Search results for: translator training/competencies
86 Construction Engineering and Cocoa Agriculture: A Synergistic Approach for Improved Livelihoods of Farmers
Authors: Felix Darko-Amoah, Daniel Acquah
Abstract:
In contemporary ecosystems for developing countries like Ghana, the need to explore innovative solutions for sustainable livelihoods of farmers is more important than ever. With Ghana’s population growing steadily and the demand for food, fiber and shelter increasing, it is imperative that the construction industry and agriculture come together to address the challenges faced by farmers in the country. In order to enhance the livelihoods of cocoa farmers in Ghana, this paper provides an innovative strategy that aims to integrate the areas of civil engineering and cash crop agriculture. This study focuses on cocoa cultivation in poorer nations, where farmers confront a variety of difficulties include restricted access to financing, subpar infrastructure, and insufficient support services. We seek to improve farmers' access to financing, improve infrastructure, and provide support services that are essential to their success by combining the fields of building engineering and cocoa production. The findings of the study are beneficial to cocoa producers, community extension agents, and construction engineers. In order to accomplish our objectives, we conducted 307 of field investigations in particular cocoa growing communities in the Western Region of Ghana. Several studies have shown that there is a lack of adequate infrastructure and financing, leading to low yields, subpar beans, and low farmer profitability in developing nations like Ghana. Our goal is to give farmers access to better infrastructure, better financing, and support services that are crucial to their success through the fusion of construction engineering and cocoa production. Based on data gathered from the field investigations, the results show that the employment of appropriate technology and methods for developing structures, roads, and other infrastructure in rural regions is one of the essential components of this strategy. For instance, we find that using affordable, environmentally friendly materials like bamboo, rammed earth, and mud bricks can assist to cut expenditures while also protecting the environment. By applying simple relational techniques to the data gathered, the results also show that construction engineers are crucial in planning and building infrastructure that is appropriate for the local environment and circumstances and resilient to natural disasters like floods. Thus, the convergence of construction engineering and cash crop cultivation is another crucial component of the agriculture-construction interplay. For instance, farmers can receive financial assistance to buy essential inputs, such as seeds, fertilizer, and tools, as well as training in proper farming methods. Moreover, extension services can be offered to assist farmers in marketing their crops and enhancing their livelihoods and revenue. In conclusion, our analysis of responses from the 307 participants depicts that the combination of construction engineering and cash crop agriculture offers an innovative approach to improving farmers' livelihoods in cocoa farming communities in Ghana. In conclusion, by inculcating the findings of this study into core decision-making, policymakers can help farmers build sustainable and profitable livelihoods by addressing challenges such as limited access to financing, poor infrastructure, and inadequate support services.Keywords: cocoa agriculture, construction engineering, farm buildings and equipment, improved livelihoods of farmers
Procedia PDF Downloads 8985 A Peg Board with Photo-Reflectors to Detect Peg Insertion and Pull-Out Moments
Authors: Hiroshi Kinoshita, Yasuto Nakanishi, Ryuhei Okuno, Toshio Higashi
Abstract:
Various kinds of pegboards have been developed and used widely in research and clinics of rehabilitation for evaluation and training of patient’s hand function. A common measure in these peg boards is a total time of performance execution assessed by a tester’s stopwatch. Introduction of electrical and automatic measurement technology to the apparatus, on the other hand, has been delayed. The present work introduces the development of a pegboard with an electric sensor to detect moments of individual peg’s insertion and removal. The work also gives fundamental data obtained from a group of healthy young individuals who performed peg transfer tasks using the pegboard developed. Through trails and errors in pilot tests, two 10-hole peg-board boxes installed with a small photo-reflector and a DC amplifier at the bottom of each hole were designed and built by the present authors. The amplified electric analogue signals from the 20 reflectors were automatically digitized at 500 Hz per channel, and stored in a PC. The boxes were set on a test table at different distances (25, 50, 75, and 125 mm) in parallel to examine the effect of hole-to-hole distance. Fifty healthy young volunteers (25 in each gender) as subjects of the study performed successive fast 80 time peg transfers at each distance using their dominant and non-dominant hands. The data gathered showed a clear-cut light interruption/continuation moment by the pegs, allowing accurately (no tester’s error involved) and precisely (an order of milliseconds) to determine the pull out and insertion times of each peg. This further permitted computation of individual peg movement duration (PMD: from peg-lift-off to insertion) apart from hand reaching duration (HRD: from peg insertion to lift-off). An accidental drop of a peg led to an exceptionally long ( < mean + 3 SD) PMD, which was readily detected from an examination of data distribution. The PMD data were commonly right-skewed, suggesting that the median can be a better estimate of individual PMD than the mean. Repeated measures ANOVA using the median values revealed significant hole-to-hole distance, and hand dominance effects, suggesting that these need to be fixed in the accurate evaluation of PMD. The gender effect was non-significant. Performance consistency was also evaluated by the use of quartile variation coefficient values, which revealed no gender, hole-to-hole, and hand dominance effects. The measurement reliability was further examined using interclass correlation obtained from 14 subjects who performed the 25 and 125 mm hole distance tasks at two 7-10 days separate test sessions. Inter-class correlation values between the two tests showed fair reliability for PMD (0.65-0.75), and for HRD (0.77-0.94). We concluded that a sensor peg board developed in the present study could provide accurate (excluding tester’s errors), and precise (at a millisecond rate) time information of peg movement separated from that used for hand movement. It could also easily detect and automatically exclude erroneous execution data from his/her standard data. These would lead to a better evaluation of hand dexterity function compared to the widely used conventional used peg boards.Keywords: hand, dexterity test, peg movement time, performance consistency
Procedia PDF Downloads 13284 Enhancing Seismic Resilience in Urban Environments
Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino
Abstract:
Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability
Procedia PDF Downloads 6683 A Case Study on How Biomedical Engineering (BME) Outreach Programmes Serve as An Alternative Educational Approach to Form and Develop the BME Community in Hong Kong
Authors: Sum Lau, Wing Chung Cleo Lau, Wing Yan Chu, Long Ching Ip, Wan Yin Lo, Jo Long Sam Yau, Ka Ho Hui, Sze Yi Mak
Abstract:
Biomedical engineering (BME) is an interdisciplinary subject where knowledge about biology and medicine is applied to novel applications, solving clinical problems. This subject is crucial for cities such as Hong Kong, where the burden on the medical system is rising due to reasons like the ageing population. Hong Kong, who is actively boosting technological advancements in recent years, sets BME, or biotechnology, as a major category, as reflected in the 2018-19 Budget, where biotechnology was one of the four pillars for development. Over the years, while resources in terms of money and space have been provided, there has been a lack of talents expressed by both the academia and industry. While exogenous factors, such as COVID, may have hindered talents from outside Hong Kong to come, endogenous factors should also be considered. In particular, since there are already a few local universities offering BME programmes, their curriculum or style of education requires to be reviewed to intensify the network of the BME community and support post-academic career development. It was observed that while undergraduate (UG) studies focus on knowledge teaching with some technical training and postgraduate (PG) programmes concentrate on upstream research, the programmes are generally confined to the academic sector and lack connections to the industry. In light of that, a “Biomedical Innovation and Outreach Programme 2022” (“B.I.O.2022”) was held to connect students and professors from academia with clinicians and engineers from the industry, serving as a comparative approach to conventional education methods (UG and PG programmes from tertiary institutions). Over 100 participants, including undergraduates, postgraduates, secondary school students, researchers, engineers, and clinicians, took part in various outreach events such as conference and site visits, all held from June to July 2022. As a case study, this programme aimed to tackle the aforementioned problems with the theme of “4Cs” (connection, communication, collaboration, and commercialisation). The effectiveness of the programme is investigated by its ability to serve as an adult and continuing education and the effectiveness of causing social change to tackle current societal challenges, with the focus on tackling the lack of talents engaging in biomedical engineering. In this study, B.I.O.2022 is found to be able to complement the traditional educational methods, particularly in terms of knowledge exchange between the academia and the industry. With enhanced communications between participants from different career stages, there were students who followed up to visit or even work with the professionals after the programme. Furthermore, connections between the academia and industry could foster the generation of new knowledge, which ultimately pointed to commercialisation, adding value to the BME industry while filling the gap in terms of human resources. With the continuation of events like B.I.O.2022, it provides a promising starting point for the development and relationship strengthening of a BME community in Hong Kong, and shows potential as an alternative way of adult education or learning with societal benefits.Keywords: biomedical engineering, adult education for social change, comparative methods and principles, lifelong learning, faced problems, promises, challenges and pitfalls
Procedia PDF Downloads 11482 Advancing Early Intervention Strategies for United States Adolescents and Young Adults with Schizophrenia in the Post-COVID-19 Era
Authors: Peggy M. Randon, Lisa Randon
Abstract:
Introduction: The post-COVID-19 era has presented unique challenges for addressing complex mental health issues, particularly due to exacerbated stress, increased social isolation, and disrupted continuity of care. This article outlines relevant health disparities and policy implications within the context of the United States while maintaining international relevance. Methods: A comprehensive literature review (including studies, reports, and policy documents) was conducted to examine concerns related to childhood-onset schizophrenia and the impact on patients and their families. Qualitative and quantitative data were synthesized to provide insights into the complex etiology of schizophrenia, the effects of the pandemic, and the challenges faced by socioeconomically disadvantaged populations. Case studies were employed to illustrate real-world examples and areas requiring policy reform. Results: Early intervention in childhood is crucial for preventing or mitigating the long-term impact of complex psychotic disorders, particularly schizophrenia. A comprehensive understanding of the genetic, environmental, and physiological factors contributing to the development of schizophrenia is essential. The COVID-19 pandemic worsened symptoms and disrupted treatment for many adolescent patients with schizophrenia, emphasizing the need for adaptive interventions and the utilization of virtual platforms. Health disparities, including stigma, financial constraints, and language or cultural barriers, further limit access to care, especially for socioeconomically disadvantaged populations. Policy implications: Current US health policies inadequately support patients with schizophrenia. The limited availability of longitudinal care, insufficient resources for families, and stigmatization represent ongoing policy challenges. Addressing these issues necessitates increased research funding, improved access to affordable treatment plans, and cultural competency training for healthcare providers. Public awareness campaigns are crucial to promote knowledge, awareness, and acceptance of mental health disorders. Conclusion: The unique challenges faced by children and families in the US affected by schizophrenia and other psychotic disorders have yet to be adequately addressed on institutional and systemic levels. The relevance of findings to an international audience is emphasized by examining the complex factors contributing to the onset of psychotic disorders and their global policy implications. The broad impact of the COVID-19 pandemic on mental health underscores the need for adaptive interventions and global responses. Addressing policy challenges, improving access to care, and reducing the stigma associated with mental health disorders are crucial steps toward enhancing the lives of adolescents and young adults with schizophrenia and their family members. The implementation of virtual platforms can help overcome barriers and ensure equitable access to support and resources for all patients, enabling them to lead healthy and fulfilling lives.Keywords: childhood, schizophrenia, policy, United, States, health, disparities
Procedia PDF Downloads 7581 An Investigation about the Health-Promoting Lifestyle of 1389 Emergency Nurses in China
Authors: Lei Ye, Min Liu, Yong-Li Gao, Jun Zhang
Abstract:
Purpose: The aims of the study are to investigate the status of health-promoting lifestyle and to compare the healthy lifestyle of emergency nurses in different levels of hospitals in Sichuan province, China. The investigation is mainly about the health-promoting lifestyle, including spiritual growth, health responsibility, physical activity, nutrition, interpersonal relations, stress management. Then the factors were analyzed influencing the health-promoting lifestyle of emergency nurses in hospitals of Sichuan province in order to find the relevant models to provide reference evidence for intervention. Study Design: A cross-sectional research method was adopted. Stratified cluster sampling, based on geographical location, was used to select the health facilities of 1389 emergency nurses in 54 hospitals from Sichuan province in China. Method: The 52-item, six-factor structure Health-Promoting Lifestyle Profile II (HPLP- II) instrument was used to explore participants’ self-reported health-promoting behaviors and measure the dimensions of health responsibility, physical activity, nutrition, interpersonal relations, spiritual growth, and stress management. Demographic characteristics, education, work duration, emergency nursing work duration and self-rated health status were documented. Analysis: Data were analyzed through SPSS software ver. 17.0. Frequency, percentage, mean ± standard deviation were used to describe the general information, while the Nonparametric Test was used to compare the constituent ratio of general data of different hospitals. One-way ANOVA was used to compare the scores of health-promoting lifestyle in different levels hospital. A multiple linear regression model was established. P values which were less than 0.05 determined statistical significance in all analyses. Result: The survey showed that the total score of health-promoting lifestyle of nurses at emergency departments in Sichuan Province was 120.49 ± 21.280. The relevant dimensions are ranked by scores in descending order: interpersonal relations, nutrition, health responsibility, physical activity, stress management, spiritual growth. The total scores of the three-A hospital were the highest (121.63 ± 0.724), followed by the senior class hospital (119.7 ± 1.362) and three-B hospital (117.80 ± 1.255). The difference was statistically significant (P=0.024). The general data of nurses was used as the independent variable which includes age, gender, marital status, living conditions, nursing income, hospital level, Length of Service in nursing, Length of Service in emergency, Professional Title, education background, and the average number of night shifts. The total score of health-promoting lifestyle was used as dependent variable; Multiple linear regression analysis method was adopted to establish the regression model. The regression equation F = 20.728, R2 = 0.061, P < 0.05, the age, gender, nursing income, turnover intention and status of coping stress affect the health-promoting lifestyle of nurses in emergency department, the result was statistically significant (P < 0.05 ). Conclusion: The results of the investigation indicate that it will help to develop health promoting interventions for emergency nurses in all levels of hospital in Sichuan Province through further research. Managers need to pay more attention to emergency nurses’ exercise, stress management, self-realization, and conduct intervention in nurse training programs.Keywords: emergency nurse, health-promoting lifestyle profile II, health behaviors, lifestyle
Procedia PDF Downloads 28180 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 13179 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh
Authors: Md. Nuru Miah, A. F. M. Akhter Uddin
Abstract:
Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.Keywords: aloe vera, herbs and shrubs, market, interventions
Procedia PDF Downloads 9478 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 27577 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 5976 Mapping of Urban Micro-Climate in Lyon (France) by Integrating Complementary Predictors at Different Scales into Multiple Linear Regression Models
Authors: Lucille Alonso, Florent Renard
Abstract:
The characterizations of urban heat island (UHI) and their interactions with climate change and urban climates are the main research and public health issue, due to the increasing urbanization of the population. These solutions require a better knowledge of the UHI and micro-climate in urban areas, by combining measurements and modelling. This study is part of this topic by evaluating microclimatic conditions in dense urban areas in the Lyon Metropolitan Area (France) using a combination of data traditionally used such as topography, but also from LiDAR (Light Detection And Ranging) data, Landsat 8 satellite observation and Sentinel and ground measurements by bike. These bicycle-dependent weather data collections are used to build the database of the variable to be modelled, the air temperature, over Lyon’s hyper-center. This study aims to model the air temperature, measured during 6 mobile campaigns in Lyon in clear weather, using multiple linear regressions based on 33 explanatory variables. They are of various categories such as meteorological parameters from remote sensing, topographic variables, vegetation indices, the presence of water, humidity, bare soil, buildings, radiation, urban morphology or proximity and density to various land uses (water surfaces, vegetation, bare soil, etc.). The acquisition sources are multiple and come from the Landsat 8 and Sentinel satellites, LiDAR points, and cartographic products downloaded from an open data platform in Greater Lyon. Regarding the presence of low, medium, and high vegetation, the presence of buildings and ground, several buffers close to these factors were tested (5, 10, 20, 25, 50, 100, 200 and 500m). The buffers with the best linear correlations with air temperature for ground are 5m around the measurement points, for low and medium vegetation, and for building 50m and for high vegetation is 100m. The explanatory model of the dependent variable is obtained by multiple linear regression of the remaining explanatory variables (Pearson correlation matrix with a |r| < 0.7 and VIF with < 5) by integrating a stepwise sorting algorithm. Moreover, holdout cross-validation is performed, due to its ability to detect over-fitting of multiple regression, although multiple regression provides internal validation and randomization (80% training, 20% testing). Multiple linear regression explained, on average, 72% of the variance for the study days, with an average RMSE of only 0.20°C. The impact on the model of surface temperature in the estimation of air temperature is the most important variable. Other variables are recurrent such as distance to subway stations, distance to water areas, NDVI, digital elevation model, sky view factor, average vegetation density, or building density. Changing urban morphology influences the city's thermal patterns. The thermal atmosphere in dense urban areas can only be analysed on a microscale to be able to consider the local impact of trees, streets, and buildings. There is currently no network of fixed weather stations sufficiently deployed in central Lyon and most major urban areas. Therefore, it is necessary to use mobile measurements, followed by modelling to characterize the city's multiple thermal environments.Keywords: air temperature, LIDAR, multiple linear regression, surface temperature, urban heat island
Procedia PDF Downloads 13575 Integrated Services Hub for Exploration and Production Industry: An Indian Narrative
Authors: Sunil Arora, Anitya Kumar Jena, S. A. Ravi
Abstract:
India is at the cusp of major reforms in the hydrocarbon sector. Oil and gas sector is highly liberalised to attract private investment and to increase domestic production. Major hydrocarbon Exploration & Production (E&P) activity here have been undertaken by Government owned companies but with easing up and reworking of hydro carbon exploration licensing policies private players have also joined the fray towards achieving energy security for India. Government of India has come up with policy and administrative reforms including Hydrocarbon Exploration and Licensing Policy (HELP), Sagarmala (port-led development with coastal connectivity), and Development of Small Discovered Fields, etc. with the intention to make industry friendly conditions for investment, ease of doing business and reduce gestation period. To harness the potential resources of Deep water and Ultra deep water, High Pressure – High Temperature (HP-HT) regions, Coal Bed Methane (CBM), Shale Hydrocarbons besides Gas Hydrates, participation shall be required from both domestic and international players. Companies engaged in E&P activities in India have traditionally been managing through their captive supply base, but with crude prices under hammer, the need is being felt to outsource non-core activities. This necessitates establishment of a robust support services to cater to E&P Industry, which is currently non-existent to meet the bourgeon challenges. This paper outlines an agenda for creating an Integrated Services Hub (ISH) under Special Economic Zone (SEZ) to facilitate complete gamut of non-core support activities of E&P industry. This responsive and proficient multi-usage facility becomes viable with better resource utilization, economies of scale to offer cost effective services. The concept envisages companies to bring-in their core technical expertise leaving complete hardware peripherals outsourced to this ISH. The Integrated Services Hub, complying with the best in class global standards, shall typically provide following Services under Single Window Solution, but not limited to: a) Logistics including supply base operations, transport of manpower and material, helicopters, offshore supply vessels, warehousing, inventory management, sourcing and procurement activities, international freight forwarding, domestic trucking, customs clearance service etc. b) Trained/Experienced pool of competent Manpower (Technical, Security etc.) will be available for engagement by companies on either short or long term basis depending upon the requirements with provisions of meeting any training requirements. c) Specialized Services through tie-up with global best companies for Crisis Management, Mud/Cement, Fishing, Floating Dry-dock besides provision of Workshop, Repair and Testing facilities, etc. d) Tools and Tackles including drill strings, etc. A pre-established Integrated Services Hub shall facilitate an early start-up of activities with substantial savings in time lines. This model can be replicated at other parts of the world to expedite E&P activities.Keywords: integrated service hub, India, oil gas, offshore supply base
Procedia PDF Downloads 14974 Understanding the Perceived Barriers and Facilitators to Exercise Participation in the Workplace
Authors: Jayden R. Hunter, Brett A. Gordon, Stephen R. Bird, Amanda C. Benson
Abstract:
The World Health Organisation recognises the workplace as an important setting for exercise promotion, with potential benefits including improved employee health and fitness, and reduced worker absenteeism and presenteeism. Despite these potential benefits to both employee and employer, there is a lack of evidence supporting the long-term effectiveness of workplace exercise programs. There is, therefore, a need for better-informed programs that cater to employee exercise preferences. Specifically, workplace exercise programs should address any time, motivation, internal and external barriers to participation reported by sub-groups of employees. This study sought to compare exercise participation to perceived barriers and facilitators to workplace exercise engagement of university employees. This information is needed to design and implement wider-reaching programs aiming to maximise long-term employee exercise adherence and subsequent health, fitness and productivity benefits. An online survey was advertised at an Australian university with the potential to reach 3,104 full-time employees. Along with exercise participation (International physical activity questionnaire) and behaviour (stage of behaviour change in relation to physical activity questionnaire), perceived barriers (corporate exercise barriers scale) and facilitators to workplace exercise participation were identified. The survey response rate was 8.1% (252 full-time employees; 95% white-collar; 60% female; 79.4% aged 30–59 years; 57% professional and 38% academic). Most employees reported meeting (43.7%) or exceeding (42.9%) exercise guidelines over the previous week (i.e. ⩾30 min of moderate-intensity exercise on most days or ⩾ 25 min of vigorous-intensity exercise on at least three days per week). Reported exercise behaviour over the previous six months showed that 64.7% of employees were in maintenance, 8.3% were in action, 10.9% were in preparation, 12.4% were in contemplation, and 3.8% were in the pre-contemplation stage of change. Perceived barriers towards workplace exercise participation were significantly higher in employees not attaining weekly exercise guidelines compared to employees meeting or exceeding guidelines, including a lack of time or reduced motivation (p < 0.001; partial eta squared = 0.24 (large effect)), exercise attitude (p < 0.05; partial eta squared = 0.04 (small effect)), internal (p < 0.01; partial eta squared = 0.10 (moderate effect)) and external (p < 0.01; partial eta squared = 0.06 (moderate effect)) barriers. The most frequently reported exercise facilitators were personal training (particularly for insufficiently active employees; 33%) and group exercise classes (20%). The most frequently cited preferred modes of exercise were walking (70%), swimming (50%), gym (48%), and cycling (45%). In conclusion, providing additional means of support such as individualised gym, swimming and cycling programs with personal supervision and guidance may be particularly useful for employees not meeting recommended moderate-vigorous volumes of exercise, to help overcome reported exercise barriers in order to improve participation, health, and fitness. While individual biopsychosocial factors should be considered when making recommendations for interventions, the specific barriers and facilitators to workplace exercise participation identified by this study can inform the development of workplace exercise programs aiming to broaden employee engagement and promote greater ongoing exercise adherence. This is especially important for the uptake of less active employees who perceive greater barriers to workplace exercise participation than their more active colleagues.Keywords: exercise barriers, exercise facilitators, physical activity, workplace health
Procedia PDF Downloads 14573 Big Data Applications for the Transport Sector
Authors: Antonella Falanga, Armando Cartenì
Abstract:
Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, cloud computing, decision-making, mobility demand, transportation
Procedia PDF Downloads 6172 Relationship between Illegal Wildlife Trade and Community Conservation: A Case Study of the Chepang Community in Nepal
Authors: Vasundhara H. Krishnani, Ajay Saini, Dibesh Karmacharya, Salit Kark
Abstract:
Illegal Wildlife Trade is one of the most pressing global conservation challenges. Unregulated wildlife trade can threaten biodiversity, contribute to habitat loss, limit sustainable development efforts, and expedite species declines and extinctions. In low-income and middle-income countries, such as Nepal and other countries in Asia and Africa, many of the people engaged in the early stages of illegal wildlife trade, which includes the hunting and transportation of wildlife, belong to Indigenous tribes and local communities.These countries primarily rely on punitive measures to prevent and suppress Illegal Wildlife Trade. For example, in Nepal, people involved in wildlife crimes can often be sentenced to incarceration and a hefty fine and serve up to 15 years in prison. Despite these harsh punitive measures, illegal wildlife trade remains a significant conservation challenge in many countries. The aim of this study was to examine factors affecting the participation of Indigenous communities in Illegal Wildlife Trade while recording the experiences of members of the Indigenous Chepang community, some of whom were imprisoned for their alleged involvement in rhino poaching. Chepangs, belonging to traditionally a hunter-gatherer community, are often considered an isolated and marginalized Indigenous community, some of whom live around the Chitwan National Park in Nepal. Established in 1973, Chitwan National Park is situated in the Chitwan Valley of Nepal and was one of the first regions that was declared as a protected area in Nepal, aiming to protect the one-horned rhinoceros as a flagship species. Conducted over a period of three years, this study used semi-structured interviews and focus group discussions to collect data from Illegal Wildlife Trade offenders, family members of offenders, community Elders, NGO personnel, community forest representatives, Chepang community representatives, and Government school teachers from the region surrounding Chitwan National Park. The study also examined the social, cultural, health, and financial impacts that the imprisonment of offenders had on the families of the community members, especially women and children. The results suggest that involvement of the members of the Chepang community living around Chitwan National Park in the poaching of the one-horned rhinoceros (Rhinoceros unicornis) can be attributed to a range of factors, some of which include: lack of livelihood opportunities, lack of awareness regarding wildlife rules and regulations and poverty.This work emphasises the need for raising awareness and building programs to enhance alternative livelihood training and empower indigenous and marginalised communities that provide sustainable alternatives. Furthermore, the issue needs to be addressed as a community solution which includes all community members. We suggest this multi-pronged approach can benefit wildlife conservation by reducing illegal poaching and wildlife trade, as well as community conservation in regions with similar challenges. By actively involving and empowering local communities, the communities become key stakeholders in the conservation process. This involvement contributes to protecting wildlife and natural ecosystems while simultaneously providing sustainable livelihood options for local communities.Keywords: alternative livelihoods, chepang community, illegal wildlife trade, low-and middle-income countries, nepal, one-horned rhinoceros
Procedia PDF Downloads 10971 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls
Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper
Abstract:
Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.Keywords: patient safety, quality improvement, serious incidents, falls, clinical care
Procedia PDF Downloads 12370 Education Management and Planning with Manual Based
Authors: Purna Bahadur Lamichhane
Abstract:
Education planning and management are foundational pillars for developing effective educational systems. However, in many educational contexts, especially in developing nations, technology-enabled management is still emerging. In such settings, manual-based systems, where instructions and guidelines are physically documented, remain central to educational planning and management. This paper examines the effectiveness, challenges, and potential of manual-based education planning systems in fostering structured, reliable, and adaptable management frameworks. The objective of this study is to explore how a manual-based approach can successfully guide administrators, educators, and policymakers in delivering high-quality education. By using structured, accessible instructions, this approach serves as a blueprint for educational governance, offering clear, actionable steps to achieve institutional goals. Through an analysis of case studies from various regions, the paper identifies key strategies for planning school schedules, managing resources, and monitoring academic and administrative performance without relying on automated systems. The findings underscore the significance of organized documentation, standard operating procedures, and comprehensive manuals that establish uniformity and maintain educational standards across institutions. With a manual-based approach, management can remain flexible, responsive, and user-friendly, especially in environments where internet access and digital literacy are limited. Moreover, it allows for localization, where instructions can be tailored to the unique cultural and socio-economic contexts of the community, thereby increasing relevancy and ownership among local stakeholders. This paper also highlights several challenges associated with manual-based education management. Manual systems often require significant time and human resources for maintenance and updating, potentially leading to inefficiencies and inconsistencies over time. Furthermore, manual records can be susceptible to loss, damage, and limited accessibility, which may affect decision-making and institutional memory. There is also the risk of siloed information, where crucial data resides with specific individuals rather than being accessible across the organization. However, with proper training and regular oversight, many of these limitations can be mitigated. The study further explores the potential for hybrid approaches, combining manual planning with selected digital tools for record-keeping, reporting, and analytics. This transitional strategy can enable schools and educational institutions to gradually embrace digital solutions without discarding the familiarity and reliability of manual instructions. In conclusion, this paper advocates for a balanced, context-sensitive approach to education planning and management. While digital systems hold the potential to streamline processes, manual-based systems offer resilience, inclusivity, and adaptability for institutions where technology adoption may be constrained. Ultimately, by reinforcing the importance of structured, detailed manuals and instructional guides, educational institutions can build robust management frameworks that facilitate both short-term successes and long-term growth in their educational mission. This research aims to provide a reference for policymakers, educators, and administrators seeking practical, low-cost, and adaptable solutions for sustainable educational planning and management.Keywords: educatoin, planning, management, manual
Procedia PDF Downloads 869 Developing a Performance Measurement System for Arts-Based Initiatives: Action Research on Italian Corporate Museums
Authors: Eleonora Carloni, Michela Arnaboldi
Abstract:
In academia, the investigation of the relationship between cultural heritage and corporations is ubiquitous in several fields of studies. In practice corporations are more and more integrating arts and cultural heritage in their strategies for disparate benefits, such as: to foster customer’s purchase intention with authentic and aesthetic experiences, to improve their reputation towards local communities, and to motivate employees with creative thinking. There are diverse forms under which corporations set these artistic interventions, from sponsorships to arts-based training centers for employees, but scholars agree that the maximum expression of this cultural trend are corporate museums, growing in number and relevance. Corporate museums are museum-like settings, hosting artworks of corporations’ history and interests. In academia they have been ascribed as strategic asset and they have been associated with diverse uses for corporations’ benefits, from place for preservation of cultural heritage, to tools for public relations and cultural flagship stores. Previous studies have thus extensively but fragmentally studied the diverse benefits of corporate museum opening to corporations, with a lack of comprehensive approach and a digression on how to evaluate and report corporate museum’s performances. Stepping forward, the present study aims to investigate: 1) what are the key performance measures corporate museums need to report to the associated corporations; 2) how are the key performance measures reported to the concerned corporations. This direction of study is not only suggested as future direction in academia but it has solid basis in practice, aiming to answer to the need of corporate museums’ directors to account for corporate museum’s activities to the concerned corporation. Coherently, at an empirical level the study relies on action research method, whose distinctive feature is to develop practical knowledge through a participatory process. This paper indeed relies on the experience of a collaborative project between the researchers and a set of corporate museums in Italy, aimed at co-developing a performance measurement system. The project involved two steps: a first step, in which researchers derived the potential performance measures from literature along with exploratory interviews; a second step, in which researchers supported the pool of corporate museums’ directors in co-developing a set of key performance indicators for reporting. Preliminary empirical findings show that while scholars insist on corporate museums’ capability to develop networking relations, directors insist on the role of museums as internal supplier of knowledge for innovation goals. Moreover, directors stress museums’ cultural mission and outcomes as potential benefits for corporation, by remarking to include both cultural and business measures in the final tool. In addition, they give relevant attention to the wording used in humanistic terms while struggling to express all measures in economic terms. The paper aims to contribute to corporate museums’ and more broadly to arts-based initiatives’ literature in two directions. Firstly, it elaborates key performance measures with related indicators to report on cultural initiatives for corporations. Secondly, it provides evidence of challenges and practices to handle reporting on these initiatives, because of tensions arising from the co-existence of diverse perspectives, namely arts and business worlds.Keywords: arts-based initiative, corporate museum, hybrid organization, performance measurement
Procedia PDF Downloads 17668 ESRA: An End-to-End System for Re-identification and Anonymization of Swiss Court Decisions
Authors: Joel Niklaus, Matthias Sturmer
Abstract:
The publication of judicial proceedings is a cornerstone of many democracies. It enables the court system to be made accountable by ensuring that justice is made in accordance with the laws. Equally important is privacy, as a fundamental human right (Article 12 in the Declaration of Human Rights). Therefore, it is important that the parties (especially minors, victims, or witnesses) involved in these court decisions be anonymized securely. Today, the anonymization of court decisions in Switzerland is performed either manually or semi-automatically using primitive software. While much research has been conducted on anonymization for tabular data, the literature on anonymization for unstructured text documents is thin and virtually non-existent for court decisions. In 2019, it has been shown that manual anonymization is not secure enough. In 21 of 25 attempted Swiss federal court decisions related to pharmaceutical companies, pharmaceuticals, and legal parties involved could be manually re-identified. This was achieved by linking the decisions with external databases using regular expressions. An automated re-identification system serves as an automated test for the safety of existing anonymizations and thus promotes the right to privacy. Manual anonymization is very expensive (recurring annual costs of over CHF 20M in Switzerland alone, according to an estimation). Consequently, many Swiss courts only publish a fraction of their decisions. An automated anonymization system reduces these costs substantially, further leading to more capacity for publishing court decisions much more comprehensively. For the re-identification system, topic modeling with latent dirichlet allocation is used to cluster an amount of over 500K Swiss court decisions into meaningful related categories. A comprehensive knowledge base with publicly available data (such as social media, newspapers, government documents, geographical information systems, business registers, online address books, obituary portal, web archive, etc.) is constructed to serve as an information hub for re-identifications. For the actual re-identification, a general-purpose language model is fine-tuned on the respective part of the knowledge base for each category of court decisions separately. The input to the model is the court decision to be re-identified, and the output is a probability distribution over named entities constituting possible re-identifications. For the anonymization system, named entity recognition (NER) is used to recognize the tokens that need to be anonymized. Since the focus lies on Swiss court decisions in German, a corpus for Swiss legal texts will be built for training the NER model. The recognized named entities are replaced by the category determined by the NER model and an identifier to preserve context. This work is part of an ongoing research project conducted by an interdisciplinary research consortium. Both a legal analysis and the implementation of the proposed system design ESRA will be performed within the next three years. This study introduces the system design of ESRA, an end-to-end system for re-identification and anonymization of Swiss court decisions. Firstly, the re-identification system tests the safety of existing anonymizations and thus promotes privacy. Secondly, the anonymization system substantially reduces the costs of manual anonymization of court decisions and thus introduces a more comprehensive publication practice.Keywords: artificial intelligence, courts, legal tech, named entity recognition, natural language processing, ·privacy, topic modeling
Procedia PDF Downloads 14767 Top-Down, Middle-Out, Bottom-Up: A Design Approach to Transforming Prison
Authors: Roland F. Karthaus, Rachel S. O'Brien
Abstract:
Over the past decade, the authors have undertaken applied research aimed at enabling transformation within the prison service to improve conditions and outcomes for those living, working and visiting in prisons in the UK and the communities they serve. The research has taken place against a context of reducing resources and public discontent at increasing levels of violence, deteriorating conditions and persistently high levels of re-offending. Top-down governmental policies have mainly been ineffectual and in some cases counter-productive. The prison service is characterised by hierarchical organisation, and the research has applied design thinking at multiple levels to challenge and precipitate change: top-down, middle-out and bottom-up. The research employs three distinct but related approaches, system design (top-down): working at the national policy level to analyse the changing policy context, identifying opportunities and challenges; engaging with the Ministry of Justice commissioners and sector organisations to facilitate debate, introducing new evidence and provoking creative thinking, place-based design (middle-out): working with individual prison establishments as pilots to illustrate and test the potential for local empowerment, creative change, and improved architecture within place-specific contexts and organisational hierarchies, everyday design (bottom-up): working with individuals in the system to explore the potential for localised, significant, demonstrator changes; including collaborative design, capacity building and empowerment in skills, employment, communication, training, and other activities. The research spans a series of projects, through which the methodological approach has developed responsively. The projects include a place-based model for the re-purposing of Ministry of Justice land assets for the purposes of rehabilitation; an evidence-based guide to improve prison design for health and well-being; capacity-based employment, skills and self-build project as a template for future open prisons. The overarching research has enabled knowledge to be developed and disseminated through policy and academic networks. Whilst the research remains live and continuing; key findings are emerging as a basis for a new methodological approach to effecting change in the UK prison service. An interdisciplinary approach is necessary to overcome the barriers between distinct areas of the prison service. Sometimes referred to as total environments, prisons encompass entire social and physical environments which themselves are orchestrated by institutional arms of government, resulting in complex systems that cannot be meaningfully engaged through narrow disciplinary lenses. A scalar approach is necessary to connect strategic policies with individual experiences and potential, through the medium of individual prison establishments, operating as discrete entities within the system. A reflexive process is necessary to connect research with action in a responsive mode, learning to adapt as the system itself is changing. The role of individuals in the system, their latent knowledge and experience and their ability to engage and become agents of change are essential. Whilst the specific characteristics of the UK prison system are unique, the approach is internationally applicable.Keywords: architecture, design, policy, prison, system, transformation
Procedia PDF Downloads 13366 Pedagogical Opportunities of Physics Education Technology Interactive Simulations for Secondary Science Education in Bangladesh
Authors: Mohosina Jabin Toma, Gerald Tembrevilla, Marina Milner-Bolotin
Abstract:
Science education in Bangladesh is losing its appeal at an alarming rate due to the lack of science laboratory equipment, excessive teacher-student ratio, and outdated teaching strategies. Research-based educational technologies aim to address some of the problems faced by teachers who have limited access to laboratory resources, like many Bangladeshi teachers. Physics Education Technology (PhET) research team has been developing science and mathematics interactive simulations to help students develop deeper conceptual understanding. Still, PhET simulations are rarely used in Bangladesh. The purpose of this study is to explore Bangladeshi teachers’ challenges in learning to implement PhET-enhanced pedagogies and examine teachers’ views on PhET’s pedagogical opportunities in secondary science education. Since it is a new technology for Bangladesh, seven workshops on PhET were conducted in Dhaka city for 129 in-service and pre-service teachers in the winter of 2023 prior to data collection. This study followed an explanatory mixed method approach that included a pre-and post-workshop survey and five semi-structured interviews. Teachers participated in the workshops voluntarily and shared their experiences at the end. Teachers’ challenges were also identified from workshop discussions and observations. The interviews took place three to four weeks after the workshop and shed light on teachers’ experiences of using PhET in actual classroom settings. The results suggest that teachers had difficulty handling new technology; hence, they recommended preparing a booklet and Bengali YouTube videos on PhET to assist them in overcoming their struggles. Teachers also faced challenges in using any inquiry-based learning approach due to the content-loaded curriculum and exam-oriented education system, as well as limited experience with inquiry-based education. The short duration of classes makes it difficult for them to design PhET activities. Furthermore, considering limited access to computers and the internet in school, teachers think PhET simulations can bring positive changes if used in homework activities. Teachers also think they lack pedagogical skills and sound content knowledge to take full advantage of PhET. They highly appreciated the workshops and proposed that the government designs some teacher training modules on how to incorporate PhET simulations. Despite all the challenges, teachers believe PhET can enhance student learning, ensure student engagement and increase student interest in STEM Education. Considering the lack of science laboratory equipment, teachers recognized the potential of PhET as a supplement to hands-on activities for secondary science education in Bangladesh. They believed that if PhET develops more curriculum-relevant sims, it will bring revolutionary changes to how Bangladeshi students learn science. All the participating teachers in this study came from two organizations, and all the workshops took place in urban areas; therefore, the findings cannot be generalized to all secondary science teachers. A nationwide study is required to include teachers from diverse backgrounds. A further study can shed light on how building a professional learning community can lessen teachers’ challenges in incorporating PhET-enhanced pedagogy in their teaching.Keywords: educational technology, inquiry-based learning, PhET interactive simulations, PhET-enhanced pedagogies, science education, science laboratory equipment, teacher professional development
Procedia PDF Downloads 8965 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction
Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman
Abstract:
Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation
Procedia PDF Downloads 9064 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning
Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin
Abstract:
This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing
Procedia PDF Downloads 1863 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment
Authors: F. Uriel, M. M. Fernandez Liporace
Abstract:
In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support
Procedia PDF Downloads 12262 Benefits of Environmental Aids to Chronobiology Management and Its Impact on Depressive Mood in an Operational Setting
Authors: M. Trousselard, D. Steiler, C. Drogou, P. van-Beers, G. Lamour, S. N. Crosnier, O. Bouilland, P. Dubost, M. Chennaoui, D. Léger
Abstract:
According to published data, undersea navigation for long periods (nuclear-powered ballistic missile submarine, SSBN) constitutes an extreme environment in which crews are subjected to multiple stresses, including the absence of natural light, illuminance below 1,000 lux, and watch schedules that do not respect natural chronobiological rhythms, for a period of 60-80 days. These stresses seem clearly detrimental to the submariners’ sleep, with consequences for their affective (seasonal affective disorder-like) and cognitive functioning. In the long term, there are abundant publications regarding the consequences of sleep disruption for the occurrence of organic cardiovascular, metabolic, immunological or malignant diseases. It seems essential to propose countermeasures for the duration of the patrol in order to reduce the negative physiological effects on the sleep and mood of submariners. Light therapy, the preferred treatment for dysfunctions of the internal biological clock and the resulting seasonal depression, cannot be used without data to assist knowledge of submariners’ chronobiology (melatonin secretion curve) during patrols, given the unusual characteristics of their working environment. These data are not available in the literature. The aim of this project was to assess, in the course of two studies, the benefits of two environmental techniques for managing chronobiological stress: techniques for optimizing potential (TOP; study 1)3, an existing programme to help in the psychophysiological regulation of stress and sleep in the armed forces, and dawn and dusk simulators (DDS, study 2). For each experiment, psychological, physiological (sleep) or biological (melatonin secretion) data were collected on D20 and D50 of patrol. In the first experiment, we studied sleep and depressive distress in 19 submariners in an operational setting on board an SSBM during a first patrol, and assessed the impact of TOP on the quality of sleep and depressive distress in these same submariners over the course of a second patrol. The submariners were trained in TOP between the two patrols for a 2-month period, at a rate of 1 h of training per week, and assigned daily informal exercises. Results show moderate disruptions in sleep pattern and duration associated with the intensity of depressive distress. The use of TOP during the following patrol improved sleep and depressive mood only in submariners who regularly practiced the techniques. In light of these limited benefits, we assessed, in a second experiment, the benefits of DDS on chronobiology (daily secretion of melatonin) and depressive distress. Ninety submariners were randomly allocated to two groups, group 1 using DDS daily, and group 2 constituting the control group. Although the placebo effect was not controlled, results showed a beneficial effect on chronobiology and depressive mood for submariners with a morning chronotype. Conclusions: These findings demonstrate the difficulty of practicing the tools of psychophysiological management in real life. They raise the question of the subjects’ autonomy with respect to using aids that involve regular practice. It seems important to study autonomy in future studies, as a cognitive resource resulting from the interaction between internal positive resources and “coping” resources, to gain a better understanding of compliance problems.Keywords: chronobiology, light therapy, seasonal affective disorder, sleep, stress, stress management, submarine
Procedia PDF Downloads 45561 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education
Authors: Liudmyla Vesper
Abstract:
The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem
Procedia PDF Downloads 6160 Educational Knowledge Transfer in Indigenous Mexican Areas Using Cloud Computing
Authors: L. R. Valencia Pérez, J. M. Peña Aguilar, A. Lamadrid Álvarez, A. Pastrana Palma, H. F. Valencia Pérez, M. Vivanco Vargas
Abstract:
This work proposes a Cooperation-Competitive (Coopetitive) approach that allows coordinated work among the Secretary of Public Education (SEP), the Autonomous University of Querétaro (UAQ) and government funds from National Council for Science and Technology (CONACYT) or some other international organizations. To work on an overall knowledge transfer strategy with e-learning over the Cloud, where experts in junior high and high school education, working in multidisciplinary teams, perform analysis, evaluation, design, production, validation and knowledge transfer at large scale using a Cloud Computing platform. Allowing teachers and students to have all the information required to ensure a homologated nationally knowledge of topics such as mathematics, statistics, chemistry, history, ethics, civism, etc. This work will start with a pilot test in Spanish and initially in two regional dialects Otomí and Náhuatl. Otomí has more than 285,000 speaking indigenes in Queretaro and Mexico´s central region. Náhuatl is number one indigenous dialect spoken in Mexico with more than 1,550,000 indigenes. The phase one of the project takes into account negotiations with indigenous tribes from different regions, and the Information and Communication technologies to deliver the knowledge to the indigenous schools in their native dialect. The methodology includes the following main milestones: Identification of the indigenous areas where Otomí and Náhuatl are the spoken dialects, research with the SEP the location of actual indigenous schools, analysis and inventory or current schools conditions, negotiation with tribe chiefs, analysis of the technological communication requirements to reach the indigenous communities, identification and inventory of local teachers technology knowledge, selection of a pilot topic, analysis of actual student competence with traditional education system, identification of local translators, design of the e-learning platform, design of the multimedia resources and storage strategy for “Cloud Computing”, translation of the topic to both dialects, Indigenous teachers training, pilot test, course release, project follow up, analysis of student requirements for the new technological platform, definition of a new and improved proposal with greater reach in topics and regions. Importance of phase one of the project is multiple, it includes the proposal of a working technological scheme, focusing in the cultural impact in Mexico so that indigenous tribes can improve their knowledge about new forms of crop improvement, home storage technologies, proven home remedies for common diseases, ways of preparing foods containing major nutrients, disclose strengths and weaknesses of each region, communicating through cloud computing platforms offering regional products and opening communication spaces for inter-indigenous cultural exchange.Keywords: Mexicans indigenous tribes, education, knowledge transfer, cloud computing, otomi, Náhuatl, language
Procedia PDF Downloads 40459 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College
Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa
Abstract:
This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling
Procedia PDF Downloads 23158 National Core Indicators - Aging and Disabilities: A Person-Centered Approach to Understanding Quality of Long-Term Services and Supports
Authors: Stephanie Giordano, Rosa Plasencia
Abstract:
In the USA, in 2013, public service systems such as Medicaid, aging, and disability systems undertook an effort to measure the quality of service delivery by examining the experiences and outcomes of those receiving public services. The goal of this effort was to develop a survey to measure the experiences and outcomes of those receiving public services, with the goal of measuring system performance for quality improvement. The performance indicators were developed through with input from directors of state aging and disability service systems, along with experts and stakeholders in the field across the United States. This effort, National Core Indicators –Aging and Disabilities (NCI-AD), grew out of National Core Indicators –Intellectual and Developmental Disabilities, an effort to measure developmental disability (DD) systems across the States. The survey tool and administration protocol underwent multiple rounds of testing and revision between 2013 and 2015. The measures in the final tool – called the Adult Consumer Survey (ACS) – emphasize not just important indicators of healthcare access and personal safety but also includes indicators of system quality based on person-centered outcomes. These measures indicate whether service systems support older adults and people with disabilities to live where they want, maintain relationships and engage in their communities and have choice and control in their everyday lives. Launched in 2015, the NCI-AD Adult Consumer Survey is now used in 23 states in the US. Surveys are conducted by NCI-AD trained surveyors via direct conversation with a person receiving public long-term services and supports (LTSS). Until 2020, surveys were only conducted in person. However, after a pilot to test the reliability of videoconference and telephone survey modes, these modes were adopted as an acceptable practice. The nature of the survey is that of a “guided conversation” survey administration allows for surveyor to use wording and terminology that is best understand by the person surveyed. The survey includes a subset of questions that may be answered by a proxy respondent who knows the person well if the person is receiving services in unable to provide valid responses on their own. Surveyors undergo a standardized training on survey administration to ensure the fidelity of survey administration. In addition to the main survey section, a Background Information section collects data on personal and service-related characteristics of the person receiving services; these data are typically collected through state administrative record. This information is helps provide greater context around the characteristics of people receiving services. It has also been used in conjunction with outcomes measures to look at disparity (including by race and ethnicity, gender, disability, and living arrangements). These measures of quality are critical for public service delivery systems to understand the unique needs of the population of older adults and improving the lives of older adults as well as people with disabilities. Participating states may use these data to identify areas for quality improvement within their service delivery systems, to advocate for specific policy change, and to better understand the experiences of specific populations of people served.Keywords: quality of life, long term services and supports, person-centered practices, aging and disability research, survey methodology
Procedia PDF Downloads 11957 Mental Health Promotion for Children of Mentally Ill Parents in Schools. Assessment and Promotion of Teacher Mental Health Literacy in Order to Promote Child Related Mental Health (Teacher-MHL)
Authors: Dirk Bruland, Paulo Pinheiro, Ullrich Bauer
Abstract:
Introduction: Over 3 million children, about one quarter of all students, experience at least one parent with mental disorder in Germany every year. Children of mentally-ill parents are at considerably higher risk of developing serious mental health problems. The different burden patterns and coping attempts often become manifest in children's school lives. In this context, schools can have an important protective function, but can also create risk potentials. In reference to Jorm, pupil-related teachers’ mental health literacy (Teacher-MHL) includes the ability to recognize change behaviour, the knowledge of risk factors, the implementation of first aid intervention, and seeking professional help (teacher as gatekeeper). Although teachers’ knowledge and increased awareness of this topic is essential, the literature provides little information on the extent of teachers' abilities. As part of a German-wide research consortium on health literacy, this project, launched in March for 3 years, will conduct evidence-based mental health literacy research. The primary objective is to measure Teacher-MHL in the context of pupil-related psychosocial factors at primary and secondary schools (grades 5 & 6), while also focussing on children’s social living conditions. Methods: (1) A systematic literature review in different databases to identify papers with regard to Teacher-MHL (completed). (2) Based on these results, an interview guide was developed. This research step includes a qualitative pre-study to inductively survey the general profiles of teachers (n=24). The evaluation will be presented on the conference. (3) These findings will be translated into a quantitative teacher survey (n=2500) in order to assess the extent of socio-analytical skills of teachers as well as in relation to institutional and individual characteristics. (4) Based on results 1 – 3, developing a training program for teachers. Results: The review highlights a lack of information for Teacher-MHL and their skills, especially related to high-risk-groups like children of mentally ill parents. The literature is limited to a few studies only. According to these, teacher are not good at identifying burdened children and if they identify those children they do not know how to handle the situations in school. They are not sufficiently trained to deal with these children, especially there are great uncertainties in dealing with the teaching situation. Institutional means and resources are missing as well. Such a mismatch can result in insufficient support and use of opportunities for children at risk. First impressions from the interviews confirm these results and allow a greater insight in the everyday school-life according to critical life events in families. Conclusions: For the first time schools will be addressed as a setting where children are especially "accessible" for measures of health promotion. Addressing Teacher-MHL gives reason to expect high effectiveness. Targeting professionals' abilities for dealing with this high-risk-group leads to a discharge for teacher themselves to handle those situations and increases school health promotion. In view of the fact that only 10-30% of such high-risk families accept offers of therapy and assistance, this will be the first primary preventive and health-promoting approach to protect the health of a yet unaffected, but particularly burdened, high-risk group.Keywords: children of mentally ill parents, health promotion, mental health literacy, school
Procedia PDF Downloads 544