical ablation

360 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 113
359 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 272
358 Methods of Detoxification of Nuts With Aflatoxin B1 Contamination

Authors: Auteleyeva Laura, Maikanov Balgabai, Smagulova Ayana

Abstract:

In order to find and select detoxification methods, patent and information research was conducted, as a result of which 68 patents for inventions were found, among them from the near abroad - 14 (Russia), from far abroad: China – 27, USA - 6, South Korea–1, Germany - 2, Mexico – 4, Yugoslavia – 7, Austria, Taiwan, Belarus, Denmark, Italy, Japan, Canada for 1 security document. Aflatoxin B₁ in various nuts was determined by two methods: enzyme immunoassay "RIDASCREEN ® FAST Aflatoxin" with determination of optical density on a microplate spectrophotometer RIDA®ABSORPTION 96 with RIDASOFT® software Win.NET (Germany) and the method of high-performance liquid chromatography (HPLC Corporation Water, USA) according to GOST 307112001. For experimental contamination of nuts, the cultivation of strain A was carried out. flavus KWIK-STIK on the medium of Chapek (France) with subsequent infection of various nuts (peanuts, peanuts with shells, badam, walnuts with and without shells, pistachios).Based on our research, we have selected 2 detoxification methods: method 1 – combined (5% citric acid solution + microwave for 640 W for 3 min + UV for 20 min) and a chemical method with various leaves of plants: Artemisia terra-albae, Thymus vulgaris, Callogonum affilium, collected in the territory of Akmola region (Artemisia terra-albae, Thymus vulgaris) and Western Kazakhstan (Callogonum affilium). The first stage was the production of ethanol extracts of Artemisia terraea-albae, Thymus vulgaris, Callogonum affilium. To obtain them, 100 g of vegetable raw materials were taken, which was dissolved in 70% ethyl alcohol. Extraction was carried out for 2 hours at the boiling point of the solvent with a reverse refrigerator using an ultrasonic bath "Sapphire". The obtained extracts were evaporated on a rotary evaporator IKA RV 10. At the second stage, the three samples obtained were tested for antimicrobial and antifungal activity. Extracts of Thymus vulgaris and Callogonum affilium showed high antimicrobial and antifungal activity. Artemisia terraea-albae extract showed high antimicrobial activity and low antifungal activity. When testing method 1, it was found that in the first and third experimental groups there was a decrease in the concentration of aflatoxin B1 in walnut samples by 63 and 65%, respectively, but these values also exceeded the maximum permissible concentrations, while the nuts in the second and third experimental groups had a tart lemon flavor; When testing method 2, a decrease in the concentration of aflatoxin B1 to a safe level was observed by 91% (0.0038 mg/kg) in nuts of the 1st and 2nd experimental groups (Artemisia terra-albae, Thymus vulgaris), while in samples of the 2nd and 3rd experimental groups, a decrease in the amount of aflatoxin in 1 to a safe level was observed.

Keywords: nuts, aflatoxin B1, my, mycotoxins

Procedia PDF Downloads 86
357 Glasshouse Experiment to Improve Phytomanagement Solutions for Cu-Polluted Mine Soils

Authors: Marc Romero-Estonllo, Judith Ramos-Castro, Yaiza San Miguel, Beatriz Rodríguez-Garrido, Carmela Monterroso

Abstract:

Mining activity is among the main sources of trace and heavy metal(loid) pollution worldwide, which is a hazard to human and environmental health. That is why several projects have been emerging for the remediation of such polluted places. Phytomanagement strategies draw good performances besides big side benefits. In this work, a glasshouse assay with trace element polluted soils from an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE Project (SOE1/P5/E0189)) was set. The objective was to evaluate improvements induced by the following phytoremediation-related treatments. Three increasingly complex amendments alone or together with plant growth (Populus nigra L. alone and together with Tripholium repens L.) were tested. And three different rhizosphere bioinocula were applied (Plant Growth Promoting Bacteria (PGP), mycorrhiza (MYC), or mixed (PGP+MYC)). After 110 days of growth, plants were collected, biomass was weighed, and tree length was measured. Physical-chemical analyses were carried out to determine pH, effective Cation Exchange Capacity, carbon and nitrogen contents, bioavailable phosphorous (Olsen bicarbonate method), pseudo total element content (microwave acid digested fraction), EDTA extractable metals (complexed fraction), and NH4NO3 extractable metals (easily bioavailable fraction). On plant material, nitrogen content and acid digestion elements were determined. Amendment usage, plant growth, and bioinoculation were demonstrated to improve soil fertility and/or plant health within the time span of this study. Particularly, pH levels increased from 3 (highly acidic) to 5 (acidic) in the worst-case scenario, even reaching 7 (neutrality) in the best plots. Organic matter and pH increments were related to polluting metals’ bioavailability decrements. Plants grew better both with the most complex amendment and the middle one, with few differences due to bioinoculation. Using the less complex amendment (just compost) beneficial effects of bioinoculants were more observable, although plants didn’t thrive very well. On unamended soils, plants neither sprouted nor bloomed. The scheme assayed in this study is suitable for phytomanagement of these kinds of soils affected by mining activity. These findings should be tested now on a larger scale.

Keywords: aided phytoremediation, mine pollution, phytostabilization, soil pollution, trace elements

Procedia PDF Downloads 66
356 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.

Keywords: goat milk, nutritional quality, bioactive compounds, sustainable production, animal welfare

Procedia PDF Downloads 149
355 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.

Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding

Procedia PDF Downloads 77
354 Biotechnological Methods for the Grouting of the Tunneling Space

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.

Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space

Procedia PDF Downloads 208
353 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery

Authors: Augustus K. Lebechi, Kenneth I. Ozoemena

Abstract:

Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.

Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.

Procedia PDF Downloads 64
352 Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin

Authors: Temitope L. Baiyegunhi, Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration.

Keywords: diagenesis, reservoir quality, Ecca Group, Karoo Supergroup

Procedia PDF Downloads 148
351 Development of Polylactic Acid Insert with a Cinnamaldehyde-Betacyclodextrin Complex for Cape Gooseberry (Physalis Peruviana L.) Packed

Authors: Gómez S. Jennifer, Méndez V. Camila, Moncayo M. Diana, Vega M. Lizeth

Abstract:

The cape gooseberry is a climacteric fruit; Colombia is one of the principal exporters in the world. The environmental condition of temperature and relative moisture decreases the titratable acidity and pH. These conditions and fruit maturation result in the fungal proliferation of Botrytis cinerea disease. Plastic packaging for fresh cape gooseberries was used for mechanical damage protection but created a suitable atmosphere for fungal growth. Beta-cyclodextrins are currently implemented as coatings for the encapsulation of hydrophobic compounds, for example, with bioactive compounds from essential oils such as cinnamaldehyde, which has a high antimicrobial capacity. However, it is a volatile substance. In this article, the casting method was used to obtain a polylactic acid (PLA) polymer film containing the beta-cyclodextrin-cinnamaldehyde inclusion complex, generating an insert that allowed the controlled release of the antifungal substance in packed cape gooseberries to decrease contamination by Botrytis cinerea in a latent state during storage. For the encapsulation technique, three ratios for the cinnamaldehyde: beta-cyclodextrin inclusion complex were proposed: (25:75), (40:60), and (50:50). Spectrophotometry, colorimetry in L*a*b* coordinate space and scanning electron microscopy (SEM) were made for the complex characterization. Subsequently, two ratios of tween and water (40:60) and (50:50) were used to obtain the polylactic acid (PLA) film. To determine mechanical and physical parameters of colourimetry in L*a*b* coordinate space, atomic force microscopy and stereoscopy were done to determine the transparency and flexibility of the film; for both cases, Statgraphics software was used to determine the best ratio in each of the proposed phases, where for encapsulation it was (50:50) with an encapsulation efficiency of 65,92%, and for casting the ratio (40:60) obtained greater transparency and flexibility that permitted its incorporation into the polymeric packaging. A liberation assay was also developed under ambient temperature conditions to evaluate the concentration of cinnamaldehyde inside the packaging through gas chromatography for three weeks. It was found that the insert had a controlled release. Nevertheless, a higher cinnamaldehyde concentration is needed to obtain the minimum inhibitory concentration for the fungus Botrytis cinerea (0.2g/L). The homogeneity of the cinnamaldehyde gas phase inside the packaging can be improved by considering other insert configurations. This development aims to impact emerging food preservation technologies with the controlled release of antifungals to reduce the affectation of the physico-chemical and sensory properties of the fruit as a result of contamination by microorganisms in the postharvest stage.

Keywords: antifungal, casting, encapsulation, postharvest

Procedia PDF Downloads 75
350 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia

Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim

Abstract:

The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.

Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material

Procedia PDF Downloads 54
349 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 258
348 Petrology of the Post-Collisional Dolerites, Basalts from the Javakheti Highland, South Georgia

Authors: Bezhan Tutberidze

Abstract:

The Neogene-Quaternary volcanic rocks of the Javakheti Highland are products of post-collisional continental magmatism and are related to divergent and convergent margins of Eurasian-Afroarabian lithospheric plates. The studied area constitutes an integral part of the volcanic province of Central South Georgia. Three cycles of volcanic activity are identified here: 1. Late Miocene-Early Pliocene, 2. Late Pliocene-Early /Middle/ Pleistocene and 3. Late Pleistocene. An intense basic dolerite magmatic activity occurred within the time span of the Late Pliocene and lasted until at least Late /Middle/ Pleistocene. The age of the volcanogenic and volcanogenic-sedimentary formation was dated by geomorphological, paleomagnetic, paleontological and geochronological methods /1.7-1.9 Ma/. The volcanic area of the Javakheti Highland contains multiple dolerite Plateaus: Akhalkalaki, Gomarethi, Dmanisi, and Tsalka. Petrographic observations of these doleritic rocks reveal fairly constant mineralogical composition: olivine / Fo₈₇.₆₋₈₂.₇ /, plagioclase / Ab₂₂.₈ An₇₅.₉ Or₁.₃; Ab₄₅.₀₋₃₂.₃ An₅₂.₉₋₆₂.₃ Or₂.₁₋₅.₄/. The pyroxene is an augite and may exhibit a visible zoning: / Wo 39.7-43.1 En 43.5-45.2 Fs 16.8-11.7/. Opaque minerals /magnetite, titanomagnetite/ is abundant as inclusions within olivine and pyroxene crystals. The texture of dolerites exhibits intergranular, holocrystalline to ophitic to sub ophitic granular. Dolerites are most common vesicular rocks. Vesicles range in shape from spherical to elongated and in size from 0.5 mm to than 1.5-2 cm and makeup about 20-50 % of the volume. The dolerites have been subjected to considerable alteration. The secondary minerals in the geothermal field are: zeolite, calcite, chlorite, aragonite, clay-like mineral /dominated by smectites/ and iddingsite –like mineral; rare quartz and pumpellyite are present. These vesicles are filled by secondary minerals. In the chemistry, dolerites are the calc-alkalic transition to sub-alkaline with a predominance of Na₂O over K₂O. Chemical analyses indicate that dolerites of all plateaus of the Javakheti Highland have similar geochemical compositions, signifying that they were formed from the same magmatic source by crystallization of olivine basalis magma which less differentiated / ⁸⁷Sr \ ⁸⁶Sr 0.703920-0704195/. There is one argument, which is less convincing, according to which the dolerites/basalts of the Javakheti Highland are considered to be an activity of a mantle plume. Unfortunately, there does not exist reliable evidence to prove this. The petrochemical peculiarities and eruption nature of the dolerites of the Javakheti Plateau point against their plume origin. Nevertheless, it is not excluded that they influence the formation of dolerite producing primary basaltic magma.

Keywords: calc-alkalic, dolerite, Georgia, Javakheti Highland

Procedia PDF Downloads 268
347 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 270
346 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium

Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas

Abstract:

Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.

Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides

Procedia PDF Downloads 435
345 Removal of Heavy Metal Ions from Aqueous Solution by Polymer Enhanced Ultrafiltration Using Unmodified Starch as Biopolymer

Authors: Nurul Huda Baharuddin, Nik Meriam Nik Sulaiman, Mohammed Kheireddine Aroua

Abstract:

The effects of pH, polymer concentration, and metal ions feed concentration for four selected heavy metals Zn (II), Pb (II), Cr (III) and Cr (VI) were tested by using Polymer Enhanced Ultrafiltration (PEUF). An alternative biopolymer namely unmodified starch is proposed as a binding reagent in consequences, as compared to commonly used water-soluble polymers namely polyethylene glycol (PEG) and polyethyleneimine (PEI) in the removal of selected four heavy metal ions. The speciation species profiles of four selected complexes ions namely Zn (II), Pb (II), Cr (III) and Cr (VI) and the present of hydroxides ions (OH-) in variously charged ions were investigated by available software at certain pH range. In corresponds to identify the potential of complexation behavior between metal ion-polymers, potentiometric titration studies were obtained at first before carried out experimental works. Experimental works were done using ultrafiltration systems obtained by laboratory ultrafiltration bench scale equipped with 10 kDa polysulfone hollow fiber membrane. Throughout the laboratory works, the rejection coefficient and permeate flux were found to be significantly affected by the main operating parameter, namely the effects of pH, polymer composition and metal ions concentrations. The interaction of complexation between two binding polymers namely unmodified starch and PEG were occurred due to physical attraction of metal ions to the polymer on the molecular surface with high possibility of chemical occurrence. However, these selected metal ions are mainly complexes by polymer functional groups whenever there is interaction with PEI polymer. For study of single metal ions solutions, Zn (II) ions' rejections approaching over 90% were obtained at pH 7 for each tested polymer. This behavior was similar to Pb (II), Cr (III) and Cr (VI); where the rejections were obtained at lower acidic pH and increased at neutral pH of 7. Different behavior was found by Cr (VI) ions where a high rejection was only achieved at acidic pH region with PEI. Polymer concentration and metal ions concentration are found to have a significant effect on rejections. For mixed metal ion solutions, the behavior of metal ion rejections was similar to single metal ion solutions for investigation on the effects of pH. Rejection values were high at pH 7 for Zn (II) pH 7 for Zn (II) and Cr (III) ions, corresponding to higher rejections with unmodified starch. Pb (II) ions obtained high rejections when tested with PEG whenever carried out in mixed metal ion solutions. High Cr (VI) ions' rejection was found with PEI in single and mixed metal ions solutions at neutral pH range. The influence of starch’s granule structure towards the rejections of these four selected metal ions is found to be attracted in a non-ionic manner. No significant effects on permeate flux were obtained when tested at different pH ranges, polymer concentrations and metal ions feed either by single or mixtures metal ions solutions. Canizares Model was employed as the theoretical model to predict permeate flux and metal ions retention on the study of heavy metal ions removal.

Keywords: polyethyleneimine, polyethylene glycol, polymer-enhanced ultrafiltration, unmodified starch

Procedia PDF Downloads 176
344 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources

Authors: Annisa Ulfah Pristya, Andi Setiawan

Abstract:

Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.

Keywords: CNT, efficiency, electric, microorganisms, sediment

Procedia PDF Downloads 407
343 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 136
342 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 108
341 Computational Investigation on Structural and Functional Impact of Oncogenes and Tumor Suppressor Genes on Cancer

Authors: Abdoulie K. Ceesay

Abstract:

Within the sequence of the whole genome, it is known that 99.9% of the human genome is similar, whilst our difference lies in just 0.1%. Among these minor dissimilarities, the most common type of genetic variations that occurs in a population is SNP, which arises due to nucleotide substitution in a protein sequence that leads to protein destabilization, alteration in dynamics, and other physio-chemical properties’ distortions. While causing variations, they are equally responsible for our difference in the way we respond to a treatment or a disease, including various cancer types. There are two types of SNPs; synonymous single nucleotide polymorphism (sSNP) and non-synonymous single nucleotide polymorphism (nsSNP). sSNP occur in the gene coding region without causing a change in the encoded amino acid, while nsSNP is deleterious due to its replacement of a nucleotide residue in the gene sequence that results in a change in the encoded amino acid. Predicting the effects of cancer related nsSNPs on protein stability, function, and dynamics is important due to the significance of phenotype-genotype association of cancer. In this thesis, Data of 5 oncogenes (ONGs) (AKT1, ALK, ERBB2, KRAS, BRAF) and 5 tumor suppressor genes (TSGs) (ESR1, CASP8, TET2, PALB2, PTEN) were retrieved from ClinVar. Five common in silico tools; Polyphen, Provean, Mutation Assessor, Suspect, and FATHMM, were used to predict and categorize nsSNPs as deleterious, benign, or neutral. To understand the impact of each variation on the phenotype, Maestro, PremPS, Cupsat, and mCSM-NA in silico structural prediction tools were used. This study comprises of in-depth analysis of 10 cancer gene variants downloaded from Clinvar. Various analysis of the genes was conducted to derive a meaningful conclusion from the data. Research done indicated that pathogenic variants are more common among ONGs. Our research also shows that pathogenic and destabilizing variants are more common among ONGs than TSGs. Moreover, our data indicated that ALK(409) and BRAF(86) has higher benign count among ONGs; whilst among TSGs, PALB2(1308) and PTEN(318) genes have higher benign counts. Looking at the individual cancer genes predisposition or frequencies of causing cancer according to our research data, KRAS(76%), BRAF(55%), and ERBB2(36%) among ONGs; and PTEN(29%) and ESR1(17%) among TSGs have higher tendencies of causing cancer. Obtained results can shed light to the future research in order to pave new frontiers in cancer therapies.

Keywords: tumor suppressor genes (TSGs), oncogenes (ONGs), non synonymous single nucleotide polymorphism (nsSNP), single nucleotide polymorphism (SNP)

Procedia PDF Downloads 86
340 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 360
339 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 101
338 Stability Study of Hydrogel Based on Sodium Alginate/Poly (Vinyl Alcohol) with Aloe Vera Extract for Wound Dressing Application

Authors: Klaudia Pluta, Katarzyna Bialik-Wąs, Dagmara Malina, Mateusz Barczewski

Abstract:

Hydrogel networks, due to their unique properties, are highly attractive materials for wound dressing. The three-dimensional structure of hydrogels provides tissues with optimal moisture, which supports the wound healing process. Moreover, a characteristic feature of hydrogels is their absorption properties which allow for the absorption of wound exudates. For the fabrication of biomedical hydrogels, a combination of natural polymers ensuring biocompatibility and synthetic ones that provide adequate mechanical strength are often used. Sodium alginate (SA) is one of the polymers widely used in wound dressing materials because it exhibits excellent biocompatibility and biodegradability. However, due to poor strength properties, often alginate-based hydrogel materials are enhanced by the addition of another polymer such as poly(vinyl alcohol) (PVA). This paper is concentrated on the preparation methods of sodium alginate/polyvinyl alcohol hydrogel system incorporating Aloe vera extract and glycerin for wound healing material with particular focus on the role of their composition on structure, thermal properties, and stability. Briefly, the hydrogel preparation is based on the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and ammonium persulfate as an initiator. In vitro degradation tests of SA/PVA/AV hydrogels were carried out in Phosphate-Buffered Saline (pH – 7.4) as well as in distilled water. Hydrogel samples were firstly cut into half-gram pieces (in triplicate) and immersed in immersion fluid. Then, all specimens were incubated at 37°C and then the pH and conductivity values were measurements at time intervals. The post-incubation fluids were analyzed using SEC/GPC to check the content of oligomers. The separation was carried out at 35°C on a poly(hydroxy methacrylate) column (dimensions 300 x 8 mm). 0.1M NaCl solution, whose flow rate was 0.65 ml/min, was used as the mobile phase. Three injections with a volume of 50 µl were made for each sample. The thermogravimetric data of the prepared hydrogels were collected using a Netzsch TG 209 F1 Libra apparatus. The samples with masses of about 10 mg were weighed separately in Al2O3 crucibles and then were heated from 30°C to 900°C with a scanning rate of 10 °C∙min−1 under a nitrogen atmosphere. Based on the conducted research, a fast and simple method was developed to produce potential wound dressing material containing sodium alginate, poly(vinyl alcohol) and Aloe vera extract. As a result, transparent and flexible SA/PVA/AV hydrogels were obtained. The degradation experiments indicated that most of the samples immersed in PBS as well as in distilled water were not degraded throughout the whole incubation time.

Keywords: hydrogels, wound dressings, sodium alginate, poly(vinyl alcohol)

Procedia PDF Downloads 164
337 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 226
336 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 366
335 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 150
334 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry

Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister

Abstract:

The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.

Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming

Procedia PDF Downloads 211
333 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 80
332 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 198
331 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 242